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Chapter 5
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Scribe: H. Xie, L. Gan, W. Yi, Jaijo, R. Tajeddine, S. Jones, Y. Yang, L. Liu

1 Overview

In the last lecture, we talked about Chernoff bound and defined the characteristic function of a RV.
Then we gave some examples and concluded by proving the Central Limit Theorem with examples.

In this lecture, we will introduce random vectors, define Positive Semi-Definite (P.S.D.) matrices,
give some examples theorem and proofs, then use them to prove some properties in covariance
matrices.

2 Random Vector

Definition 1. A random vector
¯
X = (X1, X2, . . . , Xn)

T, is a vector of random variables Xi,
i = 1, . . . , n.

Definition 2. The mean vector of
¯
X, denoted by

¯
µ, is

¯
µ = (µ1, µ2, . . . , µn)

T where µi =
E [Xi] , i = 1, . . . , n.

Definition 3. The covariance matrix KXX or K, of
¯
X is an n× n matrix defined as

KXX
∆
= E

[(
¯
X −

¯
µ
) (

¯
X −

¯
µ
)T]

.

KXX = E




X1 − µ1

X2 − µ2
...

Xn − µn

(
X1 − µ1 X2 − µ2 . . . Xn − µn

)T
 ,

= E


(X1 − µ1)

2 (X1 − µ1)(X2 − µ2) · · · (X1 − µ1)(Xn − µn)
(X2 − µ2)(X1 − µ1) (X2 − µ2)

2 · · · (X2 − µ2)(Xn − µn)
...

...
. . .

...
(Xn − µn)(X1 − µ1) (Xn − µn)(X2 − µ2) · · · (Xn − µn)

2

 ,

=


σ2
1 K12 · · · K1n

K21 σ2
2 · · · K2n

...
...

. . .
...

Kn1 Kn2 · · · σ2
n

 .

Remark: The matrixKXX is real symmetric andKij = Kji = cov (Xi, Xj) = E [(Xi − µi) (Xj − µj)] =
K, and σ2

i = V (Xi).
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Definition 4. The correlation matrix RXX , or R, is defined as R = E
[
¯
X

¯
XT

]
.

Corollary 1. K = R−
¯
µ
¯
µT .

Example 1.
¯
X = (X1, X2) ,

Cov (X1, X2) = E [X1, X2]− µ1µ2,

KXX =

[
σ2
X1

cov (X1, X2)

cov (X1, X2) σ2
X2

]
=

[
E
[
X2

1

]
E [X1X2]

E [X1X2] E
[
X2

2

] ]
−

[
µ2
1 µ1µ2

µ1µ2 µ2
2

]
.

Definition 5. For any random vectors
¯
X and

¯
Y of same length.

1. If the cross-covariance matrix KXY = E
[(
¯
X −

¯
µX

) (
¯
Y −

¯
µY

)]
= E

[
¯
X
¯
Y T

]
−

¯
µX

¯
µT
Y = 0 ⇒

we say that
¯
X and

¯
Y are uncorrelated.

2. If E
[
¯
X
¯
Y T

]
= 0 ⇒ we say that

¯
X and

¯
Y are orthogonal.

3 Properties of Covariance Matrices

Can any n× n real symmetric matrix be a covariance matrix? Answer : No.

Example 2. M =

[
2 0
0 −2

]
, can it be covariance matrix of a vector

¯
X =

(
X1

X2

)
?

No. Because V [X2] = −2 < 0.

Example 3. Consider matrix M =

[
2 3
3 2

]
, can it be a covariance matrix?

Take Y +X1 −X2,

V (Y ) = V (X1 −X2)

= V (X1) + V (X2)− 2cov(X1, X2)

= 2 + 2− 2× 3

= −2

So M cannot be covariance matrix.

Therefore we want for any linear combination of
¯
X = (X1, . . . , Xn), say

¯
Y = a1X1 + . . . ,+anXn,

to have V (Y ) ≥ 0.

