Chapter 5

Dr. Salim El Rouayheb
Scribe: H. Xie, L. Gan, W. Yi, Jaijo, R. Tajeddine, S. Jones, Y. Yang, L. Liu

1 Overview

In the last lecture, we talked about Chernoff bound and defined the characteristic function of a RV. Then we gave some examples and concluded by proving the Central Limit Theorem with examples.

In this lecture, we will introduce random vectors, define Positive Semi-Definite (P.S.D.) matrices, give some examples theorem and proofs, then use them to prove some properties in covariance matrices.

2 Random Vector

Definition 1. A random vector $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\mathrm{T}}$, is a vector of random variables X_{i}, $i=1, \ldots, n$.
Definition 2. The mean vector of X, denoted by $\underline{\mu}$, is $\underline{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{\mathrm{T}}$ where $\mu_{i}=$ $E\left[X_{i}\right], i=1, \ldots, n$.
Definition 3. The covariance matrix $K_{X X}$ or K, of X is an $n \times n$ matrix defined as

$$
\begin{aligned}
& K_{X X} \triangleq E\left[(\underline{X}-\underline{\mu})(\underline{X}-\underline{\mu})^{\mathrm{T}}\right] . \\
& K_{X X}=E\left[\left(\begin{array}{c}
X_{1}-\mu_{1} \\
X_{2}-\mu_{2} \\
\vdots \\
X_{n}-\mu_{n}
\end{array}\right)\left(\begin{array}{llll}
X_{1}-\mu_{1} & X_{2}-\mu_{2} & \ldots & X_{n}-\mu_{n}
\end{array}\right)^{\mathrm{T}}\right], \\
& =E\left[\begin{array}{cccc}
\left(X_{1}-\mu_{1}\right)^{2} & \left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right) & \cdots & \left(X_{1}-\mu_{1}\right)\left(X_{n}-\mu_{n}\right) \\
\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{2}-\mu_{2}\right)^{2} & \cdots & \left(X_{2}-\mu_{2}\right)\left(X_{n}-\mu_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\left(X_{n}-\mu_{n}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{n}-\mu_{n}\right)\left(X_{2}-\mu_{2}\right) & \cdots & \left(X_{n}-\mu_{n}\right)^{2}
\end{array}\right], \\
& =\left[\begin{array}{cccc}
\sigma_{1}^{2} & K_{12} & \cdots & K_{1 n} \\
K_{21} & \sigma_{2}^{2} & \cdots & K_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
K_{n 1} & K_{n 2} & \cdots & \sigma_{n}^{2}
\end{array}\right] .
\end{aligned}
$$

Remark: The matrix $K_{X X}$ is real symmetric and $K_{i j}=K_{j i}=\operatorname{cov}\left(X_{i}, X_{j}\right)=E\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]=$ K, and $\sigma_{i}^{2}=V\left(X_{i}\right)$.

Definition 4. The correlation matrix $R_{X X}$, or R, is defined as $R=E\left[\underline{X} \underline{X}^{T}\right]$.
Corollary 1. $K=R-\mu \mu^{T}$.
Example 1. $X=\left(X_{1}, X_{2}\right)$,

$$
\begin{gathered}
\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left[X_{1}, X_{2}\right]-\mu_{1} \mu_{2}, \\
K_{X X}=\left[\begin{array}{cc}
\sigma_{X_{1}}^{2} & \operatorname{cov}\left(X_{1}, X_{2}\right) \\
\operatorname{cov}\left(X_{1}, X_{2}\right) & \sigma_{X_{2}}^{2}
\end{array}\right]=\left[\begin{array}{cc}
E\left[X_{1}^{2}\right] & E\left[X_{1} X_{2}\right] \\
E\left[X_{1} X_{2}\right] & E\left[X_{2}^{2}\right]
\end{array}\right]-\left[\begin{array}{cc}
\mu_{1}^{2} & \mu_{1} \mu_{2} \\
\mu_{1} \mu_{2} & \mu_{2}^{2}
\end{array}\right] .
\end{gathered}
$$

Definition 5. For any random vectors \underline{X} and \underline{Y} of same length.

1. If the cross-covariance matrix $K_{X Y}=E\left[\left(\underline{X}-\underline{\mu}_{X}\right)\left(\underline{Y}-\underline{\mu}_{Y}\right)\right]=E\left[\underline{X} \underline{Y}^{T}\right]-\underline{\mu}_{X} \underline{\mu}_{Y}^{T}=\mathbf{0} \Rightarrow$ we say that X and \underline{Y} are uncorrelated.
2. If $E\left[\underline{X}^{T}\right]=0 \Rightarrow$ we say that X and \underline{Y} are orthogonal.

3 Properties of Covariance Matrices

Can any $n \times n$ real symmetric matrix be a covariance matrix? Answer : No.
Example 2. $M=\left[\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right]$, can it be covariance matrix of a vector $\underline{X}=\binom{X_{1}}{X_{2}}$?
No. Because $V\left[X_{2}\right]=-2<0$.
Example 3. Consider matrix $M=\left[\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right]$, can it be a covariance matrix?
Take $Y+X_{1}-X_{2}$,

$$
\begin{aligned}
V(Y) & =V\left(X_{1}-X_{2}\right) \\
& =V\left(X_{1}\right)+V\left(X_{2}\right)-2 \operatorname{cov}\left(X_{1}, X_{2}\right) \\
& =2+2-2 \times 3 \\
& =-2
\end{aligned}
$$

