
ECE511: Analysis of Random Signals Fall 2016

Chapter 4 : Expectation and Moments

Dr. Salim El Rouayheb Scribe: Serge Kas Hanna, Lu Liu

1 Expected Value of a Random Variable

Definition 1. The expected or average value of a random variable X is defined by,

1. E[X] = µX =
∑

i xiPX(xi), if X is discrete.

2. E[X] =
∫ +∞
−∞ xfX(x)dx, if X is continuous.

Example 1. Let X ∼ Poisson(λ). What is the expected value of X?
The PMF of X is given by,

Pr(X = k) = e−λ
λk

k!
, k = 0, 1, . . . , .

Therefore,

E[X] =

+∞∑
k=0

ke−λ
λk

k!

=
+∞∑
k=1

ke−λ
λk

k!

= λe−λ
+∞∑
k=1

λk−1

(k − 1)!

= λe−λeλ

= λ.

Theorem 1. (Linearity of Expectation)
Let X and Y be any two random variables and let a and b be constants, then,

E[aX + bY ] = aE[X] + bE[Y ].

Example 2. Let X ∼ Binomial(n, p). What is the expected value of X?
The PMF of X is given by,

Pr(X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

Therefore,

E[X] =

n∑
k=0

k

(
n

k

)
pk(1− p)n−k.
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Rather than evaluating this sum, an easier way to calculate E[X] is to express X as the sum of n
independent Bernoulli random variables and apply Theorem 1. In fact,

X = X1 +X2 + . . .+Xn.

Where Xi ∼ Bernoulli(p), for all i = 1, . . . , n. Hence,

E[X] = E[X1 + . . .+Xn].

Xi =

{
1 with probability p,

0 with probability 1− p.
.

Therefore,
E[Xi] = 1× p+ 0× (1− p) = p.

By linearity of expectation (Theorem 1),

E[X] = E[X1] + . . .+ E[Xn]

= np.

Theorem 2. (Expected value of a function of a RV)
Let X be a RV. For a function of a RV, that is, Y = g(X), the expected value of Y can be computed
from,

E[Y ] =

∫ +∞

−∞
g(x)fX(x)dx.

Example 3. Let X ∼ N(µ, σ2) and Y = X2. What is the expected value of Y ?
Rather than calculating the pdf of Y and afterwards computing E[Y ], we apply Theorem 2:

E[Y ] =

∫ +∞

−∞

x2√
2πσ2

e−
(x−µ)2

2σ2 dx

= µ2 + σ2.

2 Conditional Expectations

Definition 2. The conditional expectation of X given that the event B was observed is given by,

1. E[X|B] =
∑

i xiPX|B(xi|B), if X is discrete.

2. E[X|B] =
∫ +∞
−∞ xfX|B(x|B)dx, if X is continuous.

Intuition: Think of E[X|Y = y] as the best estimate (guess) of X given that you observed Y .

Example 4. A fair die is tossed twice. Let X be the number observed after the first toss, and Y
be the number observed after the second toss. Let Z = X + Y .

1. Calculate E[X].

E[X] =
1 + 2 + 3 + 4 + 5 + 6

6
= 3.5.
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2. Calculate E[X|Y = 3].
E[X|Y = 3] = E[X] = 3.5.

3. Calculate E[X|Z = 5].

E[X|Z = 5] =
1 + 2 + 3 + 4

4
= 2.5.

Remark 1. E[X|Z] is a random variable.

Theorem 3. (Towering Property of Conditional Expectation)
Let X and Y be two random variables, then,

E [E[X|Y ]] = E[X].

Example 5. Let X and Y be two zero mean jointly gaussian random variables, that is,

fX,Y (x, y) =
1

2πσ2
√

1− ρ2
exp

[
−x

2 + y2 − 2ρxy

2σ2(1− ρ2)

]
.

Where |ρ| ≤ 1. Calculate E[X|Y = y].

E[X|Y = y] =

∫ +∞

−∞
xfX|Y (x|Y = y)dx.

fX|Y (X|Y = y) =
fX,Y (x, y)

fY (y)

=

1

2πσ2
√

1−ρ2
exp

[
−x2+y2−2ρxy

2σ2(1−ρ2)

]
1√
2πσ2

exp
[
− y2

2σ2

]
=

1√
2πσ2(1− ρ2)

exp

[
−x

2 + y2 − 2ρxy − (1− ρ2)y2

2σ2(1− ρ2)

]
=

1√
2πσ2(1− ρ2)

exp

[
− (x− ρy)2

2σ2(1− ρ2)

]
.

Hence,

E[X|Y = y] =

∫ +∞

−∞

x√
2πσ2(1− ρ2)

exp

[
− (x− ρy)2

2σ2(1− ρ2)

]
dx

= ρy.

