ECE511: Analysis of Random Signals							
	Chapter 5						
	Dr. Salim El Rouayheb						
Se	cribe: H. Xie, L. Gan, W. Yi, Jaijo, R. Tajeddine, S. Jones, Y. Yang	, L. Liu					

1 Overview

In the last lecture, we talked about Chernoff bound and defined the characteristic function of a RV. Then we gave some examples and concluded by proving the Central Limit Theorem with examples.

In this lecture, we will introduce random vectors, define Positive Semi-Definite (P.S.D.) matrices, give some examples theorem and proofs, then use them to prove some properties in covariance matrices.

2 Random Vector

Definition 1. A random vector $\underline{X} = (X_1, X_2, \ldots, X_n)^T$, is a vector of random variables X_i , $i = 1, \ldots, n$.

Definition 2. The mean vector of \underline{X} , denoted by $\underline{\mu}$, is $\underline{\mu} = (\mu_1, \mu_2, \ldots, \mu_n)^T$ where $\mu_i = E[X_i], i = 1, \ldots, n$.

Definition 3. The covariance matrix K_{XX} or K, of \underline{X} is an $n \times n$ matrix defined as

$$K_{XX} \stackrel{\Delta}{=} E\left[\left(\underline{X} - \underline{\mu}\right) \left(\underline{X} - \underline{\mu}\right)^{\mathrm{T}}\right].$$

$$K_{XX} = E \begin{bmatrix} \begin{pmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \\ \vdots \\ X_n - \mu_n \end{pmatrix} \begin{pmatrix} X_1 - \mu_1 & X_2 - \mu_2 & \dots & X_n - \mu_n \end{pmatrix}^{\mathrm{T}} \end{bmatrix},$$

$$= E \begin{bmatrix} (X_1 - \mu_1)^2 & (X_1 - \mu_1)(X_2 - \mu_2) & \cdots & (X_1 - \mu_1)(X_n - \mu_n) \\ (X_2 - \mu_2)(X_1 - \mu_1) & (X_2 - \mu_2)^2 & \cdots & (X_2 - \mu_2)(X_n - \mu_n) \\ \vdots & \vdots & \ddots & \vdots \\ (X_n - \mu_n)(X_1 - \mu_1) & (X_n - \mu_n)(X_2 - \mu_2) & \cdots & (X_n - \mu_n)^2 \end{bmatrix},$$

$$= \begin{bmatrix} \sigma_1^2 & K_{12} & \cdots & K_{1n} \\ K_{21} & \sigma_2^2 & \cdots & K_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ K_{n1} & K_{n2} & \cdots & \sigma_n^2 \end{bmatrix}.$$

Remark: The matrix K_{XX} is *real symmetric* and $K_{ij} = K_{ji} = cov(X_i, X_j) = E[(X_i - \mu_i)(X_j - \mu_j)] = K$, and $\sigma_i^2 = V(X_i)$.

Definition 4. The correlation matrix R_{XX} , or R, is defined as $R = E\left[\underline{X}\underline{X}^T\right]$. **Corollary 1.** $K = R - \underline{\mu}\underline{\mu}^T$. **Example 1.** $\underline{X} = (X_1, X_2)$,

$$Cov(X_1, X_2) = E[X_1, X_2] - \mu_1 \mu_2,$$

$$K_{XX} = \begin{bmatrix} \sigma_{X_1}^2 & \cos(X_1, X_2) \\ \cos(X_1, X_2) & \sigma_{X_2}^2 \end{bmatrix} = \begin{bmatrix} E \begin{bmatrix} X_1^2 \end{bmatrix} & E \begin{bmatrix} X_1 X_2 \end{bmatrix} \\ E \begin{bmatrix} X_1 X_2 \end{bmatrix} - \begin{bmatrix} \mu_1^2 & \mu_1 \mu_2 \\ \mu_1 \mu_2 & \mu_2^2 \end{bmatrix}.$$

Definition 5. For any random vectors \underline{X} and \underline{Y} of same length.

- 1. If the cross-covariance matrix $K_{XY} = E\left[\left(\underline{X} \underline{\mu}_X\right)\left(\underline{Y} \underline{\mu}_Y\right)\right] = E\left[\underline{X}\underline{Y}^T\right] \underline{\mu}_X\underline{\mu}_Y^T = \mathbf{0} \Rightarrow$ we say that \underline{X} and \underline{Y} are uncorrelated.
- 2. If $E[XY^T] = 0 \Rightarrow$ we say that X and Y are orthogonal.

3 Properties of Covariance Matrices

Can any $n \times n$ real symmetric matrix be a covariance matrix? Answer : No.