So M cannot be covariance matrix.
Therefore we want for any linear combination of $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$, say $\underline{Y}=a_{1} X_{1}+\ldots,+a_{n} X_{n}$, to have $V(Y) \geq 0$.

$$
\begin{aligned}
V(Y) & =E\left(Y^{2}\right)-(E(Y))^{2} \\
E(Y) & =E\left[\underline{a}^{T} \underline{X}\right]=\underline{a}^{T} \underline{\mu}_{X} \\
E\left[Y^{2}\right] & =E\left[\left(\underline{a}^{T} \underline{X}\right)\left(\underline{a}^{T} \underline{X}\right)\right]=E\left[\underline{a}^{T} \underline{X} \cdot \underline{X}^{T} \underline{a}\right] \\
& =\underline{a}^{T} E\left[\underline{X} \cdot \underline{X}^{T}\right] \underline{a} \\
\Longrightarrow V(Y) & =\underline{a}^{T} E\left[\underline{X} \cdot \underline{X}^{T}\right] \underline{a}-\underline{a}^{T} \underline{\mu}_{X} \underline{\mu}_{X}^{T} \underline{a} \\
& =\underline{a}^{T} K_{X X} \underline{a} \quad \text { should be } \geq 0
\end{aligned}
$$

So we want M to satisfy $\underline{a}^{T} M \underline{a} \geq 0$, for any \underline{a}.

Definition 6. A matrix M is positive semi-definite (P.S.D) if

$$
\left.\underline{X}^{T} M \underline{X} \geq 0 \quad \forall \underline{X} \in \mathbb{R}^{n} \text { (we say } M \succeq 0\right)
$$

Example 4. The identity matrix I is P.S.D. because for any $X=\left(X_{1}, X_{2}\right)^{T}$,

$$
\begin{aligned}
\underline{X}^{T} I \underline{X} & =\left(\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\binom{X_{1}}{X_{2}} \\
& =\|\underline{X}\|^{2} \geq 0
\end{aligned}
$$

Similarly, any diagonal matrix with all non-negative diagonal entries is psd.
Example 5. Consider the same matrix M of example 3,

$$
\left(\begin{array}{cc}
1 & -1
\end{array}\right)\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right]\binom{1}{-1}=\left(\begin{array}{ll}
-1 & 1
\end{array}\right)\binom{1}{-1}=-2<0
$$

Thus, this matrix is not P.S.D.
Theorem 1. Any covariance matrix K is P.S.D.
Proof. Let $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ be a a zero-mean random vector, i.e., $E[\underline{X}]=(0,0, \cdots, 0)^{T}$, and let

$$
K=E\left[\underline{X} \underline{X}^{T}\right] .
$$

Our goal is to prove that $K \succeq 0$, which means that if we pick $\underline{Z}=\left(Z_{1}, Z_{2}, \cdots, Z_{n}\right)^{T}$ we need to show that $\underline{Z}^{T} K \underline{Z} \geq 0$.

$$
\begin{align*}
\underline{Z}^{T} K \underline{Z} & =\underline{Z}^{T} E\left[\underline{X}^{T} \underline{X}^{T}\right] \underline{Z} \tag{1}\\
& =E\left[\underline{Z}^{T} \underline{X} \underline{X}^{T} \underline{Z}\right] \tag{2}\\
& =E\left[\left(\underline{Z}^{T} \underline{X}\right)\left(\underline{Z}^{T} \underline{X}\right)^{T}\right], \tag{3}\\
& =E\left[Y^{2}\right] \geq 0 . \tag{4}
\end{align*}
$$

Where equation (2) is a result of the linearity of expectations and equation (3) results from

$$
\left(A B^{T}\right)=B^{T} A^{T}
$$

and in equation (4) $Y=\underline{Z}^{T} \underline{X}$ is a single random variable.
Definition 7. The eigenvalues of a matrix M are the scalars λ such that

$$
\begin{equation*}
\exists \underline{\Phi} \neq 0, M \Phi=\lambda \underline{\Phi} . \tag{6}
\end{equation*}
$$

The vectors Φ are called eigenvectors. Typically we choose ϕ_{i} such that $\left\|\phi_{i}\right\|=1$.

Theorem 2. A real symmetric matrix M is P.S.D if and only if all its eigenvalues are non-negative.
Theorem 3. Let M be a real symmetric matrix then M has n mutually orthogonal unit eigenvectors $\phi_{1}, \ldots, \phi_{n}$.

Proof. From linear Algebra or in the textbook.
Example 6. Find the eigenvalues and eigenvectors of the matrix $M=\left[\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right]$.

1. Eigenvalues :

$$
\operatorname{det}\left(\left[\begin{array}{cc}
4-\lambda & 2 \\
2 & 4-\lambda
\end{array}\right]\right)=16+\lambda^{2}-8 \lambda-4=0
$$

$\lambda_{1}=6$ and $\lambda_{2}=2$ therefore $M \succ 0$.
2. Eigenvectors :

For $\lambda_{1}=2$ set $\Phi_{1}=\left[\begin{array}{ll}\Phi_{11} & \Phi_{21}\end{array}\right]^{T}$ such that

$$
\left.\begin{array}{c}
{\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
\Phi_{11} \\
\Phi_{12}
\end{array}\right]=2\left[\begin{array}{l}
\Phi_{11} \\
\Phi_{12}
\end{array}\right]} \\
4 \Phi_{11}+2 \Phi_{12}=2 \Phi_{11} \\
2 \Phi_{11}+4 \Phi_{12}=2 \Phi_{12}
\end{array}\right\} \Rightarrow \Phi_{11}=-\Phi_{21} \Rightarrow \Phi_{1}=\left[\begin{array}{ll}
1 & -1
\end{array}\right]^{T} .
$$

