Chapter 4 : Expectation and Moments

Dr. Salim El Rouayheb

1 Expected Value of a Random Variable

Definition 1. The expected or average value of a random variable X is defined by,

- 1. $E[X] = \mu_X = \sum_i x_i P_X(x_i)$, if X is discrete.
- 2. $E[X] = \int_{-\infty}^{+\infty} x f_X(x) dx$, if X is continuous.

Example 1. Let $X \sim Poisson(\lambda)$. What is the expected value of X? The PMF of X is given by,

$$Pr(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, \dots, .$$

Therefore,

$$E[X] = \sum_{k=0}^{+\infty} k e^{-\lambda} \frac{\lambda^k}{k!}$$
$$= \sum_{k=1}^{+\infty} k e^{-\lambda} \frac{\lambda^k}{k!}$$
$$= \lambda e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^{k-1}}{(k-1)!}$$
$$= \lambda e^{-\lambda} e^{\lambda}$$
$$= \lambda.$$

Theorem 1. (Linearity of Expectation) Let X and Y be any two random variables and let a and b be constants, then,

$$E[aX + bY] = aE[X] + bE[Y].$$

Example 2. Let $X \sim Binomial(n, p)$. What is the expected value of X? The PMF of X is given by,

$$Pr(X = k) = {n \choose k} p^k (1 - p)^{n-k}, \ k = 0, 1, \dots, n.$$

Therefore,

$$E[X] = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}.$$

Fall 2016

Rather than evaluating this sum, an easier way to calculate E[X] is to express X as the sum of n independent Bernoulli random variables and apply Theorem 1. In fact,

$$X = X_1 + X_2 + \ldots + X_n$$

Where $X_i \sim Bernoulli(p)$, for all i = 1, ..., n. Hence,

$$E[X] = E[X_1 + \ldots + X_n].$$
$$X_i = \begin{cases} 1 & \text{with probability } p, \\ 0 & \text{with probability } 1 - p. \end{cases}$$

Therefore,

$$E[X_i] = 1 \times p + 0 \times (1 - p) = p.$$

By linearity of expectation (Theorem 1),

$$E[X] = E[X_1] + \ldots + E[X_n]$$

= np.

Theorem 2. (Expected value of a function of a RV) Let X be a RV. For a function of a RV, that is, Y = g(X), the expected value of Y can be computed from,

$$E[Y] = \int_{-\infty}^{+\infty} g(x) f_X(x) dx.$$

Example 3. Let $X \sim N(\mu, \sigma^2)$ and $Y = X^2$. What is the expected value of Y? Rather than calculating the pdf of Y and afterwards computing E[Y], we apply Theorem 2:

$$E[Y] = \int_{-\infty}^{+\infty} \frac{x^2}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
$$= \mu^2 + \sigma^2.$$

2 Conditional Expectations

Definition 2. The conditional expectation of X given that the event B was observed is given by,

- 1. $E[X|B] = \sum_i x_i P_{X|B}(x_i|B)$, if X is discrete.
- 2. $E[X|B] = \int_{-\infty}^{+\infty} x f_{X|B}(x|B) dx$, if X is continuous.

Intuition: Think of E[X|Y = y] as the best estimate (guess) of X given that you observed Y.

Example 4. A fair die is tossed twice. Let X be the number observed after the first toss, and Y be the number observed after the second toss. Let Z = X + Y.

1. Calculate E[X].

$$E[X] = \frac{1+2+3+4+5+6}{6} = 3.5.$$

2. Calculate E[X|Y=3].

$$E[X|Y=3] = E[X] = 3.5.$$

3. Calculate E[X|Z=5].

$$E[X|Z=5] = \frac{1+2+3+4}{4} = 2.5.$$

Remark 1. E[X|Z] is a random variable.

Theorem 3. (Towering Property of Conditional Expectation) Let X and Y be two random variables, then,

$$E\left[E[X|Y]\right] = E[X].$$

Example 5. Let X and Y be two zero mean jointly gaussian random variables, that is,

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma^2\sqrt{1-\rho^2}} \exp\left[-\frac{x^2+y^2-2\rho xy}{2\sigma^2(1-\rho^2)}\right]$$

Where $|\rho| \leq 1$. Calculate E[X|Y = y].

$$\begin{split} E[X|Y=y] &= \int_{-\infty}^{+\infty} x f_{X|Y}(x|Y=y) dx. \\ f_{X|Y}(X|Y=y) &= \frac{f_{X,Y}(x,y)}{f_Y(y)} \\ &= \frac{\frac{1}{2\pi\sigma^2\sqrt{1-\rho^2}} \exp\left[-\frac{x^2+y^2-2\rho xy}{2\sigma^2(1-\rho^2)}\right]}{\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{y^2}{2\sigma^2}\right]} \\ &= \frac{1}{\sqrt{2\pi\sigma^2(1-\rho^2)}} \exp\left[-\frac{x^2+y^2-2\rho xy-(1-\rho^2)y^2}{2\sigma^2(1-\rho^2)}\right] \\ &= \frac{1}{\sqrt{2\pi\sigma^2(1-\rho^2)}} \exp\left[-\frac{(x-\rho y)^2}{2\sigma^2(1-\rho^2)}\right]. \end{split}$$

Hence,

$$E[X|Y = y] = \int_{-\infty}^{+\infty} \frac{x}{\sqrt{2\pi\sigma^2(1-\rho^2)}} \exp\left[-\frac{(x-\rho y)^2}{2\sigma^2(1-\rho^2)}\right] dx$$

= ρy .

Remark 2. If $\rho = 0 \Rightarrow X$ and Y are independent,

$$E[X|Y=y] = E[X] = 0.$$

Remark 3. For gaussian random variables,

$$E[X|Y] = \rho Y.$$

$$E[Y|X] = \rho X.$$

Remark 4. Let $\hat{X} = E[X|Y]$. \hat{X} is the estimate of X given that Y was observed. The MSE (mean-square error) of this estimate is given by $E[|\hat{X} - X|^2]$.

Example 6. A movie, of size N bits, is downloaded through a binary erasure channel. Where $N \sim Poisson(\lambda)$. Let K be the number of received bits.