Remark 2. If ρ = 0⇒ X and Y are independent,

E[X|Y = y] = E[X] = 0.

Remark 3. For gaussian random variables,

E[X|Y ] = ρY.

E[Y |X] = ρX.

Remark 4. Let X̂ = E[X|Y ]. X̂ is the estimate of X given that Y was observed. The MSE
(mean-square error) of this estimate is given by E[|X̂ −X|2].
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Example 6. A movie, of size N bits, is downloaded through a binary erasure channel. Where
N ∼ Poisson(λ). Let K be the number of received bits.

1− ε

1− ε

ε

ε

0

1

0

1

E

Figure 1: Binary Erasure Channel

1. Calculate E[K].
Intuitively E[K] = λ(1 − ε). Now we will prove it mathematically by conditioning on N as
a first step. For a given number of bits N = n, K is a binomial random variable (K ∼
Binomial(n, 1− ε)). Therefore,

E[K|N = n] = n(1− ε).
E[K|N ] = N(1− ε).

Applying the towering property of conditional expectation,

E[K] = E [E[K|N ]]

= E[N(1− ε)]
= (1− ε)E[N ]

= λ(1− ε).

2. Calculate E[N |K].
Intuitively E[N |K] = k + λε. Now we will prove it mathematically,

E[N |K = k] =

+∞∑
n=0

nPr(N |K = k).

P r(N |K = k) =
Pr(N = n,K = k)

Pr(K = k)

=
Pr(N = n)Pr(K = k|N = n)

Pr(K = k)
.

P r(N = n) =
λne−λ

n!
.

P r(K = k|N = n) =

(
n

k

)
(1− ε)kεn−k.

P r(K = k) =
+∞∑
n=k

Pr(N = n)Pr(K = k|N = n)

=
+∞∑
n=k

e−λλn

n!

(
n

k

)
(1− ε)kεn−k.
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Pr(N = n|K = k) =

e−λλn

n!
n!

k!(n−k)!(1− ε)
kεn−k∑+∞

n=k
e−λλn

n!
n!

k!(n−k)!(1− ε)kεn−k

=

λnεn

(n−k)!

λε
∑+∞

n=k
(λε)n−k

(n−k)!

=
(λε)n

(n− k)!

1

(λε)keλε

=
(λε)n−ke−λε

(n− k)!
.

Therefore,

E[N |K = k] =

+∞∑
n=k

n
(λε)n−ke−λε

(n− k)!

=
+∞∑
n=k

(n− k + k)
(λε)n−ke−λε

(n− k)!

=

+∞∑
n=k

(n− k)(λε)n−ke−λε

(n− k)!︸ ︷︷ ︸
λε

+k

+∞∑
n=k

(λε)n−ke−λε

(n− k)!︸ ︷︷ ︸
1

= k + λε.

3 Moments of Random Variables

Definition 3. The rth moment, r = 0, 1, . . . , of a RV X is defined by,

1. E[Xr] = mr =
∑

i x
r
iPX(xi), if X is discrete.

2. E[Xr] = mr =
∫ +∞
−∞ xrfX(x)dx, if X is continuous.

Remark 5. Note that m0 = 1 for any X, and m1 = E[X] = µ (the mean).

Definition 4. The rth central moment, r = 0, 1, . . . , of a RV X is defined as,

1. E[(X − µ)r] = cr =
∑

i(xi − µ)rPX(xi), if X is discrete.

2. E[(X − µ)r] = cr =
∫ +∞
−∞ (x− µ)rfX(x)dx, if X is continuous.

Remark 6. Note that for any RV X,

1. c0 = 1.

2. c1 = E[X − µ] = E[X]− µ = µ− µ = 0.
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3. c2 = E[(X − µ)2] = σ2 = V ar[X] (the variance). In fact,

σ2 = E[(X − µ)2] = E[X2]− µ2.

σ is called the standard deviation.

Example 7. Let X ∼ Binomial(n, p). What is the variance of X?
The PMF of X is given by,

Pr(X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

E[X] = np (from Example 2). Therefore,

σ2 = E[X2]− E[X]2 =
n∑
k=0

k2
(
n

k

)
pk(1− p)n−k − n2p2.

Check the textbook for the calculation of this sum. Here we will calculate σ2 using the same idea of
Example 2, i.e. expressing X as the sum of n independent Bernoulli random variables. In fact,

X = X1 +X2 + . . .+Xn.