For $\lambda_{2}=6$: we repeat the same steps and get

$$
\Phi_{2}=\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]^{T}
$$

Claim 1. (Eigenvalue Decomposition) The matrix M having Φ_{1}, Φ_{2} as eigenvectors can be expressed as

$$
M=U \Lambda U^{\mathrm{T}}
$$

Where

$$
\begin{aligned}
& U=\left[\begin{array}{cc}
\Phi_{1} & \Phi_{2}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \\
& \Lambda=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & 6
\end{array}\right]
\end{aligned}
$$

Check:

$$
\begin{aligned}
U \Lambda U^{\mathrm{T}} & =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & 6
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
2 & 6 \\
-2 & 6
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right] \\
& =M
\end{aligned}
$$

Theorem 4. (Eigenvalue Decomposition Theorem) Let M be a real symmetric matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and corresponding eigenvectors $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}$ then

$$
U^{\mathrm{T}} M U=\Lambda
$$

With :

$$
\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Proof. We can write from equation (6) :

$$
\begin{gathered}
M U=U \Lambda \text { and } U=\left[\begin{array}{ccc}
\mid & & \mid \\
\phi_{1} & \cdots & \phi_{n} \\
\mid & & \mid
\end{array}\right], \\
U^{-1} M U=\Lambda
\end{gathered}
$$

Since U is a real symmetric matrix :

$$
U^{\mathrm{T}}=U^{-1} \Rightarrow \Lambda=U^{\mathrm{T}} M U
$$

and

$$
\begin{aligned}
M & =\left(U^{\mathrm{T}}\right)^{-1} \Lambda U^{-1} \\
& =U \Lambda U^{\mathrm{T}}
\end{aligned}
$$

Example 7. Let $\underset{X}{ }=\left(X_{1}, X_{2}\right)^{T}$ and $K=\left[\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right]$.
Suppose X_{1} and X_{2} are correlated with $\operatorname{cov}\left(X_{1}, X_{2}\right)=2$.

Question: Find A such that $\underline{Y}=A \underline{X}, \underline{Y}=\left(Y_{1}, Y_{2}\right)^{T}$ and $Y_{1} \& Y_{2}$ are uncorrelated.

Solution: Let

$$
\left.\begin{array}{l}
A=\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
\underline{Y}=\left(\begin{array}{ll}
Y_{1} & Y_{2}
\end{array}\right)^{T}
\end{array}\right\} \Rightarrow \begin{aligned}
& Y_{1}=a_{11} X_{1}+a_{12} X_{2}, \\
& Y_{2}=a_{21} X_{1}+a_{22} X_{2}
\end{aligned}
$$

We know that $\underline{X} \sim N(0,1)$ and $\underline{Y} \sim N(0,1)$, we need $K_{Y Y}$ to be

$$
K_{Y Y}=\left[\begin{array}{cc}
\sigma_{Y_{1}}^{2} & 0 \\
0 & \sigma_{Y_{2}}^{2}
\end{array}\right]
$$

Recall that $\underline{Y}=A \underline{X}$. Hence,

$$
\begin{aligned}
\underline{\mu}_{Y} & =E[\underline{Y}], \\
& =E[A \underline{X}], \\
& =A E[\underline{X}], \\
& =A \underline{\mu_{X}} .
\end{aligned}
$$

By definition, the covariance matrix $K_{Y Y}$ is

$$
\begin{aligned}
K_{Y Y} & =E\left[\left(\underline{Y}-\mu_{Y}\right)\left(\underline{Y}-\mu_{Y}\right)^{\mathrm{T}}\right], \\
& =E\left[A\left(\underline{X}-\mu_{X}\right)\left(A\left(\underline{X}-\mu_{X}\right)^{\mathrm{T}}\right)\right], \\
& =A E\left[\left(\underline{X}-\mu_{X}\right)\left(A\left(\underline{X}-\mu_{X}\right)^{\mathrm{T}}\right)\right], \\
& =A K_{X X} A^{\mathrm{T}} .
\end{aligned}
$$

By theorem 4 (Eigenvalue Decomposition Theorem) we have:

$$
\Lambda=U^{\mathrm{T}} M U
$$

Therefore, we need to pick the matrix A such that $A=U^{\mathrm{T}}$ for $K_{Y Y}$ to be a diagonal matrix.

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] .
$$

This leads to the final result

$$
\begin{aligned}
& Y_{1}=\frac{1}{\sqrt{2}}\left(X_{1}-X_{2}\right), \\
& Y_{2}=\frac{1}{\sqrt{2}}\left(X_{1}+X_{2}\right) .
\end{aligned}
$$

4 Multidimensional Jointly Gaussian Distribution

Recall that if two random variables are jointly Gaussian, then the marginal distributions are also Gaussian, but the converse is not necessarily true.
Definition 8. A vector $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ with $E(\underline{X})=\underline{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{T}$ is called jointly Gaussian if

$$
f_{\underline{X}}(\underline{x})=\frac{1}{(2 \pi)^{n / 2} \sqrt{\left|K_{X X}\right|}} \exp \left[\frac{-1}{2}(\underline{X}-\underline{\mu})^{T} K_{X X}^{-1}(\underline{X}-\underline{\mu})\right],
$$

where, $\left|K_{X X}\right|=\operatorname{det}\left(K_{X X}\right)$.