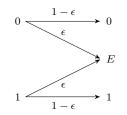


Figure 1: Binary Erasure Channel

1. Calculate E[K].

Intuitively $E[K] = \lambda(1 - \epsilon)$. Now we will prove it mathematically by conditioning on N as a first step. For a given number of bits N = n, K is a binomial random variable $(K \sim Binomial(n, 1 - \epsilon))$. Therefore,

$$E[K|N = n] = n(1 - \epsilon).$$
$$E[K|N] = N(1 - \epsilon).$$

Applying the towering property of conditional expectation,

$$E[K] = E [E[K|N]]$$
$$= E[N(1 - \epsilon)]$$
$$= (1 - \epsilon)E[N]$$
$$= \lambda(1 - \epsilon).$$

2. Calculate E[N|K]. Intuitively $E[N|K] = k + \lambda \epsilon$. Now we will prove it mathematically,

$$\begin{split} E[N|K=k] &= \sum_{n=0}^{+\infty} n Pr(N|K=k).\\ Pr(N|K=k) &= \frac{Pr(N=n,K=k)}{Pr(K=k)}\\ &= \frac{Pr(N=n)Pr(K=k|N=n)}{Pr(K=k)}.\\ Pr(N=n) &= \frac{\lambda^n e^{-\lambda}}{n!}.\\ Pr(K=k|N=n) &= \binom{n}{k}(1-\epsilon)^k \epsilon^{n-k}.\\ Pr(K=k) &= \sum_{n=k}^{+\infty} Pr(N=n)Pr(K=k|N=n)\\ &= \sum_{n=k}^{+\infty} \frac{e^{-\lambda}\lambda^n}{n!} \binom{n}{k}(1-\epsilon)^k \epsilon^{n-k}. \end{split}$$

$$Pr(N = n | K = k) = \frac{\frac{e^{-\lambda}\lambda^n}{n!} \frac{n!}{k!(n-k)!} (1-\epsilon)^k \epsilon^{n-k}}{\sum_{n=k}^{+\infty} \frac{e^{-\lambda}\lambda^n}{n!} \frac{n!}{k!(n-k)!} (1-\epsilon)^k \epsilon^{n-k}}$$
$$= \frac{\frac{\lambda^n \epsilon^n}{(n-k)!}}{\lambda \epsilon \sum_{n=k}^{+\infty} \frac{(\lambda \epsilon)^{n-k}}{(n-k)!}}$$
$$= \frac{(\lambda \epsilon)^n}{(n-k)!} \frac{1}{(\lambda \epsilon)^k e^{\lambda \epsilon}}$$
$$= \frac{(\lambda \epsilon)^{n-k} e^{-\lambda \epsilon}}{(n-k)!}.$$

Therefore,

$$E[N|K = k] = \sum_{n=k}^{+\infty} n \frac{(\lambda \epsilon)^{n-k} e^{-\lambda \epsilon}}{(n-k)!}$$

= $\sum_{n=k}^{+\infty} (n-k+k) \frac{(\lambda \epsilon)^{n-k} e^{-\lambda \epsilon}}{(n-k)!}$
= $\sum_{n=k}^{+\infty} \frac{(n-k)(\lambda \epsilon)^{n-k} e^{-\lambda \epsilon}}{(n-k)!} + k \sum_{n=k}^{+\infty} \frac{(\lambda \epsilon)^{n-k} e^{-\lambda \epsilon}}{(n-k)!}$
= $k + \lambda \epsilon$.

3 Moments of Random Variables

Definition 3. The r^{th} moment, r = 0, 1, ..., of a RV X is defined by,

- 1. $E[X^r] = m_r = \sum_i x_i^r P_X(x_i)$, if X is discrete.
- 2. $E[X^r] = m_r = \int_{-\infty}^{+\infty} x^r f_X(x) dx$, if X is continuous.

Remark 5. Note that $m_0 = 1$ for any X, and $m_1 = E[X] = \mu$ (the mean).

Definition 4. The r^{th} central moment, r = 0, 1, ..., of a RVX is defined as,

- 1. $E[(X \mu)^r] = c_r = \sum_i (x_i \mu)^r P_X(x_i)$, if X is discrete.
- 2. $E[(X \mu)^r] = c_r = \int_{-\infty}^{+\infty} (x \mu)^r f_X(x) dx$, if X is continuous.

Remark 6. Note that for any RV X,

1. $c_0 = 1$. 2. $c_1 = E[X - \mu] = E[X] - \mu = \mu - \mu = 0$. 3. $c_2 = E[(X - \mu)^2] = \sigma^2 = Var[X]$ (the variance). In fact,

$$\sigma^2 = E[(X - \mu)^2] = E[X^2] - \mu^2.$$

 σ is called the standard deviation.

Example 7. Let $X \sim Binomial(n, p)$. What is the variance of X? The PMF of X is given by,

$$Pr(X = k) = {\binom{n}{k}} p^k (1 - p)^{n-k}, \ k = 0, 1, \dots, n.$$

E[X] = np (from Example 2). Therefore,

$$\sigma^2 = E[X^2] - E[X]^2 = \sum_{k=0}^n k^2 \binom{n}{k} p^k (1-p)^{n-k} - n^2 p^2.$$

Check the textbook for the calculation of this sum. Here we will calculate σ^2 using the same idea of Example 2, i.e. expressing X as the sum of n independent Bernoulli random variables. In fact,

$$X = X_1 + X_2 + \ldots + X_n.$$

Where $X_i \sim Bernoulli(p)$, for all i = 1, ..., n. Hence,

$$E[X^{2}] = E\left[(X_{1} + \ldots + X_{n})^{2}\right]$$

= $E[X_{1}^{2} + \ldots + X_{n}^{2} + \sum_{i} \sum_{\substack{j \neq i \\ j \neq i}} X_{i}X_{j}]$
= $nE[X_{i}^{2}] + n(n-1)E[X_{i}X_{j}]$
= $nE[X_{i}^{2}] + n(n-1)E[X_{i}][X_{j}].$

Where,

$$E[X_i] = p.$$

 $E[X_i^2] = 1^2 \times p + 0^2 \times (1-p) = p.$

Hence,

$$E[X^2] = np + n(n-1)p^2 = n^2p^2 - np^2 + np.$$

Therefore,

$$\sigma^{2} = E[X^{2}] - E[X]^{2}$$

= $n^{2}p^{2} - np^{2} + np - n^{2}p^{2}$
= $np(1-p).$

Example 8. Let $X \sim Geometric(p)$. What is the variance of X? The PMF of X is given by,

$$Pr(X = k) = (1 - p)^{k-1}p, \ k = 1, 2, \dots$$

The variance of X is given by,

$$\sigma^2 = E[X^2] - E[X]^2.$$

$$E[X] = \sum_{k=1}^{+\infty} k(1-p)^{k-1}p.$$
$$E[X^2] = \sum_{k=1}^{+\infty} k^2(1-p)^{k-1}p.$$