Where Xi ∼ Bernoulli(p), for all i = 1, . . . , n. Hence,

E[X2] = E
[
(X1 + . . .+Xn)2

]
= E[X2

1 + . . .+X2
n +

∑
i

∑
j
j 6=i

XiXj ]

= nE[X2
i ] + n(n− 1)E[XiXj ]

= nE[X2
i ] + n(n− 1)E[Xi][Xj ].

Where,

E[Xi] = p.

E[X2
i ] = 12 × p+ 02 × (1− p) = p.

Hence,
E[X2] = np+ n(n− 1)p2 = n2p2 − np2 + np.

Therefore,

σ2 = E[X2]− E[X]2

= n2p2 − np2 + np− n2p2

= np(1− p).

Example 8. Let X ∼ Geometric(p). What is the variance of X?
The PMF of X is given by,

Pr(X = k) = (1− p)k−1p, k = 1, 2, . . .

The variance of X is given by,
σ2 = E[X2]− E[X]2.
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E[X] =
+∞∑
k=1

k(1− p)k−1p.

E[X2] =

+∞∑
k=1

k2(1− p)k−1p.

To calculate these sums we use the following facts, for |x| < 1,

+∞∑
i=0

xi =
1

1− x

Deriving both sides with respect to x,

+∞∑
i=1

ixi−1 =
1

(1− x)2

Deriving both sides with respect to x,

+∞∑
i=2

i(i− 1)xi−2 =
2

(1− x)3

Hence,

+∞∑
i=2

i2xi−2 −
+∞∑
i=2

ixi−2 =
2

(1− x)3

+∞∑
i=2

i2xi−2 =

+∞∑
i=2

ixi−2 +
2

(1− x)3

+∞∑
i=1

(i+ 1)2xi−1 =
+∞∑
i=1

(i+ 1)xi−1 +
2

(1− x)3

+∞∑
i=1

i2xi−1 =
2

(1− x)3
−

+∞∑
i=1

ixi−1

=
2

(1− x)3
− 1

(1− x)2
.

Hence,
+∞∑
i=1

i2xi−1 =
1 + x

(1− x)3
.

Therefore,

E[X] =
p

(1− (1− p))2
=

1

p
.

E[X2] =
p (1 + (1− p))
(1− (1− p))3

=
2− p
p2

.
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Therefore,

σ2 = E[X2]− E[X]2

=
2− p
p2
− 1

p2

=
1− p
p2

.

Definition 5. The covariance of two random variables X and Y is defined by,

cov(X,Y ) = E [(X − µX)(Y − µY )] = E[XY ]− µXµY .

Definition 6. The correlation coefficient of two random variables X and Y is defined by,

ρX,Y =
cov(X,Y )

σXσY
.

If ρX,Y = 0, then cov(X,Y ) = 0 and X and Y are said to be uncorrelated.

Lemma 1. If X and Y are independent ⇒ X and Y are uncorrelated.

Remark 7. There could be two RVs which are uncorrelated but dependent.

Example 9. (discrete case: uncorrelated ; independent)
Consider two random variables X and Y with joint PMF PX,Y (xi, yj) as shown.

Figure 2: Values of PX,Y (xi, yj).

µX = −1× 1

3
+ 0× 1

3
+ 1× 1

3
= 0.

µY = 0× 1

3
+ 1× 2

3
=

2

3
.

XY =


−1 with probability 1/3,

0 with probability 1/3,

1 with probability 1/3.

Hence,

E[XY ] = −1× 1

3
+ 0× 1

3
+ 1× 1

3
= 0.

Therefore,

ρX,Y =
cov(X,Y )

σXσY
=
E[XY ]− µXµY

σXσY
=

0

σXσY
= 0⇒ X and Y are uncorrelated.

However, X and Y are dependent. For example P (X = −1|Y = 0) = 0 6= P (X = −1) = 1/3.
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Example 10. (continuous case: uncorrelated ; independent)
Consider a RV Θ uniformly distributed on [0, 2π]. Let X = cos Θ and Y = sin Θ.
X and Y are obviously dependent, in fact,

X2 + Y 2 = 1.

E[X] = E[cos Θ] =
1

2π

∫ 2π

0
cos θdθ = 0.

E[Y ] = E[sin Θ] =
1

2π

∫ 2π

0
sin θdθ = 0.

E[XY ] = E[sin Θ cos Θ] =
1

2π

∫ 2π

0
sin θ cos θdθ =

1

4π

∫ 2π

0
sin 2θdθ = 0.

Hence,
ρX,Y = cov(X,Y ) = 0.

Therefore, X and Y are uncorrelated although they are dependent.

Theorem 4. Given two random variables X and Y , |ρX,Y | ≤ 1.

Proof. We will prove this theorem using the Cauchy-Schwarz inequality by showing that,

|cov(X,Y )| ≤ σXσY .

u

vθ

< u, v >= ||u||.||v|| cos θ ⇒ |< u, v >| ≤ ||u||.||v|| .

