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1 Random sequence

Definition 1. An infinite sequence Xn, n = 1, 2, . . . , of random variables is called a random
sequence.

2 Convergence of a random sequence

Example 1. Consider the sequence of real numbers

Xn =
n

n+ 1
, n = 0, 1, 2, . . .

This sequence converges to the limit l = 1. We write

lim
n→∞

Xn = l = 1.

This means that in any neighbourhood around 1 we can trap the sequence, i.e.,

∀ε > 0, ∃ n0(ε) s.t. for n ≥ n0(ε) |Xn − l| ≤ ε.

We can pick ε to be very small and make sure that the sequence will be trapped after reaching n0(ε).
Therefore as ε decreases n0(ε) will increase. For example, in the considered sequence:

ε =
1

2
, n0(ε) = 2,

ε =
1

1000
, n0(ε) = 1001.

2.1 Almost sure convergence

Definition 2. A random sequence Xn, n = 0, 1, 2, 3, . . . , converges almost surely, or with proba-
bility one, to the random variable X iff

P ( lim
n→∞

Xn = X) = 1.

We write
Xn

a.s.−−→ X.
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Example 2. Let ω be a random variable that is uniformly distributed on [0, 1]. Define the random
sequence Xn as Xn = ωn.

So X0 = 1, X1 = ω, X2 = ω2, X3 = ω3, . . .

Let us take specific values of ω. For instance, if ω = 1
2

X0 = 1, X1 =
1

2
, X2 =

1

4
, X3 =

1

8
, . . .

We can think of it as an urn containing sequences, and at each time we draw a value of ω, we get
a sequence of fixed numbers. In the example of tossing a coin, the output will be either heads or
tails. Whereas, in this case the output of the experiment is a random sequence, i.e., each outcome
is a sequence of infinite numbers.

Question: Does this sequence of random variables converge?

Answer: This sequence converges to

X =

{
0 if ω 6= 1 with probability 1 = P (ω 6= 1)

1 if ω = 1 with probability 0 = P (ω = 1)

Since the pdf is continuous, the probability P (ω = a) = 0 for any constant a. Notice that the
convergence of the sequence to 1 is possible but happens with probability 0.

Therefore, we say that Xn converges almost surely to 0, i.e., Xn
a.s.−−→ 0.

2.2 Convergence in probability

Definition 3. A random sequence Xn converges to the random variable X in probability if

∀ε > 0 lim
n→∞

Pr {|Xn −X| ≥ ε} = 0.

We write :
Xn

p−→ X.

Example 3. Consider a random variable ω uniformly distributed on [0, 1] and the sequence Xn

defined by:

Xn =

{
0 with probability ω

n

1 with probability 1− ω
n

Distributed as shown in Figure 1. Notice that only X2 or X3 can be equal to 1 for the same value
of ω. Similarly, only one of X4, X5, X6 and X7 can be equal to 1 for the same value of ω and so
on and so forth.

Question: Does this sequence converge?
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Figure 1: Plot of the distribution of Xn(ω)

Answer: Intuitively, the sequence will converge to 0. Let us take some examples to see how the
sequence behave.

for ω = 0 : 1
n=1

10
n=2

1000
n=3

10000000
n=4

. . .

for ω =
1

3
: 1

n=1

10
n=2

0100
n=3

00100000
n=4

. . .

From a calculus point of view, these sequences never converge to zero because there is always a
“jump” showing up no matter how many zeros are preceding (Fig. 2); for any ω : Xn(ω) does
not converge in the “calculus” sense. Which means also that Xn does not converge to zero almost
surely (a.s.).
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Figure 2: Plot of the sequence for ω = 0

This sequence converges in probability since

lim
n→∞

P (|Xn − 0| ≥ 0) = 0 ∀ε > 0.

Remark 1. The observed sequence may not converge in “calculus” sense because of the intermittent
“jumps”; however the frequency of those “jumps” goes to zero when n goes to infinity.