V (Y ) = E(Y 2)− (E(Y ))2

E(Y ) = E[
¯
aT

¯
X] =

¯
aT

¯
µX

E[Y 2] = E[(
¯
aT

¯
X)(

¯
aT

¯
X)] = E[

¯
aT

¯
X ·

¯
XT

¯
a]

=
¯
aTE[

¯
X ·

¯
XT ]

¯
a

=⇒ V (Y ) =
¯
aTE[

¯
X ·

¯
XT ]

¯
a−

¯
aT

¯
µX

¯
µT
X¯
a

=
¯
aTKXX

¯
a should be ≥ 0

So we want M to satisfy
¯
aTM

¯
a ≥ 0, for any

¯
a.
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Definition 6. A matrix M is positive semi-definite (P.S.D) if

¯
XTM

¯
X ≥ 0 ∀

¯
X ∈ Rn (we say M ≽ 0).

Example 4. The identity matrix I is P.S.D. because for any
¯
X = (X1, X2)

T ,

¯
XT I

¯
X =

(
X1 X2

) [ 1 0
0 1

](
X1

X2

)
,

= ||
¯
X||2 ≥ 0.

Similarly, any diagonal matrix with all non-negative diagonal entries is psd.

Example 5. Consider the same matrix M of example 3,

(
1 −1

) [ 2 3
3 2

](
1
−1

)
=

(
−1 1

)( 1
−1

)
= −2 < 0.

Thus, this matrix is not P.S.D.

Theorem 1. Any covariance matrix K is P.S.D.

Proof. Let
¯
X = (X1, X2, . . . , Xn)

T be a a zero-mean random vector, i.e., E [
¯
X] = (0, 0, · · · , 0)T ,

and let
K = E

[
¯
X

¯
XT

]
.

Our goal is to prove that K ≽ 0, which means that if we pick
¯
Z = (Z1, Z2, · · · , Zn)

T we need to
show that

¯
ZTK

¯
Z ≥ 0.

¯
ZTK

¯
Z =

¯
ZTE

[
¯
X

¯
XT

]
¯
Z, (1)

= E
[
¯
ZT

¯
X

¯
XT

¯
Z
]
, (2)

= E
[(
¯
ZT

¯
X
) (

¯
ZT

¯
X
)T ]

, (3)

= E
[
Y 2

]
≥ 0. (4)

(5)

Where equation (2) is a result of the linearity of expectations and equation (3) results from

(ABT ) = BTAT ,

and in equation (4) Y =
¯
ZT

¯
X is a single random variable.

Definition 7. The eigenvalues of a matrix M are the scalars λ such that

∃
¯
Φ ̸= 0,M

¯
Φ = λ

¯
Φ. (6)

The vectors
¯
Φ are called eigenvectors. Typically we choose ϕi such that ||ϕi|| = 1.
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Theorem 2. A real symmetric matrix M is P.S.D if and only if all its eigenvalues are non-negative.

Theorem 3. Let M be a real symmetric matrix then M has n mutually orthogonal unit eigenvectors
ϕ1, . . . , ϕn.

Proof. From linear Algebra or in the textbook.

Example 6. Find the eigenvalues and eigenvectors of the matrix M =

[
4 2
2 4

]
.

1. Eigenvalues :

det

([
4− λ 2
2 4− λ

])
= 16 + λ2 − 8λ− 4 = 0,

λ1 = 6 and λ2 = 2 therefore M ≻ 0.

2. Eigenvectors :

For λ1 = 2 set
¯
Φ1 =

[
Φ11 Φ21

]T
such that[

4 2
2 4

] [
Φ11

Φ12

]
= 2

[
Φ11

Φ12

]
.

4Φ11 + 2Φ12 = 2Φ11

2Φ11 + 4Φ12 = 2Φ12

}
⇒ Φ11 = −Φ21 ⇒

¯
Φ1 =

[
1 −1

]T
.

For λ2 = 6: we repeat the same steps and get

¯
Φ2 =

[
1√
2

1√
2

]T
.