Using the same idea on random variables, let Z = Y − aX where a ∈ R. Assume that X and Y
have zero mean. Consider the following 2 cases:

1. Z 6= 0 for all a ∈ R. Hence,
E[Z2] = E

[
(Y − aX)2

]
> 0.

Where,

E
[
(Y − aX)2

]
= E[Y 2 − 2aXY + a2X2] = E[X2]a2 − 2E[XY ]a+ E[Y 2].

Since E[Z2] > 0 and a2 ≥ 0,

∆ = 4E[XY ]2 − 4E[X2]E[Y 2] < 0.

Hence,

E[XY ]2 < E[X2]E[Y 2] = σ2Xσ
2
Y ,

|E[XY ]| < σXσY .

Therefore,
|cov(X,Y )| < σXσY .
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2. There exists a0 ∈ R such that Z = Y − a0X = 0.
Y = a0X, hence,

E[XY ] = E[a0X
2]

= a0E[X2]

= a0σ
2
X .

V ar[Y ] = V ar[a0X]

= a20V ar[X]

= a20σ
2
X

= σ2Y .

Therefore,
E[XY ] = a0σXσX = σXσY .

Therefore there is equality in this case,

|cov(X,Y )| = σXσY .

Combining the results of the 2 cases,

|cov(X,Y )| ≤ σXσY .

And therefore,
|ρX,Y | ≤ 1.

Lemma 2. V ar[X + Y ] = V ar[X] + V ar[Y ] + 2cov(X,Y ).

Proof.

V ar[X + Y ] = E[(X + Y )2]− E[(X + Y )]2

= E[(X + Y )2]− (E[X] + E[Y ])2

= E[X2] + 2E[XY ] + E[Y 2]− E[X]2 − 2E[X]E[Y ]− E[Y ]2

= V ar[X] + V ar[Y ] + 2cov(X,Y ).

Lemma 3. If X and Y are uncorrelated, then V ar[X + Y ] = V ar[X] + V ar[Y ].

Proof. X and Y are correlated =⇒ cov(X,Y ) = 0. Result then follows for Lemma 2.
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4 Estimation

An application for the previously mentioned definitions and theorems is estimation. Suppose we
wish to estimate the a values of a RV Y by observing the values of another random variable X.
This estimate is represented by Ŷ and the estimation error is given by ε = Ŷ − Y . A popular
approach for determining Ŷ the estimate of Y given X, is by minimizing the MSE (mean squared
error):

MSE = E[ε2] = E[(Ŷ − Y )2].

Theorem 5. The MMSE (minimum mean squared estimate) of Y given X is ŶMMSE = E[Y |X].

In other words, the theorem states that ŶMMSE = E[Y |X] minimizes the MSE.
Sometimes E[Y |X] is difficult to find and a linear MMSE is used instead, i.e. ŶLMMSE = αX + β.

Proof. (sketch) Assume WLOG that random variables X and Y are zero mean. Denote by Ŷ the

ε

Y

X
Ŷ

estimate of Y given X. In order to minimize E[ε2] = ||ε||2 = E[||Y − Ŷ ||2], the error ε should be
orthogonal to the observation X as shown in the figure above. ε ⊥ X, therefore,

E[(Ŷ − Y )X] = 0.

E[(Y − αX)X] = 0,

E[XY ]− αE[X2] = 0.

Hence,

α =
E[XY ]

E[X2]
=
cov(X,Y )

σ2X
=
σY ρX,Y
σX

.

Therefore,

ŶLMMSE =
σY ρX,Y
σX

X.

The result above is for any two zero mean random variables. The general result, i.e. when µX , µY 6=
0, can be obtained by the same reasoning and is given by,

Theorem 6. The LMMSE (linear minimum mean squared estimate) of Y given X that minimize
the MSE is given by

ŶLMMSE =
σY ρX,Y
σX

(X − µX) + µY .

Remark: (orthogonality principle) Let Ŷ be the estimate of Y given X, and ε the estimation error.
Then Ŷ that minimizes the MSE= E[||ε||2] = E[||Y − Ŷ ||2] is given by Ŷ ⊥ ε i.e. Y ⊥ (Y − Ŷ ).
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Example 11. Suppose that in a room the temperature is given by a RV Y ∼ N(µ, σ2). A sensor
in this room observes X = Y + W , where W is the additive noise given by N(0, σ2W ). Assume Y
and W are independent.

1. Find the MMSE of Y given X.
ŶMMSE = E[Y |X].

fY |X(Y |X = x) =
fX,Y (x, y)

fX(x)
=
fY (y)fX|Y (x, y)

fX(x)
.