Example 2. $M = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$, can it be covariance matrix of a vector $\underline{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$? No. Because $V[X_2] = -2 < 0$.

Example 3. Consider matrix $M = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$, can it be a covariance matrix? Take $Y + X_1 - X_2$,

$$V(Y) = V(X_1 - X_2)$$

= V(X_1) + V(X_2) - 2cov(X_1, X_2)
= 2 + 2 - 2 \times 3
= -2

So M cannot be covariance matrix.

Therefore we want for any linear combination of $\underline{X} = (X_1, \ldots, X_n)$, say $\underline{Y} = a_1 X_1 + \ldots + a_n X_n$, to have $V(Y) \ge 0$.

$$V(Y) = E(Y^{2}) - (E(Y))^{2}$$

$$E(Y) = E[\underline{a}^{T}\underline{X}] = \underline{a}^{T}\underline{\mu}_{X}$$

$$E[Y^{2}] = E[(\underline{a}^{T}X)(\underline{a}^{T}X)] = E[\underline{a}^{T}X \cdot \underline{X}^{T}\underline{a}]$$

$$= \underline{a}^{T}E[X \cdot \underline{X}^{T}]\underline{a}$$

$$\implies V(Y) = \underline{a}^{T}E[X \cdot \underline{X}^{T}]\underline{a} - \underline{a}^{T}\underline{\mu}_{X}\underline{\mu}_{X}^{T}\underline{a}$$

$$= \underline{a}^{T}K_{XX}a \quad \text{should be} \geq 0$$

So we want M to satisfy $\underline{a}^T M \underline{a} \ge 0$, for any \underline{a} .

Definition 6. A matrix M is positive semi-definite (P.S.D) if

$$\underline{X}^T M \underline{X} \ge 0 \quad \forall \underline{X} \in \mathbb{R}^n \ (we \ say \ M \succeq \ 0).$$

Example 4. The identity matrix I is P.S.D. because for any $\underline{X} = (X_1, X_2)^T$,

$$\underline{X}^T I \underline{X} = \begin{pmatrix} X_1 & X_2 \end{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix},$$
$$= ||\underline{X}||^2 \ge 0.$$

Similarly, any diagonal matrix with all non-negative diagonal entries is psd.

Example 5. Consider the same matrix M of example 3,

$$\begin{pmatrix} 1 & -1 \end{pmatrix} \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -2 < 0.$$

Thus, this matrix is not P.S.D.

Theorem 1. Any covariance matrix K is P.S.D.

Proof. Let $\underline{X} = (X_1, X_2, \dots, X_n)^T$ be a zero-mean random vector, i.e., $E[\underline{X}] = (0, 0, \dots, 0)^T$, and let

$$K = E\left[\underline{X}\underline{X}^T\right].$$

Our goal is to prove that $K \succeq 0$, which means that if we pick $\underline{Z} = (Z_1, Z_2, \dots, Z_n)^T$ we need to show that $\underline{Z}^T K \underline{Z} \ge 0$.

$$\underline{Z}^T K \underline{Z} = \underline{Z}^T E \left[\underline{X} \underline{X}^T \right] \underline{Z},\tag{1}$$

$$= E\left[\underline{Z}^T \underline{X} \underline{X}^T \underline{Z}\right],\tag{2}$$

$$= E\left[\left(\underline{Z}^T\underline{X}\right)\left(\underline{Z}^T\underline{X}\right)^T\right],\tag{3}$$

$$= E\left[Y^2\right] \ge 0. \tag{4}$$

(5)

Where equation (2) is a result of the linearity of expectations and equation (3) results from

$$(AB^T) = B^T A^T,$$

and in equation (4) $Y = Z^T X$ is a single random variable.

Definition 7. The eigenvalues of a matrix M are the scalars λ such that

$$\exists \Phi \neq 0, M \Phi = \lambda \Phi. \tag{6}$$

The vectors Φ are called eigenvectors. Typically we choose ϕ_i such that $||\phi_i|| = 1$.

Theorem 2. A real symmetric matrix M is P.S.D if and only if all its eigenvalues are non-negative. **Theorem 3.** Let M be a real symmetric matrix then M has n mutually orthogonal unit eigenvectors ϕ_1, \ldots, ϕ_n .

Proof. From linear Algebra or in the textbook.

Example 6. Find the eigenvalues and eigenvectors of the matrix $M = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$.