Claim 1. (Eigenvalue Decomposition) The matrix M having
¯
Φ1,

¯
Φ2 as eigenvectors can be ex-

pressed as
M = UΛUT,

Where

U =
[
¯
Φ1

¯
Φ2

]
=

1√
2

[
1 1
−1 1

]
,

Λ =

[
λ1 0
0 λ2

]
=

[
2 0
0 6

]
.

Check:

UΛUT =
1√
2

1√
2

[
1 1
−1 1

] [
2 0
0 6

] [
1 −1
1 1

]
,

=
1

2

[
2 6
−2 6

] [
1 −1
1 1

]
,

=

[
4 2
2 4

]
,

= M.
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Theorem 4. (Eigenvalue Decomposition Theorem) Let M be a real symmetric matrix with eigen-
values λ1, λ2, . . . , λn and corresponding eigenvectors

¯
Φ1,

¯
Φ2, . . . ,

¯
Φn then

UTMU = Λ,

With :

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .

Proof. We can write from equation (6) :

MU = UΛ and U =

 | |
ϕ1 · · · ϕn

| |

 ,

U−1MU = Λ,

Since U is a real symmetric matrix :

UT = U−1 ⇒ Λ = UTMU,

and

M = (UT)−1ΛU−1,

= UΛUT.

Example 7. Let
¯
X = (X1, X2)

T and K =

[
4 2
2 4

]
.

Suppose X1 and X2 are correlated with cov (X1, X2) = 2.

Question: Find A such that
¯
Y = A

¯
X,

¯
Y = (Y1, Y2)

T and Y1 & Y2 are uncorrelated.

Solution: Let

A =

[
a11 a12
a21 a22

]
¯
Y =

(
Y1 Y2

)T
 ⇒

Y1 = a11X1 + a12X2,

Y2 = a21X1 + a22X2.

We know that
¯
X ∼ N(0, 1) and

¯
Y ∼ N(0, 1), we need KY Y to be

KY Y =

[
σ2
Y1

0

0 σ2
Y2

]
.
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Recall that
¯
Y = A

¯
X. Hence,

¯
µY = E [

¯
Y ] ,

= E [A
¯
X] ,

= AE [
¯
X] ,

= A
¯
µX .

By definition, the covariance matrix KY Y is

KY Y = E
[
(
¯
Y − µY ) (

¯
Y − µY )

T
]
,

= E
[
A (

¯
X − µX)

(
A (

¯
X − µX)T

)]
,

= AE
[
(
¯
X − µX)

(
A (

¯
X − µX)T

)]
,

= AKXXAT.

By theorem 4 (Eigenvalue Decomposition Theorem) we have:

Λ = UTMU.

Therefore, we need to pick the matrix A such that A = UT for KY Y to be a diagonal matrix.

A =
1√
2

[
1 −1
1 1

]
.

This leads to the final result

Y1 =
1√
2
(X1 −X2),

Y2 =
1√
2
(X1 +X2).

4 Multidimensional Jointly Gaussian Distribution

Recall that if two random variables are jointly Gaussian, then the marginal distributions are also
Gaussian, but the converse is not necessarily true.

Definition 8. A vector
¯
X = (X1, X2, . . . , Xn)

T with E(
¯
X) =

¯
µ = (µ1, µ2, . . . , µn)

T is called jointly
Gaussian if

f
¯
X(

¯
x) =

1

(2π)n/2
√

|KXX |
exp

[
−1

2
(
¯
X −

¯
µ)TK−1

XX(
¯
X −

¯
µ)

]
,

where, |KXX | = det(KXX).
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Example 8. For n = 1,

f
¯
X(

¯
x) =

1

(2π)1/2σ
exp

[
−1

2
(
¯
X −

¯
µ)T

1

σ2
(
¯
X −

¯
µ)

]
.

Example 9. For n = 2,
¯
X = (X1, X2)

T and the covariance matrix KXX is defined by

KXX =

[
σ2
X1

Cov(X1, X2)

Cov(X1, X2) σ2
X2

]
,

=

[
σ2
X1

ρσX1σX2

ρσX1σX2 σ2
X2

]
.