Example 8. For $n=1$,

$$
f_{\underline{X}}(\underline{x})=\frac{1}{(2 \pi)^{1 / 2} \sigma} \exp \left[\frac{-1}{2}(\underline{X}-\underline{\mu})^{T} \frac{1}{\sigma^{2}}(\underline{X}-\underline{\mu})\right] .
$$

Example 9. For $n=2, \underline{X}=\left(X_{1}, X_{2}\right)^{T}$ and the covariance matrix $K_{X X}$ is defined by

$$
\begin{aligned}
K_{X X} & =\left[\begin{array}{cc}
\sigma_{X_{1}}^{2} & \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) & \sigma_{X_{2}}^{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sigma_{X_{1}}^{2} & \rho \sigma_{X_{1}} \sigma_{X_{2}} \\
\rho \sigma_{X_{1}} \sigma_{X_{2}} & \sigma_{X_{2}}^{2}
\end{array}\right]
\end{aligned}
$$

And,

$$
\begin{aligned}
\operatorname{det}\left(K_{X X}\right) & =\sigma_{X_{1}}^{2} \sigma_{X_{2}}^{2}-\rho^{2} \sigma_{X_{1}}^{2} \sigma_{X_{2}}^{2} \\
& =\left(1-\rho^{2}\right) \sigma_{X_{1}}^{2} \sigma_{X_{2}}^{2}
\end{aligned}
$$

Hence,

$$
f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{(2 \pi) \sigma_{X_{1}} \sigma_{X_{2}} \sqrt{1-\rho^{2}}} \exp \left[\frac{-1}{2\left(1-\rho^{2}\right)} \beta\right]
$$

Where,

$$
\beta=\left(\frac{\left(x_{X_{1}}-\mu_{X_{1}}\right)^{2}}{\sigma_{X_{1}}}-2 \rho\left(\frac{x_{X_{1}}-\mu_{X_{1}}}{\sigma_{X_{1}}}\right)\left(\frac{x_{X_{2}}-\mu_{\mu_{X_{2}}}}{\sigma_{X_{2}}}\right)+\frac{\left(x_{X_{2}}-\mu_{X_{2}}\right)^{2}}{\sigma_{X_{2}}}\right) .
$$

Example 10. Let X, Y, Z be three jointly Gaussian random variables with $\mu_{X}=\mu_{Y}=\mu_{Z}=0$.

$$
K=\left[\begin{array}{ccc}
1 & 0.2 & 0.3 \\
0.2 & 1 & 0.3 \\
0.3 & 0.2 & 1
\end{array}\right]
$$

Question: Find the pdf $f_{X, Z}(x, z)$.

Answer: From the given information, X and Z are jointly Gaussian and

$$
K_{X Z}=\left[\begin{array}{cc}
1 & 0.3 \\
0.3 & 1
\end{array}\right]
$$

From $K_{X Z}$ we know that:

$$
\left.\begin{array}{rl}
\sigma_{X}=\sigma_{Z} & =1 \\
\operatorname{Cov}[X Z] & =0.3
\end{array}\right\} \Rightarrow \rho=\frac{0.3}{1}=0.3
$$

Therefore,

$$
f_{X Z}(x, z)=\frac{1}{(2 \pi) \sqrt{0.91}} \exp \left[\frac{-1}{2(0.91)}\left(x^{2}-0.6 x z+z^{2}\right)\right]
$$

Theorem 5. Let X be jointly Gaussian, A be an invertible matrix and,

$$
\underline{Y}=A \underline{X}
$$

Then, \underline{Y} is jointly Gaussian.
Proof. From Chapter $3, f_{Y}(y)=\frac{f_{X}(x)}{|A|}$ but,

$$
\underline{X}=A^{-1} \underline{Y}
$$

Therefore,

$$
\begin{aligned}
f_{\underline{Y}}(Y) & =\frac{1}{|A|} f_{\underline{X}}\left(A^{-1} Y\right) \\
f_{\underline{Y}}(Y) & =\frac{1}{(2 \pi)^{n / 2} \underbrace{\sqrt{\left|K_{X X}\right|}|A|}_{\beta}} \exp \underbrace{\left[-\frac{1}{2}\left(\left(A^{-1} \underline{Y}-\underline{\mu}_{X}\right)^{T} K_{X Y}^{-1}\left(A^{-1} \underline{Y}-\underline{\mu}_{X}\right)\right)\right]}_{\alpha}
\end{aligned}
$$

Recall that

$$
\begin{align*}
\underline{\mu}_{Y} & =E[\underline{Y}] \tag{7}\\
& =A E[\underline{X}] \tag{8}\\
& =A \underline{\mu}_{X} \tag{9}\\
\Rightarrow \underline{\mu}_{X} & =A^{-1} \underline{\mu}_{Y} \tag{10}
\end{align*}
$$

In addition, from last lecture we have,

$$
\begin{aligned}
K_{Y Y} & =E\left[\underline{Y}_{\underline{Y}}^{T}\right]-\underline{\mu}_{Y} \underline{\mu}_{Y}^{T} \\
& =A K_{X X} A^{T}
\end{aligned}
$$