1. Eigenvalues :

$$det\left(\left[\begin{array}{cc} 4-\lambda & 2\\ 2 & 4-\lambda \end{array}\right]\right) = 16 + \lambda^2 - 8\lambda - 4 = 0,$$

 $\lambda_1 = 6 \text{ and } \lambda_2 = 2 \text{ therefore } M \succ 0.$

2. Eigenvectors :

For $\lambda_1 = 2$ set $\Phi_1 = \begin{bmatrix} \Phi_{11} & \Phi_{21} \end{bmatrix}^T$ such that

$$\begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} \Phi_{11} \\ \Phi_{12} \end{bmatrix} = 2 \begin{bmatrix} \Phi_{11} \\ \Phi_{12} \end{bmatrix}.$$

$$\begin{array}{l} 4\Phi_{11} + 2\Phi_{12} = 2\Phi_{11} \\ 2\Phi_{11} + 4\Phi_{12} = 2\Phi_{12} \end{array} \} \Rightarrow \Phi_{11} = -\Phi_{21} \Rightarrow \Phi_{1} = \begin{bmatrix} 1 & -1 \end{bmatrix}^{T}.$$

For $\lambda_2 = 6$: we repeat the same steps and get

$$\Phi_2 = \left[\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right]^T.$$

Claim 1. (Eigenvalue Decomposition) The matrix M having Φ_1 , Φ_2 as eigenvectors can be expressed as

$$M = U\Lambda U^{\mathrm{T}},$$

Where

$$U = \begin{bmatrix} \Phi_1 & \Phi_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix},$$
$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix}.$$

Check:

$$U\Lambda U^{\mathrm{T}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix},$$
$$= \frac{1}{2} \begin{bmatrix} 2 & 6 \\ -2 & 6 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix},$$
$$= \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix},$$
$$= M.$$

Theorem 4. (Eigenvalue Decomposition Theorem) Let M be a real symmetric matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ and corresponding eigenvectors $\Phi_1, \Phi_2, \ldots, \Phi_n$ then

$$U^{\mathrm{T}}MU = \Lambda,$$

With:

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}.$$

Proof. We can write from equation (6):

$$MU = U\Lambda$$
 and $U = \begin{bmatrix} | & | & | \\ \phi_1 & \cdots & \phi_n \\ | & | \end{bmatrix}$,
 $U^{-1}MU = \Lambda.$

Since U is a real symmetric matrix :

$$U^{\mathrm{T}} = U^{-1} \Rightarrow \Lambda = U^{\mathrm{T}} M U,$$

and

$$M = (U^{\mathrm{T}})^{-1} \Lambda U^{-1},$$
$$= U \Lambda U^{\mathrm{T}}.$$

Г	1	

Example 7. Let $\underline{X} = (X_1, X_2)^T$ and $K = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$. Suppose X_1 and X_2 are correlated with $cov(X_1, X_2) = 2$.

Question: Find A such that $\underline{Y} = A\underline{X}, \ \underline{Y} = (Y_1, \ Y_2)^T$ and $Y_1 \& Y_2$ are uncorrelated.

Solution: Let

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \\ \underline{Y} = \begin{pmatrix} Y_1 & Y_2 \end{pmatrix}^T \end{cases} \Rightarrow \begin{array}{l} Y_1 = a_{11}X_1 + a_{12}X_2, \\ Y_2 = a_{21}X_1 + a_{22}X_2. \end{array}$$

We know that $\underline{X} \sim N(0,1)$ and $\underline{Y} \sim N(0,1)$, we need K_{YY} to be

$$K_{YY} = \left[\begin{array}{cc} \sigma_{Y_1}^2 & 0\\ 0 & \sigma_{Y_2}^2 \end{array} \right]$$

Recall that $\underline{Y} = A\underline{X}$. Hence,

$$\mu_{Y} = E[Y],$$

= $E[A\underline{X}],$
= $AE[\underline{X}],$
= $A\mu_{X}.$

By definition, the covariance matrix K_{YY} is

$$K_{YY} = E\left[(\underline{Y} - \mu_Y) (\underline{Y} - \mu_Y)^{\mathrm{T}} \right],$$

= $E\left[A (\underline{X} - \mu_X) \left(A (\underline{X} - \mu_X)^{\mathrm{T}} \right) \right],$
= $AE\left[(\underline{X} - \mu_X) \left(A (\underline{X} - \mu_X)^{\mathrm{T}} \right) \right],$
= $AK_{XX}A^{\mathrm{T}}.$

By theorem 4 (Eigenvalue Decomposition Theorem) we have:

$$\Lambda = U^{\mathrm{T}} M U.$$

Therefore, we need to pick the matrix A such that $A = U^{T}$ for K_{YY} to be a diagonal matrix.

$$A = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right].$$

This leads to the final result

$$Y_1 = \frac{1}{\sqrt{2}}(X_1 - X_2),$$

$$Y_2 = \frac{1}{\sqrt{2}}(X_1 + X_2).$$

4 Multidimensional Jointly Gaussian Distribution

Recall that if two random variables are jointly Gaussian, then the marginal distributions are also Gaussian, but the converse is not necessarily true.