And,

det(KXX) = σ2
X1

σ2
X2

− ρ2σ2
X1

σ2
X2

,

= (1− ρ2)σ2
X1

σ2
X2

.

Hence,

fX1X2(x1, x2) =
1

(2π)σX1σX2

√
1− ρ2

exp

[
−1

2(1− ρ2)
β

]
,

Where,

β =

(
(xX1 − µX1)

2

σX1

− 2ρ

(
xX1 − µX1

σX1

)(
xX2 − µµX2

σX2

)
+

(xX2 − µX2)
2

σX2

)
.

Example 10. Let X, Y, Z be three jointly Gaussian random variables with µX = µY = µZ = 0.

K =

 1 0.2 0.3
0.2 1 0.3
0.3 0.2 1

 ,

Question: Find the pdf fX,Z(x, z).

Answer: From the given information, X and Z are jointly Gaussian and

KXZ =

[
1 0.3
0.3 1

]
.

From KXZ we know that:
σX = σZ = 1

Cov[XZ] = 0.3

}
⇒ ρ =

0.3

1
= 0.3.

Therefore,

fXZ(x, z) =
1

(2π)
√
0.91

exp

[
−1

2(0.91)

(
x2 − 0.6xz + z2

)]
.
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Theorem 5. Let
¯
X be jointly Gaussian, A be an invertible matrix and,

¯
Y = A

¯
X.

Then,
¯
Y is jointly Gaussian.

Proof. From Chapter 3, fY (y) =
fX(x)
|A| but,

¯
X = A−1

¯
Y,

Therefore,

f
¯
Y (Y ) =

1

|A|
f
¯
X

(
A−1Y

)
,

f
¯
Y (Y ) =

1

(2π)n/2
√

|KXX ||A|︸ ︷︷ ︸
β

exp

[
−1

2

((
A−1

¯
Y −

¯
µX

)T
K−1

XY (A
−1

¯
Y −

¯
µX)

)]
︸ ︷︷ ︸

α

.

Recall that

¯
µY = E[

¯
Y ], (7)

= AE[
¯
X], (8)

= A
¯
µX , (9)

⇒
¯
µX = A−1

¯
µY . (10)

In addition, from last lecture we have,

KY Y = E[
¯
Y
¯
Y T ]−

¯
µY

¯
µT
Y ,

= AKXXAT .

Hence,

α =
−1

2
(A−1

¯
Y −

¯
µX)TK−1

XY (A
−1

¯
Y −

¯
µX), (11)

=
−1

2
A−1(

¯
Y −

¯
µY )

TK−1
XY A

−1(
¯
Y −

¯
µY ), (12)

=
−1

2
(
¯
Y −

¯
µY )

T A−1TK−1
XY A

−1︸ ︷︷ ︸
KY Y

(
¯
Y −

¯
µY ). (13)

Where, equation (12) result by substituting
¯
µX by A−1

¯
µY (from equation (10)). We still need to

show that β =
√

|KY Y |.

det(KY Y ) = det(AKXXAT ),

= det(A) det(KXX) det(AT ),

= det2(A) det(KXX),

⇒
√

|KY Y | = |A|
√

|KXX |.

Hence,
¯
Y is jointly Gaussian with

¯
µY = A

¯
µX and KY Y = AKXXAT .
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Example 11. Transform
¯
X (jointly Gaussian) into

¯
Y = (Y1, . . . , Yn) where Yi are iid.

Since for
¯
Y to be iid,

KY Y =


σ2
Y1

0 · · · 0

0 σ2
Y1

· · · 0
...

...
. . .

...
0 0 · · · σ2

Yn

 ,

where the covariance is zero and uncorrelated jointly Gaussian random variables are independent.
Pick random vector

¯
Y = A

¯
X, where A is to be chosen such that:

KY Y = AKXXAT .

