
ECE511: Analysis of Random Signals Fall 2016

Lecture 1 - 10, 24, 2016

Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu

Chapter 2: Random Variables
Example 1. Tossing a fair coin twice:

Ω = {HH,HT, TH, TT}.

Define for any ω ∈ Ω , X(ω)=number of heads in ω. X(ω) is a random variable.

Definition 1. A random variable (RV) is a function X: Ω → R.

Definition 2 (Cumulative distribution function(CDF)).

F (χ) = P (X ≤ χ). (1)
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Figure 1: Cumulative distribution function of x

Example 2. The cumulative distribution function of x is as (Figure 1)

FX(x) =


0 x < 0,
1
4 0 ≤ x < 1,
3
4 1 ≤ x < 2,

1 x ≥ 2.

Lemma 1. Properties of CDF

(1)

lim
x→−∞

FX(x) = 0 (2)

lim
x→+∞

FX(x) = 1, (3)
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(2) FX(x) is non-decreasing:

x1 ≤ x2 =⇒ FX(x1) ≤ FX(x2) (4)

(3) FX(x)is continuous from the right

lim
ϵ→0

FX(x+ ϵ) = FX(x), ϵ > 0 (5)

(4)

P (a ≤ X ≤ b) = P (X ≤ b)− P (X ≤ a) + P (X = a) (6)

= FX(b)− FX(a) + P (X = a) (7)

(5)

P (X = a) = lim
ε→0

FX(a)− FX(a− ε), ε > 0 (8)

Definition 3. If random variable X has finite or countable number of values, X is called discrete.

Example 3. Non-countable example:ℜ.
A set S is countable if you can find a bijection of f .

f : S → N.

Definition 4. X is continuous if FX(x) is continuous.

Definition 5 (Probability density function(pdf)).

fX(x) =
dFX(x)

dx
(x is continuous). (9)

Example 4. Gaussian random variable: Normal/ Gaussian Distribution.
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Figure 2: Gaussian distribution pdf.

By definition,

fX(x) =
1√
2πσ2

e

−(x− µ)2

2σ2
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Therefore,

FX(a) = P (x ≤ a) =

∫ a

−∞
fX(x)dx,

=
1√
2πσ2

∫ a

−∞
e

−(x− µ)2

2σ2 dx.

We should always have: ∫ +∞

−∞
fX(x)dx = 1.

Definition 6 (mean, variance of a RV X). For the continuous case:

E(X) = µ =

∫ +∞

−∞
xfX(x)dx,

V (X) = σ2 =

∫ +∞

−∞
(x− µ)2fX(x)dx.

For the discrete case:

E(X) = µ =
+∞∑

i=−∞
xiP (X = xi),

V (X) = σ2 =

+∞∑
i=−∞

(xi − µ)2P (X = xi).

Example 5. X is uniformly distributed in (0, 1].

FX(x) =


0 x < 0,∫ x
0 1dx = x 0 ≤ x < 1,

1 x ≥ 1.

E(X) =

∫ 1

0
X × 1dx =

1

2
,

V (X) =

∫ 1

0
(X − 1

2
)2 × 1dx =

1

12
.

Lemma 2 (Probability Density Functions).

(1) Uniform X uniform over [a,b]:

fX(x) =


1

b− a
if a ≤ x ≤ b

0 otherwise
(10)

1Figure from Wikipedia: https://en.wikipedia.org/wiki/Uniform distribution (continuous)
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Figure 3: Uniform distribution.1

(2) Gaussian distribution:

fX(x) =
1√
2πσ2

e

−(x− µ)2

2σ2 , (11)
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Figure 4: Gaussian distribution.2

(3) Exponential distribution:

fX(x) =

{
1
µe

−x
µ if x ≥ 0

0 if x < 0
(12)

(4) Rayleigh Distribution:

fX(x) =
x

σ2
e

−x2

2σ2 , x ≥ 0, (13)

2Figure from Wikipedia: https://en.wikipedia.org/wiki/Normal distribution
3Figure from Wikipedia: https://en.wikipedia.org/wiki/Exponential distribution
4Figure from Wikipedia: https://en.wikipedia.org/wiki/Rayleigh distribution
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Figure 5: Exponential distribution.3
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Figure 6: Rayleigh distribution.4

(5) Laplacian Distribution:

fX(x) =
1√
2σ

e
−
√

2|x|
σ . (14)

5Figure from Wikipedia: https://en.wikipedia.org/wiki/Laplace distribution
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Figure 7: Laplacian distribution.5

1 Example of Discrete Random Variable

1.1 Bernoulli RV

flipping a coin, P (H) = p, P (T ) = 1− p, if head occurs X = 1, if tail occurs X = 0, P (X = 0) =
1− p, P (X = 1) = p. The CDF of a bernoulli RV is as Figure 8.
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Figure 8: Cumulative distribution function of Bernoulli Random Variable

1.2 Binomial distribution

Tossing a die n times, P (H) = p, P (T ) = 1− p. X is number of heads, x ∈ {0, 1, . . . , n}.