To calculate these sums we use the following facts, for |x| < 1,

$$\sum_{i=0}^{+\infty} x^i = \frac{1}{1-x}$$

Deriving both sides with respect to x,

$$\sum_{i=1}^{+\infty} ix^{i-1} = \frac{1}{(1-x)^2}$$

Deriving both sides with respect to x,

$$\sum_{i=2}^{+\infty} i(i-1)x^{i-2} = \frac{2}{(1-x)^3}$$

Hence,

$$\begin{split} \sum_{i=2}^{+\infty} i^2 x^{i-2} &- \sum_{i=2}^{+\infty} i x^{i-2} = \frac{2}{(1-x)^3} \\ &\sum_{i=2}^{+\infty} i^2 x^{i-2} = \sum_{i=2}^{+\infty} i x^{i-2} + \frac{2}{(1-x)^3} \\ &\sum_{i=1}^{+\infty} (i+1)^2 x^{i-1} = \sum_{i=1}^{+\infty} (i+1) x^{i-1} + \frac{2}{(1-x)^3} \\ &\sum_{i=1}^{+\infty} i^2 x^{i-1} = \frac{2}{(1-x)^3} - \sum_{i=1}^{+\infty} i x^{i-1} \\ &= \frac{2}{(1-x)^3} - \frac{1}{(1-x)^2}. \end{split}$$

Hence,

$$\sum_{i=1}^{+\infty} i^2 x^{i-1} = \frac{1+x}{(1-x)^3}.$$

Therefore,

$$E[X] = \frac{p}{(1 - (1 - p))^2} = \frac{1}{p}.$$
$$E[X^2] = \frac{p(1 + (1 - p))}{(1 - (1 - p))^3} = \frac{2 - p}{p^2}.$$

Therefore,

$$\sigma^{2} = E[X^{2}] - E[X]^{2}$$
$$= \frac{2-p}{p^{2}} - \frac{1}{p^{2}}$$
$$= \frac{1-p}{p^{2}}.$$

Definition 5. The covariance of two random variables X and Y is defined by,

$$cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

Definition 6. The correlation coefficient of two random variables X and Y is defined by,

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

If $\rho_{X,Y} = 0$, then cov(X,Y) = 0 and X and Y are said to be uncorrelated.

Lemma 1. If X and Y are independent \Rightarrow X and Y are uncorrelated.

Remark 7. There could be two RVs which are uncorrelated but dependent.

Example 9. (discrete case: uncorrelated \Rightarrow independent) Consider two random variables X and Y with joint PMF $P_{X,Y}(x_i, y_j)$ as shown.

	$x_1 = -1$	$x_2 = 0$	$x_3 = +1$
$y_1 = 0$	0	$\frac{1}{3}$	0
$y_2 = 1$	$\frac{1}{3}$	0	$\frac{1}{3}$

Figure 2: Values of $P_{X,Y}(x_i, y_j)$.

$$\mu_X = -1 \times \frac{1}{3} + 0 \times \frac{1}{3} + 1 \times \frac{1}{3} = 0.$$

$$\mu_Y = 0 \times \frac{1}{3} + 1 \times \frac{2}{3} = \frac{2}{3}.$$

$$XY = \begin{cases} -1 & \text{with probability 1/3,} \\ 0 & \text{with probability 1/3,} \\ 1 & \text{with probability 1/3.} \end{cases}$$

Hence,

$$E[XY] = -1 \times \frac{1}{3} + 0 \times \frac{1}{3} + 1 \times \frac{1}{3} = 0.$$

Therefore,

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E[XY] - \mu_X \mu_Y}{\sigma_X \sigma_Y} = \frac{0}{\sigma_X \sigma_Y} = 0 \Rightarrow X \text{ and } Y \text{ are uncorrelated.}$$

However, X and Y are dependent. For example $P(X = -1|Y = 0) = 0 \neq P(X = -1) = 1/3$.

Example 10. (continuous case: uncorrelated \Rightarrow independent) Consider a RV Θ uniformly distributed on $[0, 2\pi]$. Let $X = \cos \Theta$ and $Y = \sin \Theta$. X and Y are obviously dependent, in fact,

$$X^2 + Y^2 = 1$$

$$E[X] = E[\cos\Theta] = \frac{1}{2\pi} \int_0^{2\pi} \cos\theta d\theta = 0.$$

$$E[Y] = E[\sin\Theta] = \frac{1}{2\pi} \int_0^{2\pi} \sin\theta d\theta = 0.$$

$$E[XY] = E[\sin\Theta\cos\Theta] = \frac{1}{2\pi} \int_0^{2\pi} \sin\theta\cos\theta d\theta = \frac{1}{4\pi} \int_0^{2\pi} \sin2\theta d\theta = 0.$$

Hence,

$$\rho_{X,Y} = cov(X,Y) = 0.$$

Therefore, X and Y are uncorrelated although they are dependent.

Theorem 4. Given two random variables X and Y, $|\rho_{X,Y}| \leq 1$.

Proof. We will prove this theorem using the Cauchy-Schwarz inequality by showing that,

$$|cov(X,Y)| \le \sigma_X \sigma_Y.$$

$$< u, v >= ||u|| \cdot ||v|| \cos \theta \Rightarrow |< u, v >| \le ||u|| \cdot ||v||$$

Using the same idea on random variables, let Z = Y - aX where $a \in \mathbb{R}$. Assume that X and Y have zero mean. Consider the following 2 cases:

1. $Z \neq 0$ for all $a \in \mathbb{R}$. Hence,

$$E[Z^2] = E[(Y - aX)^2] > 0$$

Where,

$$E\left[(Y - aX)^2\right] = E[Y^2 - 2aXY + a^2X^2] = E[X^2]a^2 - 2E[XY]a + E[Y^2].$$

Since $E[Z^2] > 0$ and $a^2 \ge 0$,

$$\Delta = 4E[XY]^2 - 4E[X^2]E[Y^2] < 0.$$

Hence,

$$\begin{split} E[XY]^2 &< E[X^2]E[Y^2] = \sigma_X^2 \sigma_Y^2, \\ |E[XY]| &< \sigma_X \sigma_Y. \end{split}$$

Therefore,

 $|cov(X,Y)| < \sigma_X \sigma_Y.$

2. There exists $a_0 \in \mathbb{R}$ such that $Z = Y - a_0 X = 0$. $Y = a_0 X$, hence,

$$E[XY] = E[a_0X^2]$$

= $a_0E[X^2]$
= $a_0\sigma_X^2$.
$$Var[Y] = Var[a_0X]$$

= $a_0^2Var[X]$
= $a_0^2\sigma_X^2$
= σ_Y^2 .