Since KXX is symmetric, from the Eigenvalue Decomposition Theorem (see previous lecture) we
have,

UTKXXU = Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 . . . λn

 ,

where λn are the eigenvalues of KXX and U = [
¯
Φ1,

¯
Φ2, . . . ,

¯
Φn] is the eigenvector matrix. Hence,

A = UT (Hint: Use the “eig” function in Matlab to generate the matrices).

Lemma 1. If X1, X2, . . . , Xn are jointly Gaussian random variables, then

Z1 = a1X1 + a2X2 + · · ·+ anXn,

is a Gaussian random variable ∀ai such that ∃ i for which ai ̸= 0.

Remark 1. When asked to find the pdf fZ1(Z1), all we have to do is find E[Z1] and V (Z1).

Let
¯
a = (a1, . . . , an)

T , Z1 can be written as Z1 =
¯
aT

¯
X and

E[Z1] =
¯
aT

¯
µX .

However, since X1, X2, . . . , Xn might be dependent,

V (Z1) ̸= a21V (X1) + · · ·+ a2nV (Xn) .

For example for n = 2 and
¯
µX =

¯
0,

V (Z1) = E
[
(a1X1 + a2X2)

2
]
,

= E
[
a21X

2
1 + a22X

2
2 + 2a1a2X1X2

]
,

= a21σ
2
X1

+ a22σ
2
X1

+ 2a1a2Cov (X1, X2) .
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In general:

V ar (Z1) = E [Z1]
2 − µ2

Z1
,

= E
[
Z1Z

T
1

]
− µZ1µ

T
Z1
,

= E
[
¯
aT

¯
X

¯
XT

¯
a
]
−
¯
aT

¯
µX

¯
µT
X¯
a,

=
¯
aT

(
E
[
¯
X

¯
XT

]
− µXµT

X

)
¯
a,

=
¯
aTKXX

¯
a ∈ R.

Proof. (of lemma 1) Let, [
Y1
Y2

]
=

[
1 1
3 2

] [
X1

X2

]
=

[
X1 +X2

3X1 + 2X2

]
.

Y1 = X1+X2 & Y2 = 3X1+2X2 are Gaussian (theorem 5). We can think of Z1 being a component
of

¯
Z = (Z1, Z2, . . . , Zn)

T where,
Z1

Z2

. . .
Zn

 =


a1 a2 · · · an
0 1 . . . 0
...

...
. . .

...
0 0 · · · 1


︸ ︷︷ ︸

A


X1

X2
...

Xn

 =


a1X1 + a2X2 + · · ·+ anXn

X2
...

Xn

 .

We know that A is invertible (full rank) which means that
¯
Z is jointly Gaussian (theorem 5). Thus,

each component of
¯
Z is Gaussian, in particular Z1.

Remark 2. Any linear combination of the components of a jointly Gaussian random vector is a
Gaussian random variable.

5 Overview on Estimation

Recall:

1. Tossing a die X ∈ {0, 1, 2, 3, 4, 5, 6}, we want to estimate X by X̂.

What is the best estimate?

MSE = E[(X − X̂)2].

We want to minimize E[(X − X̂)2]

Take X̂min = E[X]

(check previous notes)

2. Find the Minimum Mean Square Error (MMSE) of X given Y .

X̂MMSE = E[X|Y ].
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3. Linear MMSE (LMMSE)

Here X̂MMSE = aY + b.

min
a,b

E[(X − X̂)2] ⇔ (X − X̂) ⊥ Y .

Recall that we say X is orthogonal to Y (X ⊥ Y ) if and only if E[XY ] = 0.

By the orthogonality principle, we know that if X1 ⊥ X2 ⇒ E[X1, X2] = 0.

Thus, E[(X − X̂)Y ] = 0.

X̂LMMSE =
ρσX
σY

(Y − µY ) + µX ,

Where ρ = Cov(X,Y )
σXσY ) .

So,

X̂LMMSE =
Cov(X,Y )

σ2
Y

(Y − µY ) + µX .

LMMSE = E[(X − X̂LMMSE)
2]

= E(X2)− E(X̂2) = ||X||2 − ||X̂||2.

Recall that E[X2] = ||X||2.