Definition 8. A vector $\underline{X} = (X_1, X_2, \dots, X_n)^T$ with $E(\underline{X}) = \underline{\mu} = (\mu_1, \mu_2, \dots, \mu_n)^T$ is called jointly Gaussian if

$$f_{\underline{X}}(\underline{x}) = \frac{1}{(2\pi)^{n/2}\sqrt{|K_{XX}|}} \exp\left[\frac{-1}{2}(\underline{X}-\underline{\mu})^T K_{XX}^{-1}(\underline{X}-\underline{\mu})\right],$$

where, $|K_{XX}| = \det(K_{XX})$.

Example 8. For n = 1,

$$f_{\underline{X}}(\underline{x}) = \frac{1}{(2\pi)^{1/2}\sigma} \exp\left[\frac{-1}{2}(\underline{X} - \underline{\mu})^T \frac{1}{\sigma^2}(\underline{X} - \underline{\mu})\right].$$

Example 9. For n = 2, $\underline{X} = (X_1, X_2)^T$ and the covariance matrix K_{XX} is defined by

$$K_{XX} = \begin{bmatrix} \sigma_{X_1}^2 & Cov(X_1, X_2) \\ Cov(X_1, X_2) & \sigma_{X_2}^2 \end{bmatrix},$$
$$= \begin{bmatrix} \sigma_{X_1}^2 & \rho \sigma_{X_1} \sigma_{X_2} \\ \rho \sigma_{X_1} \sigma_{X_2} & \sigma_{X_2}^2 \end{bmatrix}.$$

And,

$$det(K_{XX}) = \sigma_{X_1}^2 \sigma_{X_2}^2 - \rho^2 \sigma_{X_1}^2 \sigma_{X_2}^2,$$

= $(1 - \rho^2) \sigma_{X_1}^2 \sigma_{X_2}^2.$

Hence,

$$f_{X_1X_2}(x_1, x_2) = \frac{1}{(2\pi)\sigma_{X_1}\sigma_{X_2}\sqrt{1-\rho^2}} \exp\left[\frac{-1}{2(1-\rho^2)}\beta\right],$$

Where,

$$\beta = \left(\frac{(x_{X_1} - \mu_{X_1})^2}{\sigma_{X_1}} - 2\rho\left(\frac{x_{X_1} - \mu_{X_1}}{\sigma_{X_1}}\right)\left(\frac{x_{X_2} - \mu_{\mu_{X_2}}}{\sigma_{X_2}}\right) + \frac{(x_{X_2} - \mu_{X_2})^2}{\sigma_{X_2}}\right).$$

Example 10. Let X, Y, Z be three jointly Gaussian random variables with $\mu_X = \mu_Y = \mu_Z = 0$.

$$K = \begin{bmatrix} 1 & 0.2 & 0.3 \\ 0.2 & 1 & 0.3 \\ 0.3 & 0.2 & 1 \end{bmatrix},$$

Question: Find the pdf $f_{X,Z}(x,z)$.

Answer: From the given information, X and Z are jointly Gaussian and

$$K_{XZ} = \left[\begin{array}{cc} 1 & 0.3 \\ 0.3 & 1 \end{array} \right].$$

From K_{XZ} we know that:

$$\begin{cases} \sigma_X = \sigma_Z = 1\\ Cov[XZ] = 0.3 \end{cases} \Rightarrow \rho = \frac{0.3}{1} = 0.3.$$

Therefore,

$$f_{XZ}(x,z) = \frac{1}{(2\pi)\sqrt{0.91}} \exp\left[\frac{-1}{2(0.91)} \left(x^2 - 0.6xz + z^2\right)\right].$$

Theorem 5. Let X be jointly Gaussian, A be an invertible matrix and,

 $\underline{Y} = A\underline{X}.$

Then, \underline{Y} is jointly Gaussian.