Since X is the sum of two independent gaussian RVs Y and W , we know from homework 3
that,

X ∼ N(µ, σ2 + σ2W ).

Furthermore,

E[X|Y = y] = E[Y +W |Y = y] = y + E[W ] = y.

V ar[X|Y = y] = E[X2|Y = y]− E[X|Y = y]2

= E[Y 2 + 2YW +W 2|Y = y]− y2

= E[Y 2|Y = y] + 2E[YW |Y = y] + E[W 2|Y = y]− y2

= y2 + 0 + σ2W − y2

= σ2W .

Therefore,

fX|Y (X|Y = y) =
1√

2πσ2W

exp

[
−(x− y)2

2σ2W

]
.

Therefore,

fY |X(Y |X = x) =
1√

2π
σ2σ2

W

σ2+σ2
W

exp

[
−(y − µ)2

2σ2
− (x− y)2

2σ2W
+

(x− µ)2

2(σ2 + σ2W )

]

=
1√

2πσ′2
exp

[
−(y − µ′)2

2σ′2

]
.

Where,

σ′2 =
σ2σ2W
σ2 + σ2W

.

We are interested in,
ŶMMSE = E[Y |X] = µ′.
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To determine µ′ take y = 0:

−µ′2

2
σ2σ2

W

σ2+σ2
W

=
−µ2

2σ2
− x2

2σ2W
+

(x− µ)2

2(σ2 + σ2W )

µ′2 =
σ2Wµ

2

σ2 + σ2W
+

σ2x2

σ2 + σ2W
−
σ2σ2W (x− µ)2

(σ2 + σ2W )2

=
σ4x2 + 2µσ2σ2Wx+ σ4Wµ

2

(σ2 + σ2W )2

=

(
σ2x+ σ2Wµ

σ2 + σ2W

)2

.

Therefore,

ŶMMSE = E[Y |X] = µ′ =
σ2

σ2 + σ2W
X +

σ2Wµ

σ2 + σ2W
.

2. Find the linear MMSE of Y given X.

cov(X,Y ) = E[XY ]− E[X]E[Y ]

= E[(Y +W )Y ]− E[Y +W ]E[Y ]

= E[Y 2] + E[YW ]− µ2

= σ2 + µ2 + 0− µ2

= σ2.

Hence,

ρX,Y =
σ2

σ
√
σ2 + σ2W

=
σ√

σ2 + σ2W

.

Applying the general formula of LMMSE,

ŶLMMSE =
σY ρX,Y
σX

(X − µX) + µY

=
σ2√

σ2 + σ2W

√
σ2 + σ2W

(X − µ) + µ

=
σ2

σ2 + σ2W
X +

σ2Wµ

σ2 + σ2W
.

Notice that ŶLMMSE = ŶMMSE, in fact this is always the case for jointly gaussian random
variables X and Y .
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3. Find the MSE.

E[ε2] = E[(Ŷ − Y )2]

= |E[ε(Ŷ − Y )]|

= |��
��*

0
E[εŶ ] − E[εY ]|

= |E[εY ]|
= |E[Ŷ Y ]− E[Y 2]|

= |E
[

σ2

σ2 + σ2W
XY +

σ2Wµ

σ2 + σ2W
Y

]
− σ2 − µ2|

= |σ
2(σ2 + µ2)

σ2 + σ2W
+

σ2Wµ
2

σ2 + σ2W
− σ2 − µ2|

=
σ2σ2W
σ2 + σ2W

.
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5 Jointly Gaussian Random Variables

Definition 7. Two random variable X and Y are jointly gaussian if,

fX,Y (x, y) =
1

2πσXσY
√

1− ρ2
exp

[
−1

2(1− ρ2)

(
(x− µX)2

σ2X
+

(y − µY )2

σ2Y
− 2ρ(x− µX)(y − µY )

σXσY

)]
.

Properties:

1. If X and Y are jointly gaussian random variables,

fX(x) =

∫ +∞

−∞
fX,Y (x, y)dy =

1√
2πσ2X

e
− (x−µX )2

2σ2
X .

fY (y) =

∫ +∞

−∞
fX,Y (x, y)dx =

1√
2πσ2Y

e
− (y−µy)2

2σ2
Y .

2. If X and Y are jointly gaussian uncorrelated random variables ⇒ X and Y are independent.

3. If X and Y are jointly gaussian random variables then any linear combination Z = aX + bY
is a gaussian random variable.

Figure 3: Two-variable joint gaussian distribution (from Wikipedia).
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6 Bounds

Theorem 7. (Chebyshev’s Bound)
Let X be an arbitrary random variable with mean µ and finite variance σ2. Then for any δ > 0,

Pr(|X − µ| ≥ δ) ≤ σ2

δ2
.

