ECE511: Analysis of Random Signals

Fall 2016

Lecture Chapter 6: Convergence of Random Sequences Dr. Salim El Rouayheb Scribe: Abhay Ashutosh Donel, Qinbo Zhang, Peiwen Tian, Pengzhe Wang, Lu Liu

1 Random sequence

Definition 1. An infinite sequence X_n , n = 1, 2, ..., of random variables is called a random sequence.

2 Convergence of a random sequence

Example 1. Consider the sequence of real numbers

$$X_n = \frac{n}{n+1}, \ n = 0, 1, 2, \dots$$

This sequence converges to the limit l = 1. We write

$$\lim_{n \to \infty} X_n = l = 1.$$

This means that in any neighbourhood around 1 we can trap the sequence, i.e.,

$$\forall \epsilon > 0, \quad \exists n_0(\epsilon) \quad s.t. \quad for \ n \ge n_0(\epsilon) \quad |X_n - l| \le \epsilon.$$

We can pick ϵ to be very small and make sure that the sequence will be trapped after reaching $n_0(\epsilon)$. Therefore as ϵ decreases $n_0(\epsilon)$ will increase. For example, in the considered sequence:

$$\epsilon = \frac{1}{2}, \qquad n_0(\epsilon) = 2,$$

 $\epsilon = \frac{1}{1000}, \qquad n_0(\epsilon) = 1001.$

2.1 Almost sure convergence

Definition 2. A random sequence X_n , n = 0, 1, 2, 3, ..., converges almost surely, or with probability one, to the random variable X iff

$$P(\lim_{n \to \infty} X_n = X) = 1.$$

We write

 $X_n \xrightarrow{a.s.} X.$

Example 2. Let ω be a random variable that is uniformly distributed on [0, 1]. Define the random sequence X_n as $X_n = \omega^n$.

So
$$X_0 = 1$$
, $X_1 = \omega$, $X_2 = \omega^2$, $X_3 = \omega^3$,...

Let us take specific values of ω . For instance, if $\omega = \frac{1}{2}$

$$X_0 = 1, \ X_1 = \frac{1}{2}, \ X_2 = \frac{1}{4}, \ X_3 = \frac{1}{8}, \dots$$

We can think of it as an urn containing sequences, and at each time we draw a value of ω , we get a sequence of fixed numbers. In the example of tossing a coin, the output will be either heads or tails. Whereas, in this case the output of the experiment is a random sequence, i.e., each outcome is a sequence of infinite numbers.

Question: Does this sequence of random variables converge?

Answer: This sequence converges to

$$X = \begin{cases} 0 & \text{if } \omega \neq 1 \text{ with probability } 1 = P(\omega \neq 1) \\ 1 & \text{if } \omega = 1 \text{ with probability } 0 = P(\omega = 1) \end{cases}$$

Since the pdf is continuous, the probability $P(\omega = a) = 0$ for any constant a. Notice that the convergence of the sequence to 1 is possible but happens with probability 0.

Therefore, we say that X_n converges almost surely to 0, i.e., $X_n \xrightarrow{a.s.} 0$.

2.2 Convergence in probability

Definition 3. A random sequence X_n converges to the random variable X in probability if

$$\forall \epsilon > 0 \quad \lim_{n \to \infty} \Pr\{|X_n - X| \ge \epsilon\} = 0.$$

We write :

 $X_n \xrightarrow{p} X.$

Example 3. Consider a random variable ω uniformly distributed on [0,1] and the sequence X_n defined by:

$$X_n = \begin{cases} 0 & \text{with probability } \frac{\omega}{n} \\ 1 & \text{with probability } 1 - \frac{\omega}{n} \end{cases}$$

Distributed as shown in Figure 1. Notice that only X_2 or X_3 can be equal to 1 for the same value of ω . Similarly, only one of X_4, X_5, X_6 and X_7 can be equal to 1 for the same value of ω and so on and so forth.

Question: Does this sequence converge?