Proof. From Chapter 3, $f_Y(y) = \frac{f_X(x)}{|A|}$ but,

$$\underline{X} = A^{-1}\underline{Y},$$

Therefore,

$$f_{\underline{Y}}(Y) = \frac{1}{|A|} f_{\underline{X}} \left(A^{-1}Y \right),$$

$$f_{\underline{Y}}(Y) = \frac{1}{(2\pi)^{n/2}} \underbrace{\sqrt{|K_{XX}||A|}}_{\beta} \exp \underbrace{\left[-\frac{1}{2} \left(\left(A^{-1}\underline{Y} - \underline{\mu}_X \right)^T K_{XY}^{-1} (A^{-1}\underline{Y} - \underline{\mu}_X) \right) \right]}_{\alpha}.$$

Recall that

$$\underline{\mu}_Y = E[\underline{Y}],\tag{7}$$

$$= AE[\underline{X}],\tag{8}$$

$$=A\underline{\mu}_X,\tag{9}$$

$$\Rightarrow \underline{\mu}_X = A^{-1} \underline{\mu}_Y. \tag{10}$$

In addition, from last lecture we have,

$$K_{YY} = E[YY^T] - \mu_Y \mu_Y^T,$$

= $AK_{XX}A^T.$

Hence,

$$\alpha = \frac{-1}{2} (A^{-1} \underline{Y} - \underline{\mu}_X)^T K_{XY}^{-1} (A^{-1} \underline{Y} - \underline{\mu}_X), \tag{11}$$

$$= \frac{-1}{2} A^{-1} (\underline{Y} - \underline{\mu}_Y)^T K_{XY}^{-1} A^{-1} (\underline{Y} - \underline{\mu}_Y), \qquad (12)$$

$$= \frac{-1}{2} (\underline{Y} - \underline{\mu}_{Y})^{T} \underbrace{A^{-1} K^{-1}_{XY} A^{-1}}_{K_{YY}} (\underline{Y} - \underline{\mu}_{Y}).$$
(13)

Where, equation (12) result by substituting μ_X by $A^{-1}\mu_Y$ (from equation (10)). We still need to show that $\beta = \sqrt{|K_{YY}|}$.

$$det(K_{YY}) = det(AK_{XX}A^T),$$

= det(A) det(K_{XX}) det(A^T),
= det²(A) det(K_{XX}),
$$\Rightarrow \sqrt{|K_{YY}|} = |A|\sqrt{|K_{XX}|}.$$

Hence, Y is jointly Gaussian with $\mu_Y = A\mu_X$ and $K_{YY} = AK_{XX}A^T$.

Example 11. Transform \underline{X} (jointly Gaussian) into $\underline{Y} = (Y_1, \ldots, Y_n)$ where Y_i are iid.

Since for \underline{Y} to be iid,

$$K_{YY} = \begin{bmatrix} \sigma_{Y_1}^2 & 0 & \cdots & 0 \\ 0 & \sigma_{Y_1}^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{Y_n}^2 \end{bmatrix},$$

where the covariance is zero and uncorrelated jointly Gaussian random variables are independent. Pick random vector $\underline{Y} = A\underline{X}$, where A is to be chosen such that:

$$K_{YY} = AK_{XX}A^T.$$

Since K_{XX} is symmetric, from the Eigenvalue Decomposition Theorem (see previous lecture) we have,

$$U^T K_{XX} U = \Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix},$$

where λ_n are the eigenvalues of K_{XX} and $U = [\Phi_1, \Phi_2, \dots, \Phi_n]$ is the eigenvector matrix. Hence, $A = U^T$ (Hint: Use the "eig" function in Matlab to generate the matrices).

Lemma 1. If X_1, X_2, \ldots, X_n are jointly Gaussian random variables, then

$$Z_1 = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

is a Gaussian random variable $\forall a_i \text{ such that } \exists i \text{ for which } a_i \neq 0.$

Remark 1. When asked to find the pdf $f_{Z_1}(Z_1)$, all we have to do is find $E[Z_1]$ and $V(Z_1)$.

Let $\underline{a} = (a_1, \ldots, a_n)^T$, Z_1 can be written as $Z_1 = \underline{a}^T \underline{X}$ and

$$E[Z_1] = \underline{a}^T \mu_X.$$

However, since X_1, X_2, \ldots, X_n might be dependent,

$$V(Z_1) \neq a_1^2 V(X_1) + \dots + a_n^2 V(X_n).$$

For example for n = 2 and $\mu_X = \underline{0}$,

$$\begin{split} V(Z_1) &= E\left[\left(a_1X_1 + a_2X_2\right)^2\right], \\ &= E\left[a_1^2X_1^2 + a_2^2X_2^2 + 2a_1a_2X_1X_2\right], \\ &= a_1^2\sigma_{X_1}^2 + a_2^2\sigma_{X_1}^2 + 2a_1a_2Cov\left(X_1, X_2\right). \end{split}$$