Proof.

σ2 =

∫ +∞

−∞
(x−µ)2fX(x)dx ≥

∫
|x−µ|≥δ

(x−µ)2fX(x)dx ≥ δ2
∫
|x−µ|≥δ

fX(x)dx = δ2Pr(|X−µ| ≥ δ).

Corollary 1.

Pr(|X − µ| < δ) ≥ 1− σ2

δ2
.

Corollary 2.

Pr(|X − µ| ≥ kδ) ≤ 1

k2
.

Example 12. A fair coin is flipped n times, let X be the number of heads observed.
Determine a bound for Pr(X ≥ 75% n) .

E[X] = np =
n

2
.

V [X] = np(1− p) =
n

4
.

By applying Chebyshev’s inequality,

Pr(X ≥ 3

4
n) = Pr(X − n

2
≥ n

4
) =

1

2
Pr(|X − n

2
| ≥ n

4
) ≤ 1

2

n/4

n2/42
=

2

n
.

Theorem 8. (Markov Inequality)
Consider a RV X for which fX(x) = 0 for x < 0. Then X is called a nonnegative RV and the
Markov inequality applies:

Pr(X ≥ δ) ≤ E[X]

δ
.

Proof.

E[X] =

∫ +∞

0
xfX(x)dx ≥

∫ +∞

δ
xfX(x)dx ≥ δ

∫ +∞

δ
xfX(x)dx = δPr(X ≥ δ).

Example 13. Same setting as Example 12. According to Markov inequality,

Pr(X ≥ 3

4
n) ≤ n/2

3n/4
=

2

3
.

which is not dependent on n. The bound from Chebyshev’s inequality is much tighter.
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Theorem 9. (Law of Large Numbers)
Let X1, X2, . . . , Xn be n iid RVs with mean µ and variance σ2. Consider the sample mean:

µ̂ =
1

n

n∑
i=1

Xi.

lim
n→+∞

Pr(|µ̂− µ| ≥ δ) = 0 ∀δ > 0.

We say,

µ̂
in probability−−−−−−−−→ µ.

Proof.

E[µ̂] = E[
1

n

n∑
i=1

Xi] =
1

n

n∑
i=1

E[Xi] = E[Xi] = µ.

Since Xi’s are iid,

V [µ̂] = V [
1

n

n∑
i=1

Xi] =
1

n2

n∑
i=1

V [Xi] =
1

n
V [Xi] =

σ2

n
.

Applying Chebyshev’s inequality,

Pr(|µ̂− µ| ≥ δ) ≤ σ2

nδ2
→ 0 as n→ +∞ for δ ≤ 1√

n
.

7 Moment Generating Functions (MGF)

Definition 8. The moment-generating function (MGF), if it exists, of an RV X is defined by

M(t)
4
= E[etX ] =

∫ ∞
−∞

etxfX(x)dx,

where t is a complex variable.

For discrete RVs, we can define M(t) using the PMF as

M(t) = E[etX ] =
∑
i

etxiPX(xi).

Example: Let X ∼ Poisson(λ), P (X = k) = e−λ λ
k

k! , k = 0, 1, 2, . . . .

1. Find Mx(t).

MX(t) = E(etλ) =

∞∑
k=0

etkP (X = k)

MX(t) =

∞∑
k=0

etke−λ
λk

k!
= e−λ

∞∑
k=0

(λet)k

k!

MX(t) = e−λeλe
t
.

17



2. Find E(X) from Mx(t).

E(X) =
∂MX(t)

∂t
|t=0= λeteλ(e

t−1) |t=0= λ.

Example: Let X ∼ N(µ, σ2), find Mx(t).

MX(t) =

∫ ∞
−∞

ext
1√
2πσ

e−
(x−µ)2

2σ2 dx

= · · · = eµt+
σ2t2

2

Lemma 4. If M(t) exists, moments mk = E[Xk] can be obtained by

mk =M(k)(0) =
dk

dtk
(M(t))

∣∣∣∣
t=0

, k = 0, 1, . . . .

Proof.

MX(t) = E[etX ] = E

[
1 + tX +

(tX)2

2!
+ · · ·+ (tX)n

n!
+ . . .

]
= 1 + E[X] +

t2

2!
E[X2] + · · ·+ tn

n!
E[Xn] + . . .

mk = E[Xk] =
dk

dtk
(M(t))

∣∣∣∣
t=0

8 Chernoff Bound

In this section, we introduce the Chernoff bound. Recall that to use Markov’s inequality X must
be positive.

Theorem 10. (Chernoff’s bound) For any RV X,

P (X ≥ a) ≤ e−atMX(t) ∀ t > 0.