Figure 1: Plot of the distribution of $X_n(\omega)$

Answer: Intuitively, the sequence will converge to 0. Let us take some examples to see how the sequence behave.

for
$$\omega = 0$$
:
 $\lim_{n=1}^{1} \lim_{n=2}^{1000} \frac{10000000}{n=4} \dots$
for $\omega = \frac{1}{3}$:
 $\lim_{n=1}^{1} \lim_{n=2}^{100} \frac{010000100000}{n=4} \dots$

From a calculus point of view, these sequences never converge to zero because there is always a "jump" showing up no matter how many zeros are preceding (Fig. 2); for any $\omega : X_n(\omega)$ does not converge in the "calculus" sense. Which means also that X_n does not converge to zero almost surely (a.s.).

Figure 2: Plot of the sequence for $\omega = 0$

This sequence converges in probability since

$$\lim_{n \to \infty} P\left(|X_n - 0| \ge 0\right) = 0 \quad \forall \epsilon > 0$$

Remark 1. The observed sequence may not converge in "calculus" sense because of the intermittent "jumps"; however the frequency of those "jumps" goes to zero when n goes to infinity.

2.3 Convergence in mean square

Definition 4. A random sequence X_n converges to a random variable X in mean square sense if

$$\lim_{n \to \infty} E\left[\left|X - X_n\right|^2\right] = 0$$

We write:

 $X_n \xrightarrow{m.s.} X.$

Remark 2. In mean square convergence, not only the frequency of the "jumps" goes to zero when n goes to infinity; but also the "energy" in the jump should go to zero.

Example 4. Consider a random variable ω uniformly distributed over [0,1], and the sequence $X_n(\omega)$ defined as:

$$X_n(\omega) = \begin{cases} a_n & \text{for } \omega \le \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$$

Note that $P(X_n = a_n) = \frac{1}{n}$ and $P(X_n = 0) = 1 - \frac{1}{n}$.

Question: Does this sequence converge?

Figure 3: Plot of the sequence $X_n(\omega)$

Answer: Let us check the different convergence criteria we have see so far.

1. Almost sure convergence: $X_n \xrightarrow{a.s.} 0$ because

$$\lim_{n \to \infty} P(X_n = 0) = 1.$$

2. Convergence in probability: $X_n \xrightarrow{p.} 0$ because

$$\lim_{n \to \infty} P\left\{ |X_n - 0| \le \epsilon \right\} = 0.$$

(Flash Forward: almost sure convergence \Rightarrow convergence in probability.)

$$X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{p.} X.$$

3. Mean Square Convergence:

$$E\left[|X_n - 0|^2\right] = a_n^2 \left(P\left(X_n = a_n\right) + 0P\left(X_n = 0\right)\right),$$
$$= \frac{a_n^2}{n}.$$

If
$$a_n = 10 \Rightarrow \lim_{n \to \infty} E\left[|X_n - 0|^2\right] = 0 \Rightarrow X_n \xrightarrow{m.s.} 0$$
,
If $a_n = \sqrt{n} \Rightarrow \lim_{n \to \infty} E\left[|X_n - 0|^2\right] = 1 \Rightarrow X_n$ does not converge in m.s. to 0.

In this example, the convergence of X_n in the mean square sense depends on the value of a_n .

2.4 Convergence in distribution

Definition 5. (First attempt) A random sequence X_n converges to X in distribution if when n goes to infinity, the values of the sequence are distributed according to a known distribution. We say

 $X_n \xrightarrow{d.} X.$

Example 5. Consider the sequence X_n defined as:

$$X_n = \begin{cases} X_i \sim B(\frac{1}{2}) & \text{for } i = 1\\ (X_{i-1} + 1) \mod 2 = X \oplus 1 & \text{for } i > 1 \end{cases}$$

Question: In which sense, if any, does this sequence converge?