Therefore,

$$E[XY] = a_0 \sigma_X \sigma_X = \sigma_X \sigma_Y.$$

Therefore there is equality in this case,

$$|cov(X,Y)| = \sigma_X \sigma_Y.$$

Combining the results of the 2 cases,

$$|cov(X,Y)| \leq \sigma_X \sigma_Y.$$

And therefore,

 $|\rho_{X,Y}| \le 1.$

Lemma 2. Var[X + Y] = Var[X] + Var[Y] + 2cov(X, Y).

Proof.

$$Var[X + Y] = E[(X + Y)^{2}] - E[(X + Y)]^{2}$$

= $E[(X + Y)^{2}] - (E[X] + E[Y])^{2}$
= $E[X^{2}] + 2E[XY] + E[Y^{2}] - E[X]^{2} - 2E[X]E[Y] - E[Y]^{2}$
= $Var[X] + Var[Y] + 2cov(X, Y).$

Lemma 3. If X and Y are uncorrelated, then Var[X + Y] = Var[X] + Var[Y].

Proof. X and Y are correlated
$$\implies cov(X,Y) = 0$$
. Result then follows for Lemma 2.

4 Estimation

An application for the previously mentioned definitions and theorems is estimation. Suppose we wish to estimate the a values of a RV Y by observing the values of another random variable X. This estimate is represented by \hat{Y} and the estimation error is given by $\epsilon = \hat{Y} - Y$. A popular approach for determining \hat{Y} the estimate of Y given X, is by minimizing the MSE (mean squared error):

$$MSE = E[\epsilon^2] = E[(\hat{Y} - Y)^2].$$

Theorem 5. The MMSE (minimum mean squared estimate) of Y given X is $\hat{Y}_{MMSE} = E[Y|X]$.

In other words, the theorem states that $\hat{Y}_{MMSE} = E[Y|X]$ minimizes the MSE. Sometimes E[Y|X] is difficult to find and a linear MMSE is used instead, i.e. $\hat{Y}_{LMMSE} = \alpha X + \beta$.

Proof. (sketch) Assume WLOG that random variables X and Y are zero mean. Denote by \hat{Y} the

estimate of Y given X. In order to minimize $E[\epsilon^2] = ||\epsilon||^2 = E[||Y - \hat{Y}||^2]$, the error ϵ should be orthogonal to the observation X as shown in the figure above. $\epsilon \perp X$, therefore,

$$E[(\hat{Y} - Y)X] = 0.$$

$$E[(Y - \alpha X)X] = 0,$$

$$E[XY] - \alpha E[X^2] = 0.$$

Hence,

$$\alpha = \frac{E[XY]}{E[X^2]} = \frac{cov(X,Y)}{\sigma_X^2} = \frac{\sigma_Y \rho_{X,Y}}{\sigma_X}$$

Therefore,

$$\hat{Y}_{LMMSE} = \frac{\sigma_Y \rho_{X,Y}}{\sigma_X} X.$$

The result above is for any two zero mean random variables. The general result, i.e. when $\mu_X, \mu_Y \neq 0$, can be obtained by the same reasoning and is given by,

Theorem 6. The LMMSE (linear minimum mean squared estimate) of Y given X that minimize the MSE is given by

$$\hat{Y}_{LMMSE} = \frac{\sigma_Y \rho_{X,Y}}{\sigma_X} (X - \mu_X) + \mu_Y.$$

Remark: (orthogonality principle) Let \hat{Y} be the estimate of Y given X, and ϵ the estimation error. Then \hat{Y} that minimizes the MSE= $E[||\epsilon||^2] = E[||Y - \hat{Y}||^2]$ is given by $\hat{Y} \perp \epsilon$ i.e. $Y \perp (Y - \hat{Y})$. **Example 11.** Suppose that in a room the temperature is given by a $RV Y \sim N(\mu, \sigma^2)$. A sensor in this room observes X = Y + W, where W is the additive noise given by $N(0, \sigma_W^2)$. Assume Y and W are independent.

^

1. Find the MMSE of Y given X.

$$\hat{Y}_{MMSE} = E[Y|X].$$

$$f_{Y|X}(Y|X = x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{f_Y(y)f_{X|Y}(x,y)}{f_X(x)}.$$

Since X is the sum of two independent gaussian RVs Y and W, we know from homework 3that,

$$X \sim N(\mu, \sigma^2 + \sigma_W^2).$$

Furthermore,

$$\begin{split} E[X|Y = y] &= E[Y + W|Y = y] = y + E[W] = y.\\ Var[X|Y = y] &= E[X^2|Y = y] - E[X|Y = y]^2\\ &= E[Y^2 + 2YW + W^2|Y = y] - y^2\\ &= E[Y^2|Y = y] + 2E[YW|Y = y] + E[W^2|Y = y] - y^2\\ &= y^2 + 0 + \sigma_W^2 - y^2\\ &= \sigma_W^2. \end{split}$$

Therefore,

$$f_{X|Y}(X|Y=y) = \frac{1}{\sqrt{2\pi\sigma_W^2}} \exp\left[-\frac{(x-y)^2}{2\sigma_W^2}\right].$$

Therefore,

$$\begin{split} f_{Y|X}(Y|X=x) &= \frac{1}{\sqrt{2\pi \frac{\sigma^2 \sigma_W^2}{\sigma^2 + \sigma_W^2}}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2} - \frac{(x-y)^2}{2\sigma_W^2} + \frac{(x-\mu)^2}{2(\sigma^2 + \sigma_W^2)}\right] \\ &= \frac{1}{\sqrt{2\pi \sigma'^2}} \exp\left[-\frac{(y-\mu')^2}{2\sigma'^2}\right]. \end{split}$$