Hence,

$$
\begin{align*}
\alpha & =\frac{-1}{2}\left(A^{-1} \underline{Y}-\underline{\mu}_{X}\right)^{T} K_{X Y}^{-1}\left(A^{-1} \underline{Y}-\underline{\mu}_{X}\right) \tag{11}\\
& =\frac{-1}{2} A^{-1}\left(\underline{Y}-\underline{\mu}_{Y}\right)^{T} K_{X Y}^{-1} A^{-1}\left(\underline{Y}-\underline{\mu}_{Y}\right) \tag{12}\\
& =\frac{-1}{2}\left(\underline{Y}-\underline{\mu}_{Y}\right)^{T} \underbrace{A^{-1^{T}} K_{X Y}^{-1} A^{-1}}_{K_{Y Y}}\left(\underline{Y}-\underline{\mu}_{Y}\right) \tag{13}
\end{align*}
$$

Where, equation (12) result by substituting $\underline{\mu}_{X}$ by $A^{-1} \underline{\mu}_{Y}$ (from equation (10)). We still need to show that $\beta=\sqrt{\left|K_{Y Y}\right|}$.

$$
\begin{aligned}
\operatorname{det}\left(K_{Y Y}\right) & =\operatorname{det}\left(A K_{X X} A^{T}\right) \\
& =\operatorname{det}(A) \operatorname{det}\left(K_{X X}\right) \operatorname{det}\left(A^{T}\right) \\
& =\operatorname{det}^{2}(A) \operatorname{det}\left(K_{X X}\right) \\
\Rightarrow \sqrt{\left|K_{Y Y}\right|} & =|A| \sqrt{\left|K_{X X}\right|}
\end{aligned}
$$

Hence, \underline{Y} is jointly Gaussian with $\underline{\mu}_{Y}=A \underline{\mu}_{X}$ and $K_{Y Y}=A K_{X X} A^{T}$.

Example 11. Transform X (jointly Gaussian) into $\underline{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ where Y_{i} are iid.

Since for \underline{Y} to be iid,

$$
K_{Y Y}=\left[\begin{array}{cccc}
\sigma_{Y_{1}}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{Y_{1}}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{Y_{n}}^{2}
\end{array}\right]
$$

where the covariance is zero and uncorrelated jointly Gaussian random variables are independent. Pick random vector $\underline{Y}=A \underline{X}$, where A is to be chosen such that:

$$
K_{Y Y}=A K_{X X} A^{T}
$$

Since $K_{X X}$ is symmetric, from the Eigenvalue Decomposition Theorem (see previous lecture) we have,

$$
U^{T} K_{X X} U=\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

where λ_{n} are the eigenvalues of $K_{X X}$ and $U=\left[\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}\right]$ is the eigenvector matrix. Hence, $A=U^{T}$ (Hint: Use the "eig" function in Matlab to generate the matrices).

Lemma 1. If $X_{1}, X_{2}, \ldots, X_{n}$ are jointly Gaussian random variables, then

$$
Z_{1}=a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}
$$

is a Gaussian random variable $\forall a_{i}$ such that $\exists i$ for which $a_{i} \neq 0$.
Remark 1. When asked to find the pdf $f_{Z_{1}}\left(Z_{1}\right)$, all we have to do is find $E\left[Z_{1}\right]$ and $V\left(Z_{1}\right)$.

Let $\underline{a}=\left(a_{1}, \ldots, a_{n}\right)^{T}, Z_{1}$ can be written as $Z_{1}=\underline{a}^{T} \underline{X}$ and

$$
E\left[Z_{1}\right]=\underline{a}^{T} \underline{\mu}_{X}
$$

However, since $X_{1}, X_{2}, \ldots, X_{n}$ might be dependent,

$$
V\left(Z_{1}\right) \neq a_{1}^{2} V\left(X_{1}\right)+\cdots+a_{n}^{2} V\left(X_{n}\right)
$$

For example for $n=2$ and $\underline{\mu}_{X}=\underline{0}$,

$$
\begin{aligned}
V\left(Z_{1}\right) & =E\left[\left(a_{1} X_{1}+a_{2} X_{2}\right)^{2}\right] \\
& =E\left[a_{1}^{2} X_{1}^{2}+a_{2}^{2} X_{2}^{2}+2 a_{1} a_{2} X_{1} X_{2}\right] \\
& =a_{1}^{2} \sigma_{X_{1}}^{2}+a_{2}^{2} \sigma_{X_{1}}^{2}+2 a_{1} a_{2} \operatorname{Cov}\left(X_{1}, X_{2}\right) .
\end{aligned}
$$

In general:

$$
\begin{aligned}
\operatorname{Var}\left(Z_{1}\right) & =E\left[Z_{1}\right]^{2}-\mu_{Z_{1}}^{2} \\
& =E\left[Z_{1} Z_{1}^{T}\right]-\mu_{Z_{1}} \mu_{Z_{1}}^{T} \\
& =E\left[\underline{a}^{T} X \underline{X}^{T} \underline{a}\right]-\underline{a}^{T} \underline{\mu}_{X} \underline{\mu}_{X}^{T} \underline{a}, \\
& =\underline{a}^{T}\left(E\left[\underline{X} \underline{X}^{T}\right]-\mu_{X} \mu_{X}^{T}\right) \underline{a} \\
& =\underline{a}^{T} K_{X X} \underline{a} \in \mathbb{R} .
\end{aligned}
$$

Proof. (of lemma 1) Let,

$$
\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{c}
X_{1}+X_{2} \\
3 X_{1}+2 X_{2}
\end{array}\right]
$$

$Y_{1}=X_{1}+X_{2} \& Y_{2}=3 X_{1}+2 X_{2}$ are Gaussian (theorem 5). We can think of Z_{1} being a component of $\underline{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)^{T}$ where,

$$
\left[\begin{array}{c}
Z_{1} \\
Z_{2} \\
\cdots \\
Z_{n}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{n} \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]}_{A}\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right]
$$

We know that A is invertible (full rank) which means that \underline{Z} is jointly Gaussian (theorem 5). Thus, each component of Z is Gaussian, in particular Z_{1}.