In general:

$$Var (Z_1) = E [Z_1]^2 - \mu_{Z_1}^2,$$

$$= E [Z_1 Z_1^T] - \mu_{Z_1} \mu_{Z_1}^T,$$

$$= E [\underline{a}^T \underline{X} \underline{X}^T \underline{a}] - \underline{a}^T \underline{\mu}_X \underline{\mu}_X^T \underline{a},$$

$$= \underline{a}^T (E [\underline{X} \underline{X}^T] - \mu_X \mu_X^T) \underline{a},$$

$$= \underline{a}^T K_{XX} \underline{a} \in \mathbb{R}.$$

Proof. (of lemma 1) Let,

$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} X_1 + X_2 \\ 3X_1 + 2X_2 \end{bmatrix}.$$

 $Y_1 = X_1 + X_2 \& Y_2 = 3X_1 + 2X_2$ are Gaussian (theorem 5). We can think of Z_1 being a component of $\underline{Z} = (Z_1, Z_2, \ldots, Z_n)^T$ where,

$$\begin{bmatrix} Z_1 \\ Z_2 \\ \cdots \\ Z_n \end{bmatrix} = \underbrace{\begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}}_{A} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} a_1 X_1 + a_2 X_2 + \cdots + a_n X_n \\ X_2 \\ \vdots \\ X_n \end{bmatrix}.$$

We know that A is invertible (full rank) which means that \underline{Z} is jointly Gaussian (theorem 5). Thus, each component of \underline{Z} is Gaussian, in particular Z_1 .

Remark 2. Any linear combination of the components of a jointly Gaussian random vector is a Gaussian random variable.

5 Overview on Estimation

Recall:

- 1. Tossing a die $X \in \{0, 1, 2, 3, 4, 5, 6\}$, we want to estimate X by \hat{X} . What is the best estimate? $MSE = E[(X - \hat{X})^2]$. We want to minimize $E[(X - \hat{X})^2]$ Take $\hat{X}_{min} = E[X]$ (check previous notes)
- 2. Find the Minimum Mean Square Error (MMSE) of X given Y. $\hat{X}_{MMSE} = E[X|Y].$

3. Linear MMSE (LMMSE) Here $\hat{X}_{MMSE} = aY + b$.

 $\min_{a,b} E[(X - \hat{X})^2] \Leftrightarrow (X - \hat{X}) \perp Y.$

Recall that we say X is orthogonal to $Y(X \perp Y)$ if and only if E[XY] = 0. By the orthogonality principle, we know that if $X_1 \perp X_2 \Rightarrow E[X_1, X_2] = 0$. Thus, $E[(X - \hat{X})Y] = 0$.

$$\hat{X}_{LMMSE} = \frac{\rho \sigma_X}{\sigma_Y} (Y - \mu_Y) + \mu_X,$$

Where $\rho = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$. So,

$$\hat{X}_{LMMSE} = \frac{Cov(X,Y)}{\sigma_Y^2} (Y - \mu_Y) + \mu_X.$$

$$LMMSE = E[(X - \hat{X}_{LMMSE})^2]$$

$$= E(X^2) - E(\hat{X}^2) = ||X||^2 - ||\hat{X}||^2.$$

Recall that $E[X^2] = ||X||^2$.

Example 12.

$$f_{XY} = \begin{cases} 2e^{-x}e^{-y} & \text{if } 0 \le y \le x < \infty, \\ 0 & \text{otherwise.} \end{cases}$$

1. Find MMSE and LMMSE of X given Y

 $\hat{X}_{MMSE} = E[X|Y] = Y + 1.$ (Check exam solution for a detailed proof.)

Since \hat{X}_{MMSE} is linear then,

 $\hat{X}_{LMMSE} = Y + 1.$ Straight calculations give $\mu_X = 3/2, \mu_y = 1/2, Var(X) = 5/4, Var(Y) = 1/4, and Cov(X, Y) = 1/4.$

Find the MMSE & LMMSE of Y given X.
 First, we will find the MMSE; but to do this we need to calculate the covariance of X and Y.

$$Cov(XY) = E[XY] - \mu_x \mu_y.$$

$$E[XY] = \iint xy \ f(x, y) dx \ dy = \int_0^{+\infty} \int_0^x 2xy e^{-x} e^{-y} dy \ dx = 1.$$

$$Cov(XY) = 1 - 3/2 \times 1/2 = 1/4.$$

Usually, finding the LMMSE is much easier than finding the MMSE because you simply apply to formula.

$$\hat{Y}_{LMMSE} = \frac{Cov(XY)}{\sigma_x^2} (X - \mu_x) + \mu_y.$$
$$\hat{Y}_{LMMSE} = \frac{1/4}{5/4} (X - 3/2) + 1/2 = X/5 - 1/5.$$

Thus, if you restrict yourself to linear functions of the form aX + b, then the best choices are a = 1/5 and b = 1/5.