Where,

$$\sigma'^2 = \frac{\sigma^2 \sigma_W^2}{\sigma^2 + \sigma_W^2}.$$

We are interested in,

$$\hat{Y}_{MMSE} = E[Y|X] = \mu'.$$

To determine μ' take y = 0:

$$\begin{aligned} \frac{-\mu'^2}{2\frac{\sigma^2 \sigma_W^2}{\sigma^2 + \sigma_W^2}} &= \frac{-\mu^2}{2\sigma^2} - \frac{x^2}{2\sigma_W^2} + \frac{(x-\mu)^2}{2(\sigma^2 + \sigma_W^2)} \\ \mu'^2 &= \frac{\sigma_W^2 \mu^2}{\sigma^2 + \sigma_W^2} + \frac{\sigma^2 x^2}{\sigma^2 + \sigma_W^2} - \frac{\sigma^2 \sigma_W^2 (x-\mu)^2}{(\sigma^2 + \sigma_W^2)^2} \\ &= \frac{\sigma^4 x^2 + 2\mu \sigma^2 \sigma_W^2 x + \sigma_W^4 \mu^2}{(\sigma^2 + \sigma_W^2)^2} \\ &= \left(\frac{\sigma^2 x + \sigma_W^2 \mu}{\sigma^2 + \sigma_W^2}\right)^2. \end{aligned}$$

Therefore,

$$\hat{Y}_{MMSE} = E[Y|X] = \mu' = \frac{\sigma^2}{\sigma^2 + \sigma_W^2} X + \frac{\sigma_W^2 \mu}{\sigma^2 + \sigma_W^2}.$$

2. Find the linear MMSE of Y given X.

$$cov(X, Y) = E[XY] - E[X]E[Y]$$

= $E[(Y + W)Y] - E[Y + W]E[Y]$
= $E[Y^2] + E[YW] - \mu^2$
= $\sigma^2 + \mu^2 + 0 - \mu^2$
= σ^2 .

Hence,

$$\rho_{X,Y} = \frac{\sigma^2}{\sigma\sqrt{\sigma^2 + \sigma_W^2}} = \frac{\sigma}{\sqrt{\sigma^2 + \sigma_W^2}}.$$

Applying the general formula of LMMSE,

$$\hat{Y}_{LMMSE} = \frac{\sigma_Y \rho_{X,Y}}{\sigma_X} (X - \mu_X) + \mu_Y$$
$$= \frac{\sigma^2}{\sqrt{\sigma^2 + \sigma_W^2}} \sqrt{\sigma^2 + \sigma_W^2} (X - \mu) + \mu$$
$$= \frac{\sigma^2}{\sigma^2 + \sigma_W^2} X + \frac{\sigma_W^2 \mu}{\sigma^2 + \sigma_W^2}.$$

Notice that $\hat{Y}_{LMMSE} = \hat{Y}_{MMSE}$, in fact this is always the case for jointly gaussian random variables X and Y.

3. Find the MSE.

$$\begin{split} E[\epsilon^2] &= E[(\hat{Y} - Y)^2] \\ &= |E[\epsilon(\hat{Y} - Y)]| \\ &= |E[\epsilon(\hat{Y})|^{-1} - E[\epsilon Y]| \\ &= |E[\epsilon Y]| \\ &= |E[\hat{Y}Y] - E[Y^2]| \\ &= |E\left[\frac{\sigma^2}{\sigma^2 + \sigma_W^2}XY + \frac{\sigma_W^2\mu}{\sigma^2 + \sigma_W^2}Y\right] - \sigma^2 - \mu^2| \\ &= |\frac{\sigma^2(\sigma^2 + \mu^2)}{\sigma^2 + \sigma_W^2} + \frac{\sigma_W^2\mu^2}{\sigma^2 + \sigma_W^2} - \sigma^2 - \mu^2| \\ &= \frac{\sigma^2\sigma_W^2}{\sigma^2 + \sigma_W^2}. \end{split}$$

5 Jointly Gaussian Random Variables

Definition 7. Two random variable X and Y are jointly gaussian if,

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left[\frac{-1}{2(1-\rho^2)}\left(\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - \frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y}\right)\right].$$

Properties:

1. If X and Y are jointly gaussian random variables,

$$f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy = \frac{1}{\sqrt{2\pi\sigma_X^2}} e^{-\frac{(x-\mu_X)^2}{2\sigma_X^2}}.$$
$$f_Y(y) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dx = \frac{1}{\sqrt{2\pi\sigma_Y^2}} e^{-\frac{(y-\mu_Y)^2}{2\sigma_Y^2}}.$$

- 2. If X and Y are jointly gaussian uncorrelated random variables $\Rightarrow X$ and Y are independent.
- 3. If X and Y are jointly gaussian random variables then any linear combination Z = aX + bY is a gaussian random variable.

Multivariate Normal Distribution

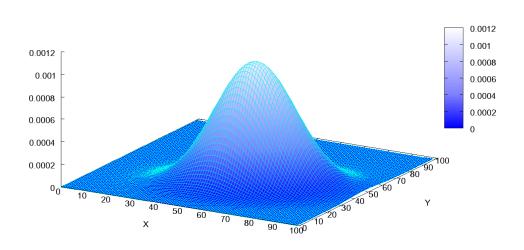


Figure 3: Two-variable joint gaussian distribution (from Wikipedia).

6 Bounds

Theorem 7. (Chebyshev's Bound)

Let X be an arbitrary random variable with mean μ and finite variance σ^2 . Then for any $\delta > 0$,

$$Pr(|X - \mu| \ge \delta) \le \frac{\sigma^2}{\delta^2}.$$

Proof.

$$\sigma^{2} = \int_{-\infty}^{+\infty} (x-\mu)^{2} f_{X}(x) dx \ge \int_{|x-\mu| \ge \delta} (x-\mu)^{2} f_{X}(x) dx \ge \delta^{2} \int_{|x-\mu| \ge \delta} f_{X}(x) dx = \delta^{2} Pr(|X-\mu| \ge \delta).$$

Corollary 1.

$$Pr(|X - \mu| < \delta) \ge 1 - \frac{\sigma^2}{\delta^2}$$

Corollary 2.

$$Pr(|X - \mu| \ge k\delta) \le \frac{1}{k^2}.$$

Example 12. A fair coin is flipped n times, let X be the number of heads observed. Determine a bound for $Pr(X \ge 75\% n)$.

$$E[X] = np = \frac{n}{2}.$$
$$V[X] = np(1-p) = \frac{n}{4}.$$

By applying Chebyshev's inequality,

$$Pr(X \ge \frac{3}{4}n) = Pr(X - \frac{n}{2} \ge \frac{n}{4}) = \frac{1}{2}Pr(|X - \frac{n}{2}| \ge \frac{n}{4}) \le \frac{1}{2}\frac{n/4}{n^2/4^2} = \frac{2}{n}$$