Remark 2. Any linear combination of the components of a jointly Gaussian random vector is a Gaussian random variable.

5 Overview on Estimation

Recall:

1. Tossing a die $X \in\{0,1,2,3,4,5,6\}$, we want to estimate X by \hat{X}.

What is the best estimate?

$$
M S E=E\left[(X-\hat{X})^{2}\right]
$$

We want to minimize $E\left[(X-\hat{X})^{2}\right]$
Take $\hat{X}_{\text {min }}=E[X]$
(check previous notes)
2. Find the Minimum Mean Square Error (MMSE) of X given Y.

$$
\hat{X}_{M M S E}=E[X \mid Y] .
$$

3. Linear MMSE (LMMSE)

Here $\hat{X}_{M M S E}=a Y+b$.
$\min _{a, b} E\left[(X-\hat{X})^{2}\right] \Leftrightarrow(X-\hat{X}) \perp Y$.
Recall that we say X is orthogonal to $Y(X \perp Y)$ if and only if $E[X Y]=0$.
By the orthogonality principle, we know that if $X_{1} \perp X_{2} \Rightarrow E\left[X_{1}, X_{2}\right]=0$.
Thus, $E[(X-\hat{X}) Y]=0$.

$$
\hat{X}_{L M M S E}=\frac{\rho \sigma_{X}}{\sigma_{Y}}\left(Y-\mu_{Y}\right)+\mu_{X}
$$

Where $\rho=\frac{\operatorname{Cov}(X, Y)}{\left.\sigma_{X} \sigma_{Y}\right)}$.
So,

$$
\begin{aligned}
\hat{X}_{L M M S E} & =\frac{\operatorname{Cov}(X, Y)}{\sigma_{Y}^{2}}\left(Y-\mu_{Y}\right)+\mu_{X} \\
L M M S E & =E\left[\left(X-\hat{X}_{L M M S E}\right)^{2}\right] \\
& =E\left(X^{2}\right)-E\left(\hat{X}^{2}\right)=\|X\|^{2}-\|\hat{X}\|^{2} .
\end{aligned}
$$

Recall that $E\left[X^{2}\right]=\|X\|^{2}$.

Example 12.

$$
f_{X Y}= \begin{cases}2 e^{-x} e^{-y} & \text { if } 0 \leq y \leq x<\infty, \\ 0 & \text { otherwise } .\end{cases}
$$

1. Find MMSE and LMMSE of X given Y
$\hat{X}_{M M S E}=E[X \mid Y]=Y+1 . \quad$ (Check exam solution for a detailed proof.)
Since $\hat{X}_{M M S E}$ is linear then,
$\hat{X}_{\text {LMMSE }}=Y+1$.
Straight calculations give $\mu_{X}=3 / 2, \mu_{y}=1 / 2, \operatorname{Var}(X)=5 / 4, \operatorname{Var}(Y)=1 / 4$, and $\operatorname{Cov}(X, Y)=$ 1/4.
2. Find the MMSE $\xi^{\mathcal{B}}$ LMMSE of Y given X.

First, we will find the MMSE; but to do this we need to calculate the covariance of X and Y.

$$
\begin{aligned}
\operatorname{Cov}(X Y) & =E[X Y]-\mu_{x} \mu_{y} . \\
E[X Y] & =\iint x y f(x, y) d x d y=\int_{0}^{+\infty} \int_{0}^{x} 2 x y e^{-x} e^{-y} d y d x=1 . \\
\operatorname{Cov}(X Y) & =1-3 / 2 \times 1 / 2=1 / 4 .
\end{aligned}
$$

Usually, finding the LMMSE is much easier than finding the MMSE because you simply apply to formula.

$$
\begin{aligned}
& \hat{Y}_{L M M S E}=\frac{\operatorname{Cov}(X Y)}{\sigma_{x}^{2}}\left(X-\mu_{x}\right)+\mu_{y} . \\
& \hat{Y}_{L M M S E}=\frac{1 / 4}{5 / 4}(X-3 / 2)+1 / 2=X / 5-1 / 5 .
\end{aligned}
$$

Thus, if you restrict yourself to linear functions of the form $a X+b$, then the best choices are $a=1 / 5$ and $b=1 / 5$.

Next, we will find the best MMSE estimator. Recall the definition of the best MMSE estimator.

$$
\begin{aligned}
& \hat{Y}_{M M S E}=E[Y \mid X] . \\
& \hat{Y}_{M M S E}=\int y f_{Y \mid X}(y \mid x) d y . \\
& \hat{Y}_{M M S E}=\int_{0}^{x} y \frac{e^{-y}}{1-e^{-x}} d y=\left.\frac{-e^{-y}(y+1)}{1-e^{-x}}\right|_{0} ^{x}=1-\frac{x e^{-x}}{1-e^{-x}} .
\end{aligned}
$$

As homework, find the error associated with each estimate.

6 The Orthogonality Principle

Theorem 6 (The Orthogonality Principle). The MMSE of \hat{X} of X given Y, where $\hat{X}=g(Y)$, where $g(*) \in \Gamma$ and $\left(\Gamma^{*}\right.$ is all functions, linear functions, constants $)$, is found when $\hat{X}=\min E\left[(X-g(Y))^{2}\right]$ where the minimization is over $g(*) \in \Gamma$. The MMSE $=E\left[X^{2}\right]-E\left[\hat{X}^{2}\right]$. In this case, \hat{X} is unique and the error is orthogonal to the observation $((X-\hat{X}) \perp Y)$. The * indicates there are some technical conditions on gamma but they are not discussed here.