Example 12.

fXY =

{
2e−xe−y if 0 ≤ y ≤ x < ∞,

0 otherwise.

1. Find MMSE and LMMSE of X given Y

X̂MMSE = E[X|Y ] = Y + 1. (Check exam solution for a detailed proof.)

Since X̂MMSE is linear then,

X̂LMMSE = Y + 1.

Straight calculations give µX = 3/2, µy = 1/2, V ar(X) = 5/4, V ar(Y ) = 1/4, and Cov(X,Y ) =
1/4.

2. Find the MMSE & LMMSE of Y given X.

First, we will find the MMSE; but to do this we need to calculate the covariance of X and Y .

Cov(XY ) = E[XY ]− µxµy.

E[XY ] =

∫∫
xy f(x, y)dx dy =

∫ +∞

0

∫ x

0
2xye−xe−ydy dx = 1.

Cov(XY ) = 1− 3/2× 1/2 = 1/4.
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Usually, finding the LMMSE is much easier than finding the MMSE because you simply apply
to formula.

ŶLMMSE =
Cov(XY )

σ2
x

(X − µx) + µy.

ŶLMMSE =
1/4

5/4
(X − 3/2) + 1/2 = X/5− 1/5.

Thus, if you restrict yourself to linear functions of the form aX + b, then the best choices are
a = 1/5 and b = 1/5.

Next, we will find the best MMSE estimator. Recall the definition of the best MMSE estimator.

ŶMMSE = E [Y |X] .

ŶMMSE =

∫
yfY |X (y|x) dy.

ŶMMSE =

∫ x

0
y

e−y

1− e−x
dy =

−e−y(y + 1)

1− e−x

∣∣∣∣ x0 = 1− xe−x

1− e−x
.

As homework, find the error associated with each estimate.

6 The Orthogonality Principle

Theorem 6 (The Orthogonality Principle). The MMSE of X̂ of X given Y, where X̂ = g(Y ), where
g(∗) ∈ Γ and (Γ∗ is all functions, linear functions, constants) , is found when X̂ = minE[(X − g (Y ))2] where

the minimization is over g (∗) ∈ Γ. The MMSE = E[X2] − E[X̂
2
]. In this case, X̂ is unique and

the error is orthogonal to the observation (( X− X̂)⊥Y ). The * indicates there are some technical
conditions on gamma but they are not discussed here.

Proof. Proof is omitted.

Example 13. X = (X1, X2, X3) are jointly Gaussian and, µx = (0, 0, 0),

KXX = RXX =

 1 0.2 0.1
0.2 2 0.3
0.1 0.3 4

 .

Find the LMMSE of X3 Given X1 and X2.
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KY Y =

[
1 0.2
0.2 2

]
,

⇒ K−1
Y Y =

[
1.0204 −0.102
−0.102 0.5102

]
.

Because all µx = 0,

KT
X3Y = [Cov(X3X1) Cov(X3X2)] = [0.1 0.3].

X̂3 LMMSE = [0.1 0.3].

[K−1
Y Y ] = a1X1 + a2X2, a1 = 0.0714, a2 = 0.1429.

Find the MMSE of the X3.

X̂3 MMSE = E[(X3 − X̂)2] = E[X2
3 ]− E[X̂2]

= 4− E[(a1X1 + a2X2)
2]

= 4− a21E[X2
1 ]− a22E[X2

2 ]− 2a1a2E[X1X2]

= 3.95.

7 MMSE Based on Vector Observation

Theorem 7. The Linear Minimum Mean-Square Estimate LMMSE X̂LMMSE of X given an ob-
served random vector

¯
Y = (Y1, . . . , Yn)

T is given by

X̂LMMSE = KT
XY K

−1
Y Y (¯

Y −
¯
µY ) + µX ,

where,

µX = E[X],

¯
µY = (E[Y1], E[Y2], . . . , E[Yn]),

KY Y = E[
¯
Y
¯
Y T ]− µY µ

T
Y ,

and KXY = (Cov[XY1], Cov[XY2], . . . , Cov[XYn])
T ,

where KY Y is the covariance matrix of Y.