In particular,
P (X ≥ a) ≤ min

t
e−atMX(t).

Proof. Apply Markov on Y = etX , but first recall that P (X ≥ a) = P (etX ≥ eta) = P (Y ≥ eta),
by Markov we get

P (Y ≥ eta) ≤ E(Y )

eta
= e−taE(Y )

P (X ≥ a) ≤ e−taMX(t)

18



Example: Consider X ∼ N(µ, σ) and try to bound P (X ≥ a) using Chernoff bound, this is an
artificial example because we know the distribution of X.

From last lecture MX(t) = eµt+
σ2t2

2 hence

P (X) ≤ min
t
e−ateµt+

σ2t2

2 = min
t
e(µ−a)t+

σ2t2

2

Remark: You can check at home how the parameter t can affect the outer bound. For example
pick µ = 0, σ = 1 and change t; for t = 0 you will get the trivial bound P ≤ 1 and for t→∞ you
will get P ≤ ∞. See how it varies.

min
t
e(µ−a)t+

σ2t2

2 ⇒ ∂f(t)

∂t
= 0

⇒ (σ2t+ µ− a)e = 0

⇒ t∗ =
a− µ
σ2

Which gives us the following:

P (X ≥ a) ≤ e(µ−a)t∗+
σ2t∗

2

P (X ≥ a) ≤ e
−(a−µ)(µ−a)

σ2
+
σ2(a−µ)2

2σ4

P (X ≥ a) ≤ e
−(a−µ)2

2σ2

We can compare this result with the reality where we know that P (X ≥ a) =
∫∞
a

1√
2πσ

e
−(x−µ)2

2σ2 dx.

9 Characteristic Function

In this section, we define a characteristic function and give some examples. The characteristic
function of a RV is similar to a Fourrier transform of a function without the ’-’.

Definition 9. X is a RV,

ΦX(w) = E(ejwX) =

∫ +∞

−∞
fX(x)ejwxdx, (1)

is called the characteristic function of X where j is the complex number j2 = −1.

Example: Find the characteristic function of X ∼ exp(λ). Recall that for λ ≥ 0

fX(x) =

{
λe−λx if x ≥ 0

0 otherwise
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Then

ΦX(w) =

∫ ∞
0

λe−λxejwxdx

= λ

∫ ∞
0

e(jw−λ)xdx

=
λ

jw − λ
[
e(jw−λ)x

]∞
0

Since λ ≥ 0 and jw is a unit quantity ⇒ (jw − λ) ≤ 0 therefore limx→∞ e
(jw−λ)x = 0. Which

results in

ΦX(w) =
λ

jw − λ
(0− 1)

ΦX(w) =
λ

λ− jw

Lemma 5. If ΦX(w) exists, moments mn = E[Xn] can be obtained by

mn =
1

jn
Φ
(n)
X (0)

where

Φ
(n)
X (0) =

dn

dwn
Φ
(w)
X

∣∣∣∣
w=0

.

Proof.

ΦX(w) = E[ejwX ]

=

∞∑
n=0

(jw)n

n!
mn

mn =
1

jn

(
dn

dwn
Φ
(w)
X

∣∣∣∣
w=0

)
.

Lemma 6. if X,Y are two independent RV and Z = X + Y then ΦZ(w) = ΦX(w)ΦY (w) and
MZ(t) =MX(t)MY (t)

Remark: To find the distribution of Z = X + Y it could be easier to find ΦX(w), ΦY (w),
multiply them and then invert the from “Fourrier” domain by integrating or by using tables of
Fourrier inverse.

Example: Consider the example of problem 9 of homework 3:
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Question: Let X1 and X2 be two independent RV such that X1 ∼ N(µ1, σ1) and X2 ∼ N(µ2, σ2)
and let X = aX1 + bX2. Find the distribution of X.

Answer: Let X ′1 = aX1, X
′
2 = bX2 it is clear that X ′1 ∼ N(aµ1, aσ1) and X ′2 ∼ N(bµ2, bσ2) and

that ΦX(w) = ΦX′1
(w)ΦX′2

(w).

ΦX′1
(w) = . . . = eaµ1jw−

a2σ21w
2

2

ΦX(w) = eaµ1jw−
a2σ21w

2

2 ebµ2jw−
b2σ22w

2

2

ΦX(w) = ej(aµ1+bµ2)w−(a
2σ2

1+b
2σ2

2)
w2

2

Which implies that X ∼ N(aµ1 + bµ2,
√
a2σ21 + b2σ22).

Fact 1. A linear combination of two independent Gaussian RV is a Gaussian RV.

10 Central Limit Theorem

In this section we state the central limit theorem and give a rigourous proof.