Next, we will find the best MMSE estimator. Recall the definition of the best MMSE estimator.

$$\begin{split} \hat{Y}_{MMSE} &= E\left[Y|X\right].\\ \hat{Y}_{MMSE} &= \int y f_{Y|X}\left(y|x\right) dy.\\ \hat{Y}_{MMSE} &= \int_{0}^{x} y \frac{e^{-y}}{1 - e^{-x}} \, dy = \left. \frac{-e^{-y}(y+1)}{1 - e^{-x}} \right|_{0}^{x} = 1 - \frac{xe^{-x}}{1 - e^{-x}}. \end{split}$$

As homework, find the error associated with each estimate.

6 The Orthogonality Principle

Theorem 6 (The Orthogonality Principle). The MMSE of \hat{X} of X given Y, where $\hat{X} = g(Y)$, where $g(*) \in \Gamma$ and $(\Gamma^* \text{ is all functions, linear functions, constants})$, is found when $\hat{X} = \min E[(X - g(Y))^2]$ where the minimization is over $g(*) \in \Gamma$. The MMSE = $E[X^2] - E[\hat{X}^2]$. In this case, \hat{X} is unique and the error is orthogonal to the observation $((X - \hat{X}) \perp Y)$. The * indicates there are some technical conditions on gamma but they are not discussed here.

Proof. Proof is omitted.

Example 13. $X = (X_1, X_2, X_3)$ are jointly Gaussian and, $\mu_x = (0, 0, 0)$,

$$K_{XX} = R_{XX} = \begin{bmatrix} 1 & 0.2 & 0.1 \\ 0.2 & 2 & 0.3 \\ 0.1 & 0.3 & 4 \end{bmatrix}.$$

Find the LMMSE of X_3 Given X_1 and X_2 .

$$K_{YY} = \begin{bmatrix} 1 & 0.2 \\ 0.2 & 2 \end{bmatrix},$$

$$\Rightarrow K_{YY}^{-1} = \begin{bmatrix} 1.0204 & -0.102 \\ -0.102 & 0.5102 \end{bmatrix}.$$

Because all $\mu_x = 0$,

$$K_{X_3Y}^T = [Cov(X_3X_1) \ Cov(X_3X_2)] = [0.1 \ 0.3].$$

 $\hat{X}_{3 \ LMMSE} = \begin{bmatrix} 0.1 & 0.3 \end{bmatrix}.$ $[K_{YY}^{-1}] = a_1 X_1 + a_2 X_2, \qquad a_1 = 0.0714, \qquad a_2 = 0.1429.$

Find the MMSE of the X_3 .

$$\hat{X}_{3 MMSE} = E[(X_3 - \hat{X})^2] = E[X_3^2] - E[\hat{X}^2]$$

= 4 - E[(a₁X₁ + a₂X₂)²]
= 4 - a_1^2 E[X_1^2] - a_2^2 E[X_2^2] - 2a_1 a_2 E[X_1X_2]
= 3.95.

7 MMSE Based on Vector Observation

Theorem 7. The Linear Minimum Mean-Square Estimate LMMSE \hat{X}_{LMMSE} of X given an observed random vector $Y = (Y_1, \ldots, Y_n)^T$ is given by

$$\hat{X}_{LMMSE} = K_{XY}^T K_{YY}^{-1} (\underline{Y} - \underline{\mu}_Y) + \mu_X,$$

where,

$$\mu_X = E[X],$$

$$\mu_Y = (E[Y_1], E[Y_2], \dots, E[Y_n]),$$

$$K_{YY} = E[YY^T] - \mu_Y \mu_Y^T,$$

and $K_{XY} = (Cov[XY_1], Cov[XY_2], \dots, Cov[XY_n])^T,$

where K_{YY} is the covariance matrix of Y.

And, the MMSE is given by

$$MMSE = \min E[(X - \hat{X}_{LMMSE})^2]$$
$$= E[X^2] - E[\hat{X}_{LMMSE}^2].$$

Proof. First, let us assume that $\mu_X = 0$ and $\mu_Y = 0$. Then, we can write

$$\ddot{X}_{LMMSE} = a_1 Y_1 + a_2 Y_2 + \dots + a_n Y_n$$
$$= \underline{a}^t \underline{Y}.$$