Proof. Proof is omitted.

Example 13. $X=\left(X_{1}, X_{2}, X_{3}\right)$ are jointly Gaussian and, $\mu_{x}=(0,0,0)$,

$$
K_{X X}=R_{X X}=\left[\begin{array}{ccc}
1 & 0.2 & 0.1 \\
0.2 & 2 & 0.3 \\
0.1 & 0.3 & 4
\end{array}\right]
$$

Find the LMMSE of X_{3} Given X_{1} and X_{2}.

$$
\begin{aligned}
K_{Y Y} & =\left[\begin{array}{cc}
1 & 0.2 \\
0.2 & 2
\end{array}\right] \\
\Rightarrow K_{Y Y}^{-1} & =\left[\begin{array}{cc}
1.0204 & -0.102 \\
-0.102 & 0.5102
\end{array}\right] .
\end{aligned}
$$

Because all $\mu_{x}=0$,

$$
K_{X_{3} Y}^{T}=\left[\begin{array}{ll}
\operatorname{Cov}\left(X_{3} X_{1}\right) & \operatorname{Cov}\left(X_{3} X_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
0.1 & 0.3
\end{array}\right] .
$$

$\hat{X}_{3 \text { LMMSE }}=\left[\begin{array}{ll}0.1 & 0.3\end{array}\right]$.
$\left[K_{Y Y}^{-1}\right]=a_{1} X_{1}+a_{2} X_{2}, \quad a_{1}=0.0714, \quad a_{2}=0.1429$.

Find the MMSE of the X_{3}.

$$
\begin{aligned}
\hat{X}_{3 ~ M M S E} & =E\left[\left(X_{3}-\hat{X}\right)^{2}\right]=E\left[X_{3}^{2}\right]-E\left[\hat{X}^{2}\right] \\
& =4-E\left[\left(a_{1} X_{1}+a_{2} X_{2}\right)^{2}\right] \\
& =4-a_{1}^{2} E\left[X_{1}^{2}\right]-a_{2}^{2} E\left[X_{2}^{2}\right]-2 a_{1} a_{2} E\left[X_{1} X_{2}\right] \\
& =3.95 .
\end{aligned}
$$

7 MMSE Based on Vector Observation

Theorem 7. The Linear Minimum Mean-Square Estimate LMMSE $\hat{X}_{\text {LMMSE }}$ of X given an observed random vector $\underline{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ is given by

$$
\hat{X}_{L M M S E}=K_{X Y}^{T} K_{Y Y}^{-1}\left(\underline{Y}-\underline{\mu}_{Y}\right)+\mu_{X},
$$

where,

$$
\begin{aligned}
\mu_{X} & =E[X], \\
\underline{\mu}_{Y} & =\left(E\left[Y_{1}\right], E\left[Y_{2}\right], \ldots, E\left[Y_{n}\right]\right), \\
K_{Y Y} & =E\left[\underline{Y} \underline{Y}^{T}\right]-\mu_{Y} \mu_{Y}^{T}, \\
\text { and } K_{X Y} & =\left(\operatorname{Cov}\left[X Y_{1}\right], \operatorname{Cov}\left[X Y_{2}\right], \ldots, \operatorname{Cov}\left[X Y_{n}\right]\right)^{T},
\end{aligned}
$$

where $K_{Y Y}$ is the covariance matrix of Y.
And, the MMSE is given by

$$
\begin{aligned}
M M S E & =\min E\left[\left(X-\hat{X}_{L M M S E}\right)^{2}\right] \\
& =E\left[X^{2}\right]-E\left[\hat{X}_{L M M S E}{ }^{2}\right] .
\end{aligned}
$$

Proof. First, let us assume that $\mu_{X}=0$ and $\mu_{Y}=\underline{0}$. Then, we can write

$$
\begin{aligned}
\hat{X}_{L M M S E} & =a_{1} Y_{1}+a_{2} Y_{2}+\cdots+a_{n} Y_{n} \\
& =\underline{a}^{t} \underline{\underline{Y}} .
\end{aligned}
$$

By the orthogonality principle: $\left(X-\hat{X}_{L M M S E}\right) \perp Y_{i} \quad i=1,2, \ldots, n$,

$$
\begin{gathered}
E\left[\underline{a}^{t} \underline{Y} \cdot Y_{i}\right]=E\left[X Y_{i}\right] \quad i=1,2, \ldots, n, \\
E\left[\left(a_{1} Y_{1}+a_{2} Y_{2}+\cdots+a_{n} Y_{n}\right) Y_{i}\right]=E\left[X Y_{i}\right] \quad i=1,2, \ldots, n .
\end{gathered}
$$

So, we get the following $n \times n$ linear system with n unknowns, a_{1}, \ldots, a_{n} :

$$
\begin{gathered}
a_{1} E\left[Y_{1}^{2}\right]+a_{2} E\left[Y_{1} Y_{2}\right]+\cdots+a_{n} E\left[Y_{1} Y_{n}\right]=E\left[X Y_{1}\right] \\
a_{1} E\left[Y_{2} Y_{1}\right]+a_{2} E\left[Y_{2}^{2}\right]+\cdots+a_{n} E\left[Y_{2} Y_{n}\right]=E\left[X Y_{2}\right] \\
\vdots \\
a_{1} E\left[Y_{n} Y_{1}\right]+a_{2} E\left[Y_{n} Y_{2}\right]+\cdots+a_{n} E\left[Y_{n}^{2}\right]=E\left[X Y_{n}\right]
\end{gathered}
$$