Theorem 11. Let X1, X2, . . . , Xn be n independent RVs with µXi = 0 and V (Xi) = 1 ∀i then

Zn =
X1 +X2 + · · ·+Xn√

n
→

n→∞
N(0, 1)

In other words

lim
n→∞

P (Z ≤ z) =
1√
2π

∫ z

−∞
e−

x2

2 dx

This is for example a way to convert flipping a coin n times to a Gaussian RV (fig. 4,fig. 5).

Xi =

{
0 if a tail is observed with p = 1

2

1 if a head is observed with 1− p = 1
2

And set Sn =
∑n
i=0Xi√
n

, notice that Sn ∈ {0, 1, . . . , n√
n
} and according to CLT Sn ∼

n→∞
N(0, 1).

CLT: says that no matter how far you are from the mean, the probability of X = x being outside
|x− µ| ≤

√
n decreases exponentially with n.

Remark: The RVs Xi have to be independent because if for example Xi = X1 for i ∈ {2, 3, . . . , n}
then

Sn = nXi =

{√
n if X1 = 1

0 if X1 = 0

which does not converge to a Gaussian distribution when n→∞.
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Figure 4: This is Sn
n

as a function of n, we can clearly see that when n grows Sn
n

goes
to 0.5 for the equation of the example below for n goes to 100. Refer to section 6 for
detailed code.

Proof. (of theorem 11)

lim
n→∞

ΦZn(w) = e−
w2

2 ⇒ fZ(z) =
1√
2π
e−

x2

2

where this form of ΦZn(w) is the characteristic function of a N(0, 1) RV.

Zn =
X1√
n︸︷︷︸

W1

+
X2√
n︸︷︷︸

W2

+ · · ·+ Xn√
n︸︷︷︸

Wn

ΦZn(w) = ΦW1(w)ΦW2(w)ΦW3(w) . . .ΦWn(w) = [ΦW1(w)]n

ΦW1(w) = E(ewjW1) = E(e
jwX1√

n ) = ΦX1(
w√
n

)
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Figure 5: This is Sn
n

as a function of n, we can clearly see that when n grows Sn
n

goes
to 0.5 for the equation of the example below for n goes to 300. Refer to section 6 for
detailed code.

Taylor expansion: Using the Taylor expansion of ΦW1(w) around 0 we get,

ΦW1(w) = ΦW1(0) + Φ′W1
(0) +

Φ′′W1
(0)

2!
+ . . .

.

1. Find the value of ΦW1(0).

ΦW1(0) = E(e
jwX√
n ) |w=0

=

∫ +∞

−∞
e
j0X√
n fX(x)dx

=

∫ +∞

−∞
fX(x)dx

= 1

23



2. Find the value of Φ′W1
(0).

Φ′W1
(0) =

∫ +∞

−∞

jx√
n
e
j0X√
n fX(x)dx

=
j√
n

∫ +∞

−∞
xfX(x)dx

=
j√
n
E(X1)

= 0

3. Find the value of Φ′′W1
(0).

Φ′′W1
(0) =

d2ΦW1(w)

dw2

=

∫ +∞

−∞
(
jx√
n

)2e
j0X√
n fX(x)dx

=
−1

n

∫ +∞

−∞
x2fX(x)dx

=
−1

n
(V (X)︸ ︷︷ ︸

1

+E2(X)︸ ︷︷ ︸
0

)

=
−1

n

Hence, using these results and Taylor’s expansion, ΦW1(w) = 1− w2

2n . Therefore ΦZn(w) = [1− w2

2n ]n.
Recall that log (1− ε) ' −ε, then

log ΦZn = n log (1− w2

2n
)

log ΦZn ' n(−w
2

2n
)

log ΦZn ' −
w2

2

ΦZn = e−
w2

2

11 MATLAB Code generating the figures

In this section we give the MATLAB code used to generate fig. 4 and fig 5.
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A=[];B=[]; % generate two empty vectors
for i=1:100 % in this loop i stands for the number of times the coin is flipped

A=[A,binornd(i,0.5)/i]; % at each iteration generate a binomial random number with
end % parameters n=i, p=0.5 and divide it by n to have (S n)/n
for n=1:300
B=[B,binornd(n,0.5)/n]; % same as previous but repeat it 300 times
end

x1=[1:i];x2=[1:n]; % x1 and x2 are used to represent n in each figure

figure(1)
plot(x1,A);
hold on
plot(x1,0.5,'r','linewidth',2);
xlabel('n');
ylabel('S n/n');

figure(2)
plot(x2,B);
hold on
plot(x2,0.5,'r','linewidth',2);
xlabel('n');
ylabel('S n/n');
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