Theorem 8. (Markov Inequality)

Consider a RV X for which $f_X(x) = 0$ for x < 0. Then X is called a nonnegative RV and the Markov inequality applies:

$$Pr(X \ge \delta) \le \frac{E[X]}{\delta}.$$

Proof.

$$E[X] = \int_0^{+\infty} x f_X(x) dx \ge \int_{\delta}^{+\infty} x f_X(x) dx \ge \delta \int_{\delta}^{+\infty} x f_X(x) dx = \delta Pr(X \ge \delta).$$

Example 13. Same setting as Example 12. According to Markov inequality,

$$Pr(X \ge \frac{3}{4}n) \le \frac{n/2}{3n/4} = \frac{2}{3}.$$

which is not dependent on n. The bound from Chebyshev's inequality is much tighter.

Theorem 9. (Law of Large Numbers)

Let X_1, X_2, \ldots, X_n be n iid RVs with mean μ and variance σ^2 . Consider the sample mean:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$
$$\lim_{n \to +\infty} \Pr(|\hat{\mu} - \mu| \ge \delta) = 0 \ \forall \delta > 0.$$

We say,

$$\hat{\mu} \xrightarrow{in \ probability} \mu$$

Proof.

$$E[\hat{\mu}] = E[\frac{1}{n}\sum_{i=1}^{n} X_i] = \frac{1}{n}\sum_{i=1}^{n} E[X_i] = E[X_i] = \mu.$$

Since X_i 's are iid,

$$V[\hat{\mu}] = V[\frac{1}{n}\sum_{i=1}^{n} X_i] = \frac{1}{n^2}\sum_{i=1}^{n} V[X_i] = \frac{1}{n}V[X_i] = \frac{\sigma^2}{n}$$

Applying Chebyshev's inequality,

$$Pr(|\hat{\mu} - \mu| \ge \delta) \le \frac{\sigma^2}{n\delta^2} \to 0 \text{ as } n \to +\infty \text{ for } \delta \le \frac{1}{\sqrt{n}}.$$

7	Moment	Generating	Functions	(MGF)	
---	--------	------------	-----------	-------	--

Definition 8. The moment-generating function (MGF), if it exists, of an RV X is defined by

$$\mathcal{M}(t) \stackrel{\triangle}{=} E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f_X(x) \mathrm{d}x,$$

where t is a complex variable.

For discrete RVs, we can define $\mathcal{M}(t)$ using the PMF as

$$\mathcal{M}(t) = E[e^{tX}] = \sum_{i} e^{tx_i} P_X(x_i).$$

Example: Let $X \sim \text{Poisson}(\lambda)$, $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$, $k = 0, 1, 2, \dots$

1. Find $\mathcal{M}_x(t)$.

$$\mathcal{M}_X(t) = E(e^{t\lambda}) = \sum_{k=0}^{\infty} e^{tk} P(X=k)$$
$$\mathcal{M}_X(t) = \sum_{k=0}^{\infty} e^{tk} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^t)^k}{k!}$$
$$\mathcal{M}_X(t) = e^{-\lambda} e^{\lambda e^t}.$$

2. Find E(X) from $\mathcal{M}_x(t)$.

$$E(X) = \frac{\partial \mathcal{M}_X(t)}{\partial t} \mid_{t=0} = \lambda e^t e^{\lambda (e^t - 1)} \mid_{t=0} = \lambda.$$

Example: Let $X \sim N(\mu, \sigma^2)$, find $\mathcal{M}_x(t)$.

$$\mathcal{M}_X(t) = \int_{-\infty}^{\infty} e^{xt} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \mathrm{d}x$$
$$= \dots = e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

Lemma 4. If $\mathcal{M}(t)$ exists, moments $m_k = E[X^k]$ can be obtained by

$$m_k = \mathcal{M}^{(k)}(0) = \left. \frac{d^k}{dt^k} (\mathcal{M}(t)) \right|_{t=0}, \quad k = 0, 1, \dots$$

Proof.

$$\mathcal{M}_X(t) = E[e^{tX}] = E\left[1 + tX + \frac{(tX)^2}{2!} + \dots + \frac{(tX)^n}{n!} + \dots\right]$$

= 1 + E[X] + $\frac{t^2}{2!}E[X^2] + \dots + \frac{t^n}{n!}E[X^n] + \dots$
 $m_k = E[X^k] = \frac{d^k}{dt^k}(\mathcal{M}(t))\Big|_{t=0}$

8 Chernoff Bound

In this section, we introduce the Chernoff bound. Recall that to use Markov's inequality X must be positive.

Theorem 10. (Chernoff's bound) For any RV X,

$$P(X \ge a) \le e^{-at} \mathcal{M}_X(t) \ \forall \ t > 0.$$

In particular,

$$P(X \ge a) \le \min_{t} e^{-at} \mathcal{M}_X(t).$$

Proof. Apply Markov on $Y = e^{tX}$, but first recall that $P(X \ge a) = P(e^{tX} \ge e^{ta}) = P(Y \ge e^{ta})$, by Markov we get

$$P(Y \ge e^{ta}) \le \frac{E(Y)}{e^{ta}} = e^{-ta}E(Y)$$
$$P(X \ge a) \le e^{-ta}\mathcal{M}_X(t)$$

Example: Consider $X \sim N(\mu, \sigma)$ and try to bound $P(X \ge a)$ using Chernoff bound, this is an artificial example because we know the distribution of X.

From last lecture $\mathcal{M}_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$ hence

$$P(X) \le \min_{t} e^{-at} e^{\mu t + \frac{\sigma^2 t^2}{2}} = \min_{t} e^{(\mu - a)t + \frac{\sigma^2 t^2}{2}}$$

Remark: You can check at home how the parameter t can affect the outer bound. For example pick $\mu = 0, \sigma = 1$ and change t; for t = 0 you will get the trivial bound $P \leq 1$ and for $t \to \infty$ you will get $P \leq \infty$. See how it varies.

$$\begin{split} \min_{t} e^{(\mu-a)t + \frac{\sigma^{2}t^{2}}{2}} &\Rightarrow \frac{\partial f(t)}{\partial t} = 0\\ &\Rightarrow (\sigma^{2}t + \mu - a)e = 0\\ &\Rightarrow t^{*} = \frac{a - \mu}{\sigma^{2}} \end{split}$$

Which gives us the following:

$$P(X \ge a) \le e^{(\mu - a)t^* + \frac{\sigma^2 t^*}{2}}$$

$$P(X \ge a) \le e^{\frac{-(a - \mu)(\mu - a)}{\sigma^2} + \frac{\sigma^2 (a - \mu)^2}{2\sigma^4}}$$

$$P(X \ge a) \le e^{\frac{-(a - \mu)^2}{2\sigma^2}}$$

We can compare this result with the reality where we know that $P(X \ge a) = \int_a^\infty \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx$.