In matrix form, this can be written as

$$
\begin{aligned}
& \underline{a}^{t} R_{Y Y}=R_{X Y}^{t}, \\
& \underline{a}^{t}=R_{X Y}^{t} R_{Y Y}^{-1} .
\end{aligned}
$$

Where,

$$
K_{Y Y}=\left[\begin{array}{cccc}
E\left[Y_{1}^{2}\right] & E\left[Y_{1} Y_{2}\right] & \ldots & E\left[Y_{1} Y_{n}\right] \\
E\left[Y_{2} Y_{1}\right] & E\left[Y_{2}^{2}\right] & \ldots & E\left[Y_{2} Y_{n}\right] \\
\vdots & \vdots & & \vdots \\
E\left[Y_{n} Y_{1}\right] & E\left[Y_{n} Y_{2}\right] & \ldots & E\left[Y_{n}^{2}\right]
\end{array}\right],
$$

and,

$$
K_{X Y} \stackrel{\text { def }}{=}\left[\begin{array}{c}
\operatorname{Cov}\left[X Y_{1}\right] \\
\operatorname{Cov}\left[X Y_{2}\right] \\
\vdots \\
\operatorname{Cov}\left[X Y_{n}\right]
\end{array}\right]=\left[\begin{array}{c}
E\left[X Y_{1}\right] \\
E\left[X Y_{2}\right] \\
\vdots \\
E\left[X Y_{n}\right]
\end{array}\right] .
$$

So,

$$
\hat{X}_{L M M S E}=K_{X Y}^{T} K_{Y Y}^{-1} \underline{\underline{Y}} .
$$

In general, if $\mu_{X} \neq 0$ and $\mu_{Y} \neq \underline{0}$,
Apply the same method above to $X^{\prime}=X-\mu_{X}$ and $\underline{Y}^{\prime}=\underline{Y}-\underline{\mu}_{Y}$, then we get

$$
\hat{X}_{L M M S E}=K_{X Y}^{T} K_{Y Y}^{-1}\left(\underline{Y}-\underline{\mu}_{Y}\right)+\mu_{X} .
$$

Example 14. Multiple Antenna Receiver
Assume 2 antennas receive signals independently. $\quad Y_{1}=X+N_{1}, \quad Y_{2}=X+N_{2}$, $X \sim N(0,2), \quad N_{1}, N_{2} \sim N(0,1)$. Assume they are all independent.

1. Find the LMMSE of X given Y_{1}.

$$
\hat{X}_{L M M S E}=\frac{\operatorname{Cov}\left(X Y_{1}\right)}{V\left(Y_{1}\right)} Y_{1} .
$$

$$
\begin{aligned}
\operatorname{Cov}\left(X Y_{1}\right)= & E\left[X Y_{1}\right]-E[X] E\left[Y_{1}\right] \quad \text { Note that } E[X] E\left[Y_{1}\right]=0 \\
= & E\left[X\left(X+N_{2}\right)\right] \\
= & E\left[X^{2}\right]+E\left[X N_{2}\right]=2+0=2 . \\
& V\left(Y_{1}\right)=V(X)+V\left(N_{1}\right)=2+1=3 .
\end{aligned}
$$

So that, $\quad \hat{X}_{L M M S E}=\frac{2}{3} Y_{1}$

$$
\begin{aligned}
X_{M M S E} & =E\left[X^{2}\right]-E\left[\hat{X}^{2}\right] \\
& =2-E\left[\left(\frac{2}{3} Y_{1}\right)^{2}\right] \\
& =2-\frac{4}{9} E\left[Y_{1}^{2}\right]=\frac{2}{3} .
\end{aligned}
$$

2. Find the LMMSE of X given Y_{1} and Y_{2}.

Usually, we want to find that $\hat{X}=a_{1} Y_{1}+a_{2} Y_{2}+C$.
In this case, $C=0$.
While $\quad X-\hat{X} \perp Y_{1}, \quad$ and $\quad X-\hat{X} \perp Y_{2}$,
we can obtain,

$$
\begin{aligned}
& E\left[\left(X-a Y_{1}-a_{2} Y_{2}\right) Y_{1}\right]=0 \\
& E\left[\left(X-a Y_{1}-a_{2} Y_{2}\right) Y_{2}\right]=0 . \\
& a_{1} E\left[Y_{1}^{2}\right]+a_{2} E\left[Y_{1} Y_{2}\right]=E\left[X Y_{1}\right] . \\
& a_{1} E\left[Y_{1} Y_{2}\right]+a_{2} E\left[Y_{2}^{2}\right]=E\left[X Y_{2}\right] . \\
& K_{Y_{1} Y_{2}}\left[\begin{array}{c}
a_{1} \\
a_{2}
\end{array}\right]=K_{X Y} .
\end{aligned}
$$

Therefore,

$$
\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=K_{Y_{1} Y_{2}}^{-1} K_{X Y}=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

And,

$$
\begin{aligned}
M M S E & =E\left[X^{2}\right]-E\left[\hat{X}_{L M M S E}^{2}\right] \\
& =2-E\left[0.4\left(Y_{1}+Y_{2}\right)^{2}\right] \\
& =0.4<M M S E \text { with only } Y_{1} .
\end{aligned}
$$