Answer: This sequence has two outcomes depending on the value of X_1 :

$$X_1 = 1, \quad X_n : 101010101010...$$

 $X_1 = 0, \quad X_n : 010101010101...$

- 1. Almost sure convergence: X_n does not converge almost surely because the probability of every jump is always equal to $\frac{1}{2}$.
- 2. Convergence in probability: X_n does not converge in probability because the frequency of the jumps is constant equal to $\frac{1}{2}$.
- 3. Convergence in mean square: X_n does not converge to $\frac{1}{2}$ in mean square sense because

$$\lim_{n \to \infty} E\left[|X_n - \frac{1}{2}|^2\right] = E\left[X_n^2 - X_n + \frac{1}{4}\right],$$
$$= E[X_n^2] - E[X_n] + \frac{1}{4}$$
$$= 1^2 \frac{1}{2} + 0^2 \frac{1}{2} - 0 + \frac{1}{4},$$
$$= \frac{1}{2}.$$

4. Convergence in distribution: At infinity, since we do not know the value of X_1 , each value of X_n can be either 0 or 1 with probability $\frac{1}{2}$. Hence, any number X_n is a random variable $\sim B(\frac{1}{2})$. We say, X_n converges in distribution to Bernoulli $(\frac{1}{2})$ and we denote it by:

$$X_n \xrightarrow{d} Ber(\frac{1}{2}).$$

Example 6. (Central Limit Theorem)Consider the zero-mean, unit-variance, independent random variables X_1, X_2, \ldots, X_n and define the sequence S_n as follows:

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{\sqrt{n}}$$

The CLT states that S_n converges in distribution to N(0,1), i.e.,

$$S_n \xrightarrow{d} N(0,1).$$

Theorem 1.

 $\left. \begin{array}{l} Almost \ sure \ convergence \\ Convergence \ in \ mean \ square \end{array} \right\} \Rightarrow Convergence \ in \ probability \Rightarrow convergence \ in \ distribution. \end{array} \right\}$

Note:

- There is no relation between Almost Sure and Mean Square Convergence.
- The relation is unidirectional, i.e., convergence in distribution does not imply convergence in probability neither almost sure convergence nor mean square convergence.

3 Convergence of a random sequence

Example 1: Let the random variable U be uniformly distributed on [0, 1]. Consider the sequence defined as:

$$X(n) = \frac{(-1)^n U}{n}.$$

Question: Does this sequence converge? if yes, in what sense(s)?

Answer:

1. Almost sure convergence: Suppose

$$U = a$$
.

The sequence becomes

$$X_1 = -a,$$

$$X_2 = \frac{a}{2},$$

$$X_3 = -\frac{a}{3},$$

$$X_4 = \frac{a}{4},$$

$$\vdots$$

In fact, for any $a \in [0, 1]$

$$\lim_{n \to \infty} X_n = 0,$$

therefore, $X_n \xrightarrow{a.s.} 0$.

Remark 3. $X_n \xrightarrow{a.s.} 0$ because, by definition, a random sequence converges almost surely to the random variable X if the sequence of functions X_n converges for all values of U except for a set of values that has a probability zero.

2. Convergence in probability: Does $X_n \xrightarrow{p} 0$? Recall from theorem 13 of lecture 17:

$$\left. \begin{array}{c} \text{a.s.} \\ \text{m.s.} \end{array} \right\} \Rightarrow \text{p.} \Rightarrow \text{d.}$$

which means that by proving almost-sure convergence, we get directly the convergence in probability and in distribution. However, for completeness we will formally prove that X_n converges to 0 in probability. To do so, we have to prove that

$$\lim_{n \to \infty} P(|X - 0| \ge \epsilon) = 0 \quad \forall \epsilon > 0,$$

$$\Rightarrow \lim_{n \to \infty} P(|X_n| \ge \epsilon) = 0 \quad \forall \epsilon > 0.$$

By definition,

$$|X_n| = \frac{U}{n} \le \frac{1}{n}$$

Thus,

$$\lim_{n \to \infty} P\left(|X_n| \ge \epsilon\right) = \lim_{n \to \infty} P\left(\frac{U}{n} \ge \epsilon\right),\tag{1}$$

$$=\lim_{n\to\infty}P\left(U\ge n\epsilon\right),\tag{2}$$

$$=0.$$
 (3)

Where equation 3 follows from the fact that finding $U \in [0, 1]$.