9 Characteristic Function

In this section, we define a characteristic function and give some examples. The characteristic function of a RV is similar to a Fourrier transform of a function without the '-'.

Definition 9. X is a RV,

$$\Phi_X(w) = E(e^{jwX}) = \int_{-\infty}^{+\infty} f_X(x)e^{jwx}dx,$$
(1)

is called the characteristic function of X where j is the complex number $j^2 = -1$.

Example: Find the characteristic function of $X \sim \exp(\lambda)$. Recall that for $\lambda \geq 0$

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Then

$$\Phi_X(w) = \int_0^\infty \lambda e^{-\lambda x} e^{jwx} dx$$
$$= \lambda \int_0^\infty e^{(jw-\lambda)x} dx$$
$$= \frac{\lambda}{jw-\lambda} \left[e^{(jw-\lambda)x} \right]_0^\infty$$

Since $\lambda \geq 0$ and jw is a unit quantity $\Rightarrow (jw - \lambda) \leq 0$ therefore $\lim_{x\to\infty} e^{(jw-\lambda)x} = 0$. Which results in

$$\Phi_X(w) = \frac{\lambda}{jw - \lambda}(0 - 1)$$
$$\Phi_X(w) = \frac{\lambda}{\lambda - jw}$$

Lemma 5. If $\Phi_X(w)$ exists, moments $m_n = E[X^n]$ can be obtained by

$$m_n = \frac{1}{j^n} \Phi_X^{(n)}(0)$$

where

$$\Phi_X^{(n)}(0) = \left. \frac{d^n}{dw^n} \Phi_X^{(w)} \right|_{w=0}.$$

Proof.

$$\Phi_X(w) = E[e^{jwX}]$$

$$= \sum_{n=0}^{\infty} \frac{(jw)^n}{n!} m_n$$

$$m_n = \frac{1}{j^n} \left(\frac{d^n}{dw^n} \Phi_X^{(w)} \Big|_{w=0} \right).$$

Lemma 6. if X, Y are two independent RV and Z = X + Y then $\Phi_Z(w) = \Phi_X(w)\Phi_Y(w)$ and $\mathcal{M}_Z(t) = \mathcal{M}_X(t)\mathcal{M}_Y(t)$

Remark: To find the distribution of Z = X + Y it could be easier to find $\Phi_X(w)$, $\Phi_Y(w)$, multiply them and then invert the from "Fourrier" domain by integrating or by using tables of Fourrier inverse.

Example: Consider the example of problem 9 of homework 3:

Question: Let X_1 and X_2 be two independent RV such that $X_1 \sim N(\mu_1, \sigma_1)$ and $X_2 \sim N(\mu_2, \sigma_2)$ and let $X = aX_1 + bX_2$. Find the distribution of X.

Answer: Let $X'_1 = aX_1$, $X'_2 = bX_2$ it is clear that $X'_1 \sim N(a\mu_1, a\sigma_1)$ and $X'_2 \sim N(b\mu_2, b\sigma_2)$ and that $\Phi_X(w) = \Phi_{X'_1}(w)\Phi_{X'_2}(w)$.

$$\Phi_{X_1'}(w) = \dots = e^{a\mu_1 jw - \frac{a^2 \sigma_1^2 w^2}{2}}$$

$$\Phi_X(w) = e^{a\mu_1 jw - \frac{a^2 \sigma_1^2 w^2}{2}} e^{b\mu_2 jw - \frac{b^2 \sigma_2^2 w^2}{2}}$$

$$\Phi_X(w) = e^{j(a\mu_1 + b\mu_2)w - (a^2 \sigma_1^2 + b^2 \sigma_2^2)\frac{w^2}{2}}$$

Which implies that $X \sim N(a\mu_1 + b\mu_2, \sqrt{a^2\sigma_1^2 + b^2\sigma_2^2}).$

Fact 1. A linear combination of two independent Gaussian RV is a Gaussian RV.

10 Central Limit Theorem

In this section we state the central limit theorem and give a rigourous proof.

Theorem 11. Let X_1, X_2, \ldots, X_n be n independent RVs with $\mu_{X_i} = 0$ and $V(X_i) = 1$ $\forall i$ then

$$Z_n = \frac{X_1 + X_2 + \dots + X_n}{\sqrt{n}} \xrightarrow[n \to \infty]{} N(0, 1)$$

In other words

$$\lim_{n \to \infty} P(Z \le z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{x^2}{2}} dx$$

This is for example a way to convert flipping a coin n times to a Gaussian RV (fig. 4, fig. 5).

$$X_i = \begin{cases} 0 & \text{if a tail is observed with } p = \frac{1}{2} \\ 1 & \text{if a head is observed with } 1 - p = \frac{1}{2} \end{cases}$$

And set $S_n = \frac{\sum_{i=0}^n X_i}{\sqrt{n}}$, notice that $S_n \in \{0, 1, \dots, \frac{n}{\sqrt{n}}\}$ and according to CLT $S_n \underset{n \to \infty}{\sim} N(0, 1)$.

CLT: says that no matter how far you are from the mean, the probability of X = x being outside $|x - \mu| \le \sqrt{n}$ decreases exponentially with n.

Remark: The RVs X_i have to be independent because if for example $X_i = X_1$ for $i \in \{2, 3, ..., n\}$ then

$$S_n = nX_i = \begin{cases} \sqrt{n} & \text{if } X_1 = 1\\ 0 & \text{if } X_1 = 0 \end{cases}$$

which does not converge to a Gaussian distribution when $n \to \infty$.