And, the MMSE is given by

MMSE = minE[(X − X̂LMMSE)
2]

= E[X2]− E[X̂LMMSE
2
].
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Proof. First, let us assume that µX = 0 and
¯
µY =

¯
0. Then, we can write

X̂LMMSE = a1Y1 + a2Y2 + · · ·+ anYn

=
¯
at
¯
Y.

By the orthogonality principle: (X − X̂LMMSE) ⊥ Yi i = 1, 2, . . . , n ,

E[
¯
at
¯
Y · Yi] = E[XYi] i = 1, 2, . . . , n,

E[(a1Y1 + a2Y2 + · · ·+ anYn)Yi] = E[XYi] i = 1, 2, . . . , n.

So, we get the following n× n linear system with n unknowns, a1, . . . , an:

a1E[Y 2
1 ] + a2E[Y1Y2] + · · ·+ anE[Y1Yn] = E[XY1],

a1E[Y2Y1] + a2E[Y 2
2 ] + · · ·+ anE[Y2Yn] = E[XY2],

...

a1E[YnY1] + a2E[YnY2] + · · ·+ anE[Y 2
n ] = E[XYn].

In matrix form, this can be written as

¯
atRY Y = Rt

XY ,

¯
at = Rt

XY R
−1
Y Y .

Where,

KY Y =


E[Y 2

1 ] E[Y1Y2] . . . E[Y1Yn]
E[Y2Y1] E[Y 2

2 ] . . . E[Y2Yn]
...

...
...

E[YnY1] E[YnY2] . . . E[Y 2
n ]

 ,

and,

KXY
def
=


Cov[XY1]
Cov[XY2]

...
Cov[XYn]

 =


E[XY1]
E[XY2]

...
E[XYn]

 .

So,
X̂LMMSE = KT

XY K
−1
Y Y ¯

Y.

In general, if µX ̸= 0 and
¯
µY ̸=

¯
0,

Apply the same method above to X ′ = X − µX and
¯
Y ′ =

¯
Y −

¯
µY , then we get

X̂LMMSE = KT
XY K

−1
Y Y (¯

Y −
¯
µY ) + µX .

Example 14. Multiple Antenna Receiver

Assume 2 antennas receive signals independently. Y1 = X +N1, Y2 = X +N2,

X ∼ N(0, 2), N1, N2 ∼ N(0, 1). Assume they are all independent.

14



1. Find the LMMSE of X given Y1.

X̂LMMSE =
Cov(XY1)

V (Y1)
Y1.

Cov(XY1) = E[XY1]− E[X]E[Y1] Note that E[X]E[Y1] = 0

= E[X(X +N2)]

= E[X2] + E[XN2] = 2 + 0 = 2.

V (Y1) = V (X) + V (N1) = 2 + 1 = 3.

So that, X̂LMMSE = 2
3Y1

XMMSE = E[X2]− E[X̂2]

= 2− E[(
2

3
Y1)

2]

= 2− 4

9
E[Y 2

1 ] =
2

3
.

2. Find the LMMSE of X given Y1 and Y2.

Usually, we want to find that X̂ = a1Y1 + a2Y2 + C.

In this case, C = 0.

While X − X̂ ⊥ Y1, and X − X̂ ⊥ Y2,

we can obtain,

E[(X − aY1 − a2Y2)Y1] = 0.

E[(X − aY1 − a2Y2)Y2] = 0.

a1E[Y 2
1 ] + a2E[Y1Y2] = E[XY1].

a1E[Y1Y2] + a2E[Y 2
2 ] = E[XY2].

KY1Y2

[
a1
a2

]
= KXY .

Therefore, [
a1
a2

]
= K−1

Y1Y2
KXY =

[
3 2
2 3

]−1 [
2
2

]
.
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And,

MMSE = E[X2]− E[X̂2
LMMSE ]

= 2−E[0.4(Y1 + Y2)
2]

= 0.4 < MMSE with only Y1.
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