3. Convergence in mean square sense: Does X_n converge to 0 in the mean square sense?

In order to answer this question, we need to prove that

$$\lim_{n \to \infty} E\left[|X_n - 0|^2\right] = 0.$$

We know that,

$$\lim_{n \to \infty} E\left[|X_n - 0|^2\right] = \lim_{n \to \infty} E\left[X_n^2\right],$$
$$= \lim_{n \to \infty} E\left[\frac{U^2}{n^2}\right],$$
$$= \lim_{n \to \infty} \frac{1}{n^2} E\left[U^2\right],$$
$$= \lim_{n \to \infty} \frac{1}{n^2} \int_0^1 u^2 du,$$
$$= \lim_{n \to \infty} \frac{1}{n^2} \frac{u^3}{3} \Big]_0^1,$$
$$= \lim_{n \to \infty} \frac{1}{3n^2},$$
$$= 0.$$

Hence, $X_n \xrightarrow{m.s.} 0$.

4. Convergence in distribution: Does X_n converge to 0 in distribution? The formal definition of convergence in distribution is the following:

$$X_n \xrightarrow{d.} X \Rightarrow \lim_{n \to \infty} F_{X_n}(x) = F_X(x).$$

Hereafter, we want to prove that $X_n \xrightarrow{d} 0$.

Recall that the limit r.v. X is the constant 0 and therefore has the following CDF : Since $X_n = \frac{(-1)^n U}{n}$, the distribution of the X_i can be derived as following:

Figure 4: Plot of the CDF of 0

Remark 4. At 0 the CDF of X_n will be flip-flopping between 0 (if n is even) and 1 (if n is odd) (c.f. figure 5) which implies that there is a discontinuity at that point. Therefore, we say that X_n converges in distribution to a CDF $F_X(x)$ except at points where $F_X(x)$ is not continuous.

Definition 6. X_n converges to X in distribution, i.e., $X[n] \xrightarrow{d.} X$ iff

 $\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \quad \text{except at points where } F_X(x) \text{ is not continuous.}$

Remark 5. It is clear here that

$$\lim_{n \to \infty} F_{X_n}(x) = F_x(x) \quad except \text{ for } x = 0.$$

Therefore, X_n converges to X in distribution. We could have deduced this directly from convergence in mean square sense or almost sure convergence.

Theorem 2. a) If $X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{p.} X$.

- b) If $X_n \xrightarrow{m.s.} X \Rightarrow X_n \xrightarrow{p.} X$.
- c) If $X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{d} X$.
- d) If $P\{|X_n| \leq Y\} = 1$ for all n for a random variable Y with $E[Y^2] < \infty$, then

$$X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{m.s} X.$$

Proof. The proof is omitted.

Remark 6. Convergence in probability allows the sequence, at ∞ , to deviate from the mean for any value with a small probability; whereas, convergence in mean square limits the amplitude of this deviation when $n \to \infty$. (We can think of it as energy \Rightarrow we can not allow a big deviation from the mean).

Figure 5: Plot of the CDF of U, X_1, X_2 and X_3

4 Back to real analysis

Definition 7. A sequence $(x_n)_{n\geq 1}$ is Cauchy if for every ϵ , there exists a large number N s.t.

$$\forall m, n > N, |x_m - x_n| < \epsilon \quad \Leftrightarrow \quad \lim_{n, m \to \infty} |x_m - x_n| = 0.$$

Claim 1. Every Cauchy sequence is convergent.

Counter example 1. Consider the sequence $X_n \in \mathbb{Q}$ defined as $x_0 = 1$, $x_{n+1} = \frac{x_n + \frac{2}{x_n}}{2}$. The limit of this sequence is given by:

$$l = \frac{l + \frac{2}{l}}{2},$$

$$2l^2 = l^2 + 2,$$

$$l = \pm\sqrt{2} \notin \mathbb{Q}.$$

This implies that the sequence does not converge in \mathbb{Q} .