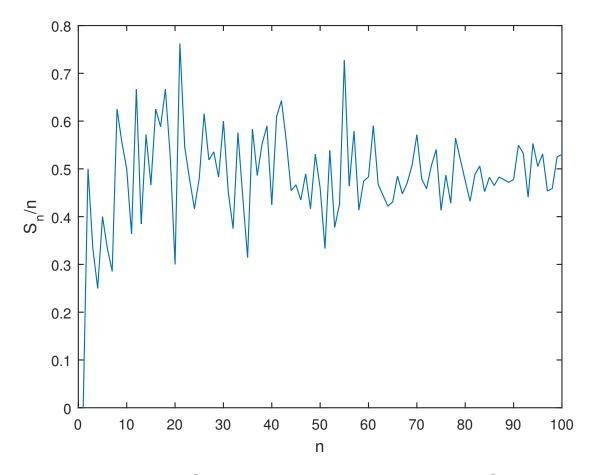


Figure 4: This is $\frac{S_n}{n}$ as a function of n, we can clearly see that when n grows $\frac{S_n}{n}$ goes to 0.5 for the equation of the example below for n goes to 100. Refer to section 6 for detailed code.

Proof. (of theorem 11)

$$\lim_{n \to \infty} \Phi_{Z_n}(w) = e^{-\frac{w^2}{2}} \Rightarrow f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

where this form of $\Phi_{Z_n}(w)$ is the characteristic function of a N(0,1) RV.

$$Z_{n} = \frac{X_{1}}{\sqrt{n}} + \frac{X_{2}}{\sqrt{n}} + \dots + \frac{X_{n}}{\sqrt{n}}$$

$$\Phi_{Z_{n}}(w) = \Phi_{W_{1}}(w)\Phi_{W_{2}}(w)\Phi_{W_{3}}(w)\dots\Phi_{W_{n}}(w) = [\Phi_{W_{1}}(w)]^{n}$$

$$\Phi_{W_{1}}(w) = E(e^{wjW_{1}}) = E(e^{\frac{jwX_{1}}{\sqrt{n}}}) = \Phi_{X_{1}}(\frac{w}{\sqrt{n}})$$

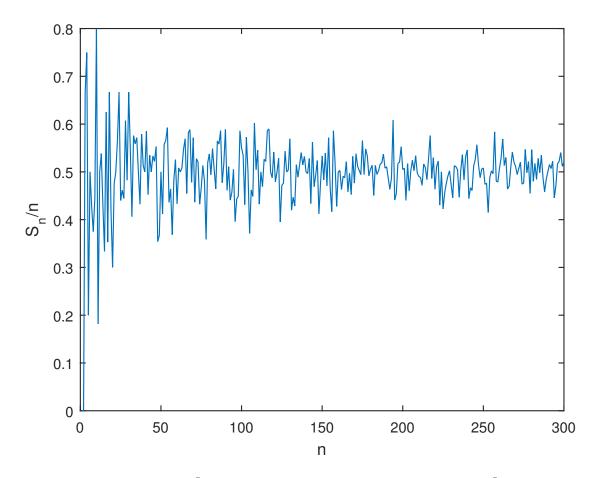


Figure 5: This is $\frac{S_n}{n}$ as a function of n, we can clearly see that when n grows $\frac{S_n}{n}$ goes to 0.5 for the equation of the example below for n goes to 300. Refer to section 6 for detailed code.

<u>Taylor expansion</u>: Using the Taylor expansion of $\Phi_{W_1}(w)$ around 0 we get,

$$\Phi_{W_1}(w) = \Phi_{W_1}(0) + \Phi'_{W_1}(0) + \frac{\Phi''_{W_1}(0)}{2!} + \dots$$

1. Find the value of $\Phi_{W_1}(0)$.

$$\Phi_{W_1}(0) = E(e^{\frac{jwX}{\sqrt{n}}}) \mid_{w=0}$$

= $\int_{-\infty}^{+\infty} e^{\frac{j0X}{\sqrt{n}}} f_X(x) dx$
= $\int_{-\infty}^{+\infty} f_X(x) dx$
= 1

2. Find the value of $\Phi'_{W_1}(0)$.

$$\Phi'_{W_1}(0) = \int_{-\infty}^{+\infty} \frac{jx}{\sqrt{n}} e^{\frac{j0X}{\sqrt{n}}} f_X(x) dx$$
$$= \frac{j}{\sqrt{n}} \int_{-\infty}^{+\infty} x f_X(x) dx$$
$$= \frac{j}{\sqrt{n}} E(X_1)$$
$$= 0$$

3. Find the value of $\Phi_{W_1}''(0)$.

$$\Phi_{W_1}''(0) = \frac{d^2 \Phi_{W_1}(w)}{dw^2}$$

= $\int_{-\infty}^{+\infty} (\frac{jx}{\sqrt{n}})^2 e^{\frac{j0X}{\sqrt{n}}} f_X(x) dx$
= $\frac{-1}{n} \int_{-\infty}^{+\infty} x^2 f_X(x) dx$
= $\frac{-1}{n} (\underbrace{V(X)}_1 + \underbrace{E^2(X)}_0)$
= $\frac{-1}{n}$

Hence, using these results and Taylor's expansion, $\Phi_{W_1}(w) = 1 - \frac{w^2}{2n}$. Therefore $\Phi_{Z_n}(w) = [1 - \frac{w^2}{2n}]^n$. Recall that $\log(1 - \epsilon) \simeq -\epsilon$, then

$$\log \Phi_{Z_n} = n \log \left(1 - \frac{w^2}{2n}\right)$$
$$\log \Phi_{Z_n} \simeq n\left(-\frac{w^2}{2n}\right)$$
$$\log \Phi_{Z_n} \simeq -\frac{w^2}{2}$$
$$\Phi_{Z_n} = e^{-\frac{w^2}{2}}$$

11 MATLAB Code generating the figures

In this section we give the MATLAB code used to generate fig. 4 and fig 5.

```
A=[];B=[]; % generate two empty vectors
for i=1:100 \, % in this loop i stands for the number of times the coin is flipped
    A=[A,binornd(i,0.5)/i]; % at each iteration generate a binomial random number with
                           % parameters n=i, p=0.5 and divide it by n to have (S_n)/n
end
for n=1:300
B=[B,binornd(n,0.5)/n];
                           % same as previous but repeat it 300 times
end
x1=[1:i];x2=[1:n];
                           % x1 and x2 are used to represent n in each figure
figure(1)
plot(x1,A);
hold on
plot(x1,0.5,'r','linewidth',2);
xlabel('n');
ylabel('S_n/n');
figure(2)
plot(x2,B);
hold on
plot(x2,0.5,'r','linewidth',2);
xlabel('n');
ylabel('S_n/n');
```