2.3 Convergence in mean square

Definition 4. A random sequence Xn converges to a random variable X in mean square sense if

lim
n→∞

E
[
|X −Xn|2

]
= 0.

We write:
Xn

m.s.−−→ X.

Remark 2. In mean square convergence, not only the frequency of the “jumps” goes to zero when
n goes to infinity; but also the “energy” in the jump should go to zero.

Example 4. Consider a random variable ω uniformly distributed over [0, 1], and the sequence
Xn(ω) defined as:

Xn(ω) =

{
an for ω ≤ 1

n

0 otherwise

Note that P (Xn = an) = 1
n and P (Xn = 0) = 1− 1

n .

Question: Does this sequence converge?
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Figure 3: Plot of the sequence Xn(ω)

Answer: Let us check the different convergence criteria we have see so far.

1. Almost sure convergence: Xn
a.s.−−→ 0 because

lim
n→∞

P (Xn = 0) = 1.

2. Convergence in probability: Xn
p.−→ 0 because

lim
n→∞

P {|Xn − 0| ≤ ε} = 0.

(Flash Forward: almost sure convergence ⇒ convergence in probability.)

Xn
a.s.−−→ X ⇒ Xn

p.−→ X.

3. Mean Square Convergence:

E
[
|Xn − 0|2

]
= a2n (P (Xn = an) + 0P (Xn = 0)) ,

=
a2n
n
.

If an = 10⇒ lim
n→∞

E
[
|Xn − 0|2

]
= 0⇒ Xn

m.s.−−→ 0,

If an =
√
n⇒ lim

n→∞
E
[
|Xn − 0|2

]
= 1⇒ Xn does not converge in m.s. to 0.

In this example, the convergence of Xn in the mean square sense depends on the value of an.

2.4 Convergence in distribution

Definition 5. (First attempt) A random sequence Xn converges to X in distribution if when n
goes to infinity, the values of the sequence are distributed according to a known distribution. We
say

Xn
d.−→ X.

Example 5. Consider the sequence Xn defined as:

Xn =

{
Xi ∼ B(12) for i = 1

(Xi−1 + 1) mod 2 = X ⊕ 1 for i > 1
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Question: In which sense, if any, does this sequence converge?

Answer: This sequence has two outcomes depending on the value of X1:

X1 = 1, Xn : 101010101010 . . .

X1 = 0, Xn : 010101010101 . . .

1. Almost sure convergence: Xn does not converge almost surely because the probability of every
jump is always equal to 1

2 .

2. Convergence in probability: Xn does not converge in probability because the frequency of the
jumps is constant equal to 1

2 .

3. Convergence in mean square: Xn does not converge to 1
2 in mean square sense because

lim
n→∞

E

[
|Xn −

1

2
|2
]

= E

[
X2

n −Xn +
1

4

]
,

= E[X2
n]− E[Xn] +

1

4
,

= 12
1

2
+ 02

1

2
− 0 +

1

4
,

=
1

2
.

4. Convergence in distribution: At infinity, since we do not know the value of X1, each value
of Xn can be either 0 or 1 with probability 1

2 . Hence, any number Xn is a random variable
∼ B(12). We say, Xn converges in distribution to Bernoulli(12) and we denote it by:

Xn
d−→ Ber(

1

2
).

Example 6. (Central Limit Theorem)Consider the zero-mean, unit-variance, independent random
variables X1, X2, . . . , Xn and define the sequence Sn as follows:

Sn =
X1 +X2 + ....+Xn√

n
.

The CLT states that Sn converges in distribution to N(0, 1), i.e.,

Sn
d−→ N(0, 1).

Theorem 1.

Almost sure convergence

Convergence in mean square

}
⇒ Convergence in probability⇒ convergence in distribution.

Note:

• There is no relation between Almost Sure and Mean Square Convergence.

• The relation is unidirectional, i.e., convergence in distribution does not imply convergence in
probability neither almost sure convergence nor mean square convergence.
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3 Convergence of a random sequence

Example 1: Let the random variable U be uniformly distributed on [0, 1]. Consider the sequence
defined as:

X(n) =
(−1)nU

n
.