Counter example 2. Consider the sequence $x_n = 1/n$ in (0,1). Obviously it does not converge in (0,1) since the limit $l = 1 \notin (0,1)$.

Definition 8. A space where every sequence converges is called a complete space.

Theorem 3. \mathbb{R} is a complete space.

Proof. The proof is omitted.

Theorem 4. Cauchy criteria for convergence of a random sequence.

a)
$$X_n \xrightarrow{a.s.} X \iff P\left[\lim_{m,n\to\infty} |x_m - x_n| = 0\right] = 1.$$

b) $X_n \xrightarrow{m.s.} X \iff \lim_{m,n\to\infty} E\left[|x_m - x_n|^2\right] = 0.$
c) $X_n \xrightarrow{p.} X \iff \lim_{m,n\to\infty} P\left[|x_m - x_n| \ge \varepsilon\right] = 0 \quad \forall \epsilon.$

Proof. The proofs are omitted.

Example 7. Consider the sequence of example 11 from last lecture,

$$X_n = \begin{cases} X_i \sim B(\frac{1}{2}) & \text{for } i = 1\\ (X_{i-1} + 1) \mod 2 = X \oplus 1 & \text{for } i > 1 \end{cases}$$

Goal: Our goal is to prove that this sequence does not converge in mean square using Cauchy criteria.

This sequence has two outcomes depending on the value of X_1 :

$$X_1 = 1, \quad X_n : 101010101010...$$

 $X_1 = 0, \quad X_n : 010101010101...$

Therefore,

$$E\left[|X_n - X_m|^2\right] = E\left[X_n^2\right] + E\left[X_m^2\right] - 2E\left[X_m X_n\right],$$

= $\frac{1}{2} + \frac{1}{2} - 2E\left[X_m X_n\right].$

Consider, without loss of generality, that m > n

$$E[X_n X_m] = \begin{cases} E[X_n X_m] = 0 & \text{if } m - n \text{ is odd,} \\ E[X_n^2] = \frac{1}{2} & \text{if } m - n \text{ is even.} \end{cases}$$

Hence,

$$\lim_{n,m\to\infty} E\left[|X_n - X_m|^2\right] = \begin{cases} 1 & \text{if } m - n \text{ is odd,} \\ 0 & \text{if } m - n \text{ is even,} \end{cases}$$

which implies that X_n does not converge in mean square by theorem 4-b).

Lemma 1. Let X_n be a random sequence with $E[X_n^2] < \infty \ \forall n$.

$$X_n \xrightarrow{m.s.} X$$
 iff $\lim_{m,n\to\infty} E[X_m X_n]$ exists and is finite.

Theorem 5. Weak law of large numbers

Let $X_1, X_2, X_3, \ldots, X_i$ be iid random variables. $E[X_i] = \mu, \forall i$. Let

$$S_n = \frac{X_1 + X_2 + \ldots + X_n}{n}.$$

Then

$$P\left[|S_n - \mu| \ge \epsilon\right] \xrightarrow[n \to \infty]{} 0.$$

Using the language of this chapter:

$$S_n \xrightarrow{p_{\cdot}} \mu.$$

Theorem 6. Strong law of large numbers

Let $X_1, X_2, X_3, \ldots, X_i$ be iid random variables. $E[X_i] = \mu, \forall i.$ Let

$$S_n = \frac{X_1 + X_2 + \ldots + X_n}{n}.$$

Then

$$P\left[\lim_{n\to\infty}|S_n-\mu|\geq\epsilon\right]=0.$$

Using the language of this chapter:

$$S_n \xrightarrow{a.s.} \mu.$$

Theorem 7. Central limit theorem

Let $X_1, X_2, X_3, \ldots, X_i$ be iid random variables. $E[X_i] = 0, \forall i.$ Let

$$Z_n = \frac{X_1 + X_2 + \ldots + X_n}{\sqrt{n}}.$$

Then

$$P[Z_n \le z] = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz.$$

Using the language of this chapter:

$$Z_n \xrightarrow{d.} N(0,1).$$