By the orthogonality principle: $(X - \hat{X}_{LMMSE}) \perp Y_i \ i = 1, 2, \dots, n$,

$$E[\underline{a}^{t}\underline{Y}\cdot Y_{i}] = E[XY_{i}] \quad i = 1, 2, \dots, n$$

$$E[(a_1Y_1 + a_2Y_2 + \dots + a_nY_n)Y_i] = E[XY_i] \quad i = 1, 2, \dots, n$$

So, we get the following $n \times n$ linear system with n unknowns, a_1, \ldots, a_n :

$$a_{1}E[Y_{1}^{2}] + a_{2}E[Y_{1}Y_{2}] + \dots + a_{n}E[Y_{1}Y_{n}] = E[XY_{1}],$$

$$a_{1}E[Y_{2}Y_{1}] + a_{2}E[Y_{2}^{2}] + \dots + a_{n}E[Y_{2}Y_{n}] = E[XY_{2}],$$

$$\vdots$$

$$a_{1}E[Y_{n}Y_{1}] + a_{2}E[Y_{n}Y_{2}] + \dots + a_{n}E[Y_{n}^{2}] = E[XY_{n}].$$

In matrix form, this can be written as

$$\underline{a}^t R_{YY} = R_{XY}^t,$$
$$\underline{a}^t = R_{XY}^t R_{YY}^{-1}.$$

Where,

$$K_{YY} = \begin{bmatrix} E[Y_1^2] & E[Y_1Y_2] & \dots & E[Y_1Y_n] \\ E[Y_2Y_1] & E[Y_2^2] & \dots & E[Y_2Y_n] \\ \vdots & \vdots & & \vdots \\ E[Y_nY_1] & E[Y_nY_2] & \dots & E[Y_n^2] \end{bmatrix},$$

and,

$$K_{XY} \stackrel{\text{def}}{=} \begin{bmatrix} Cov[XY_1]\\ Cov[XY_2]\\ \vdots\\ Cov[XY_n] \end{bmatrix} = \begin{bmatrix} E[XY_1]\\ E[XY_2]\\ \vdots\\ E[XY_n] \end{bmatrix}.$$

So,

$$\hat{X}_{LMMSE} = K_{XY}^T K_{YY}^{-1} \underline{Y}.$$

In general, if $\mu_X \neq 0$ and $\underline{\mu}_Y \neq \underline{0}$, Apply the same method above to $X' = X - \mu_X$ and $\underline{Y}' = \underline{Y} - \underline{\mu}_Y$, then we get

$$\hat{X}_{LMMSE} = K_{XY}^T K_{YY}^{-1} (\underline{Y} - \mu_Y) + \mu_X.$$

Example 14. Multiple Antenna Receiver

Assume 2 antennas receive signals independently. $Y_1 = X + N_1$, $Y_2 = X + N_2$, $X \sim N(0,2)$, $N_1, N_2 \sim N(0,1)$. Assume they are all independent.

1. Find the LMMSE of X given Y_1 .

$$\hat{X}_{LMMSE} = \frac{Cov(XY_1)}{V(Y_1)}Y_1.$$

$$Cov(XY_1) = E[XY_1] - E[X]E[Y_1]$$
 Note that $E[X]E[Y_1] = 0$
= $E[X(X + N_2)]$
= $E[X^2] + E[XN_2] = 2 + 0 = 2.$

$$V(Y_1) = V(X) + V(N_1) = 2 + 1 = 3.$$

So that, $\hat{X}_{LMMSE} = \frac{2}{3}Y_1$

$$X_{MMSE} = E[X^2] - E[\hat{X}^2]$$

= 2 - E[($\frac{2}{3}Y_1$)²]
= 2 - $\frac{4}{9}E[Y_1^2] = \frac{2}{3}$.

2. Find the LMMSE of X given Y_1 and Y_2 .

Usually, we want to find that $\hat{X} = a_1Y_1 + a_2Y_2 + C$. In this case, C = 0. While $X - \hat{X} \perp Y_1$, and $X - \hat{X} \perp Y_2$, we can obtain,

$$\begin{split} E[(X - aY_1 - a_2Y_2)Y_1] &= 0.\\ E[(X - aY_1 - a_2Y_2)Y_2] &= 0.\\ a_1E[Y_1^2] + a_2E[Y_1Y_2] &= E[XY_1].\\ a_1E[Y_1Y_2] + a_2E[Y_2^2] &= E[XY_2]. \end{split}$$

$$K_{Y_1Y_2}\left[\begin{array}{c}a_1\\a_2\end{array}\right]=K_{XY}.$$

Therefore,

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = K_{Y_1Y_2}^{-1}K_{XY} = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$$

And,

$$\begin{split} MMSE &= E[X^2] - E[\hat{X}^2_{LMMSE}] \\ &= 2 - E[0.4(Y_1 + Y_2)^2] \\ &= 0.4 < MMSE \text{ with only } Y_1. \end{split}$$