Question: Does this sequence converge? if yes, in what sense(s)?

Answer:

1. Almost sure convergence: Suppose
U = a.

The sequence becomes

X1 = −a,

X2 =
a

2
,

X3 = −a
3
,

X4 =
a

4
,

...

In fact, for any a ∈ [0, 1]
lim
n→∞

Xn = 0,

therefore, Xn
a.s.−−→ 0.

Remark 3. Xn
a.s.−−→ 0 because, by definition, a random sequence converges almost surely to

the random variable X if the sequence of functions Xn converges for all values of U except
for a set of values that has a probability zero.

2. Convergence in probability: Does Xn
p.−→ 0? Recall from theorem 13 of lecture 17:

a.s.

m.s.

}
⇒ p.⇒ d.

which means that by proving almost-sure convergence, we get directly the convergence in
probability and in distribution. However, for completeness we will formally prove that Xn

converges to 0 in probability. To do so, we have to prove that

lim
n→∞

P (|X − 0| ≥ ε) = 0 ∀ε > 0,

⇒ lim
n→∞

P (|Xn| ≥ ε) = 0 ∀ε > 0.
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By definition,

|Xn| =
U

n
≤ 1

n
.

Thus,

lim
n→∞

P
(
|Xn| ≥ ε

)
= lim

n→∞
P

(
U

n
≥ ε
)
, (1)

= lim
n→∞

P (U ≥ nε) , (2)

= 0. (3)

Where equation 3 follows from the fact that finding U ∈ [0, 1].

3. Convergence in mean square sense: Does Xn converge to 0 in the mean square sense?

In order to answer this question, we need to prove that

lim
n→∞

E
[
|Xn − 0|2

]
= 0.

We know that,

lim
n→∞

E
[
|Xn − 0|2

]
= lim

n→∞
E
[
X2

n

]
,

= lim
n→∞

E

[
U2

n2

]
,

= lim
n→∞

1

n2
E
[
U2
]
,

= lim
n→∞

1

n2

∫ 1

0
u2du,

= lim
n→∞

1

n2
u3

3

]1
0

,

= lim
n→∞

1

3n2
,

= 0.

Hence, Xn
m.s.−−→ 0.

4. Convergence in distribution: Does Xn converge to 0 in distribution? The formal definition of
convergence in distribution is the following:

Xn
d.−→ X ⇒ lim

n→∞
FXn(x) = FX(x).

Hereafter, we want to prove that Xn
d.−→ 0.

Recall that the limit r.v. X is the constant 0 and therefore has the following CDF :

Since Xn = (−1)nU
n , the distribution of the Xi can be derived as following:
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Figure 4: Plot of the CDF of 0

Remark 4. At 0 the CDF of Xn will be flip-flopping between 0 (if n is even) and 1 (if n is
odd) (c.f. figure 5) which implies that there is a discontinuity at that point. Therefore, we
say that Xn converges in distribution to a CDF FX(x) except at points where FX(x) is not
continuous.

Definition 6. Xn converges to X in distribution, i.e., X[n]
d.−→ X iff

lim
n→∞

FXn (x) = FX (x) except at points where FX (x) is not continuous.

Remark 5. It is clear here that

lim
n→∞

FXn(x) = Fx(x) except for x = 0.

Therefore, Xn converges to X in distribution. We could have deduced this directly from convergence
in mean square sense or almost sure convergence.

Theorem 2. a) If Xn
a.s.−−→ X ⇒ Xn

p.−→ X.

b) If Xn
m.s.−−→ X ⇒ Xn

p.−→ X.

c) If Xn
p.−→ X ⇒ Xn

d.−→ X.

d) If P {|Xn| ≤ Y } = 1 for all n for a random variable Y with E
[
Y 2
]
<∞, then

Xn
p.−→ X ⇒ Xn

m.s.−−→ X.

.

Proof. The proof is omitted.

Remark 6. Convergence in probability allows the sequence, at ∞, to deviate from the mean for
any value with a small probability; whereas, convergence in mean square limits the amplitude of this
deviation when n→∞. (We can think of it as energy ⇒ we can not allow a big deviation from the
mean).
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Figure 5: Plot of the CDF of U,X1, X2 and X3

4 Back to real analysis

Definition 7. A sequence (xn)n≥1 is Cauchy if for every ε, there exists a large number N s.t.

∀m,n > N, |xm − xn| < ε ⇔ lim
n,m→∞

|xm − xn| = 0.

Claim 1. Every Cauchy sequence is convergent.

Counter example 1. Consider the sequence Xn ∈ Q defined as x0 = 1, xn+1 =
xn+

2
xn

2 . The limit
of this sequence is given by:

l =
l + 2

l

2
,

2l2 = l2 + 2,

l = ±
√

2 /∈ Q.

This implies that the sequence does not converge in Q.
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Counter example 2. Consider the sequence xn = 1/n in (0, 1). Obviously it does not converge
in (0, 1) since the limit l = 1 /∈ (0, 1).

Definition 8. A space where every sequence converges is called a complete space.

Theorem 3. R is a complete space.

Proof. The proof is omitted.

Theorem 4. Cauchy criteria for convergence of a random sequence.

a) Xn
a.s.−−→ X ⇐⇒ P

[
lim

m,n→∞
|xm − xn| = 0

]
= 1.

b) Xn
m.s.−−→ X ⇐⇒ lim

m,n→∞
E
[
|xm − xn|2

]
= 0.

c) Xn
p.−→ X ⇐⇒ lim

m,n→∞
P [|xm − xn| ≥ ε] = 0 ∀ε.

Proof. The proofs are omitted.

Example 7. Consider the sequence of example 11 from last lecture,

Xn =

{
Xi ∼ B(12) for i = 1

(Xi−1 + 1) mod 2 = X ⊕ 1 for i > 1

Goal: Our goal is to prove that this sequence does not converge in mean square using Cauchy
criteria.

This sequence has two outcomes depending on the value of X1:

X1 = 1, Xn : 101010101010 . . .

X1 = 0, Xn : 010101010101 . . .

Therefore,

E
[
|Xn −Xm|2

]
= E

[
X2

n

]
+ E

[
X2

m

]
− 2E [XmXn] ,

=
1

2
+

1

2
− 2E [XmXn] .

Consider, without loss of generality, that m > n

E [XnXm] =

{
E [XnXm] = 0 if m− n is odd,

E
[
X2

n

]
= 1

2 if m− n is even.

Hence,

lim
n,m→∞

E
[
|Xn −Xm|2

]
=

{
1 if m− n is odd,

0 if m− n is even,

which implies that Xn does not converge in mean square by theorem 4-b).
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Lemma 1. Let Xn be a random sequence with E
[
X2

n

]
<∞ ∀n.

Xn
m.s.−−→ X iff lim

m,n→∞
E [XmXn] exists and is finite.

Theorem 5. Weak law of large numbers

Let X1, X2, X3, . . . , Xi be iid random variables. E [Xi] = µ, ∀i. Let

Sn =
X1 +X2 + ...+Xn

n
.

Then
P [|Sn − µ| ≥ ε] −−−→

n→∞
0.

Using the language of this chapter:
Sn

p.−→ µ.

Theorem 6. Strong law of large numbers

Let X1, X2, X3, . . . , Xi be iid random variables. E [Xi] = µ, ∀i. Let

Sn =
X1 +X2 + ...+Xn

n
.

Then
P
[

lim
n→∞

|Sn − µ| ≥ ε
]

= 0.

Using the language of this chapter:
Sn

a.s.−−→ µ.

Theorem 7. Central limit theorem

Let X1, X2, X3, . . . , Xi be iid random variables. E [Xi] = 0, ∀i. Let

Zn =
X1 +X2 + ...+Xn√

n
.

Then

P [Zn ≤ z] =

∫ z

−∞

1√
2π
e−

z2

2 dz.

Using the language of this chapter:

Zn
d.−→ N(0, 1).
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