P (X = k) =

(
n

k

)
pk(1− p)n−k.
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Remark 1. Let Yi ∈ {0, 1} denote the outcome of tossing the die the ith time

X = Y1 + Y2 + · · ·+ Yn.

i.e., a Binomial RV can be thought of as the sum of n independent Bernoulli RV.

Example 6 (Random graph). Each edge exists with probability p, X is the number of neighbor of
node 1(Figure 9).

Yi =

{
1, if node 1 is connected to i+1,

0, otherwise.

X = Y1 + Y2 + · · ·+ Yn−1.

So X follows the Binomial distribution.
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Figure 9: Random Graphs
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Figure 10: Binary Symmetric Channel with probability of error Pe = p.

Example 7 (BSC). Suppose we are transmitting a file of length n. Consider a BSC where the
probability of error is p and the probability of receiving the correct bit is 1-p. (Figure 10) What is
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the probability that we have k errors?

P (k errors) =

(
n

k

)
pk(1− p)n−k

Let X represent the number of errors, what is E(X)

E(X) =

n∑
k=0

kP (X = k),

=

n∑
k=0

k

(
n

k

)
pk(1− p)n−k,

= np

n∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)n−k,

= np

n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−k+1,

= np.

Binomial theorem:

(x+ y)n =
n∑

k=1

(
n

k

)
xkyn−k

(p+ 1− p)n−1 =

n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−k+1

= 1.

Theorem 1. For any two RVs X1 and X2, Y = X1 +X2,

E(Y ) = E(X1) + E(X2). (15)

It does not matter whether X1 and X2 are independent or not.

1.3 Geometric distribution

You keep tossing a coin until you observe a Head. X is the number of times you have to toss the
coin.

X ∈ {1, 2, . . . },
P (X = K) = (1− p)kp.

Example 8 (Binary erasure channel). Suppose you have a BEC channel with feedback. When you
get a erasure, you ask the sender to retransmit.(Figure 11)
Suppose you pay one dollar for each retransmission. Let X be the amount of money you pay per
transmission.

E(X) =
1

1− p
,

=
1

0.9
≈ 1.11$.
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Figure 11: Binary Erasure Channel with probability of erasure Pe = 0.1.

For geometric distribution,

P (H) ≈ 1

E(X)
,

which E(X)is the number of coin flips on average.

Proof.

E(X) =

∞∑
k=1

kP (X = k), (16)

=
∞∑
k=1

k(1− p)k−1p, (17)

= p
∞∑
k=1

k(1− p)k−1. (18)

Recall that for |x| < 1,

∞∑
k=0

xk =
1

1− x
, (19)

d

dk

∞∑
k=1

kxk−1 =
1

(1− x)2
, (20)

∞∑
k=1

k(1− p)k =
1

p2
. (21)

So,

E(X) = p
1

p2
, (22)

=
1

p
. (23)
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1.4 Poisson distribution

Suppose a server receives λ searches per second on average. The probability that the server receives
k searches for this second is

P (X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . . ,∞. (24)

For poisson distribution

∞∑
k=0

P (X = k) =

∞∑
k=0

λk

k!
e−λ (25)

= e−λ
∞∑
k=0

λk

k!
(26)

= 1. (27)

E(X) = λ. (28)

Example 9 (Interpretation of poisson distribution as an arrival experiment).
suppose average of arrival cumtomers per second is λ. Suppose server goes down if X ≥ 100. We
want to find the probability of P (X = k).

P (server going down) = P (X ≥ 100).

We divide the one second to n intervals, each length of the interval is 1
n second. The probability p

of getting requests in small interval is λ
n .
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Figure 12: one second divided into n intervals.

Now we can consider it to be Bernoulli distribution with p.

P (X = k) =

(
n

k

)
pk(1− p)n−k, (29)

=

(
n

k

)
(
λ

n
)k(1− λ

n
)n−k (30)

≈ nk

k!
(

p

1− p
)k(1− p)n, (31)

=
1

k!
(np)ke−np, (32)

=
1

k!
λke−λ, (33)

=
λk

k!
e−λ. (34)
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We get (31) because of(
n

k

)
=

1

k!
n(n− 1) . . . (n− k + 1), (35)

≈ nk

k!
, (k is a constant and n goes to infinity). (36)

This means we can approximate Binomial(n,p) by Poisson with λ = np (if n is very large).

2 Two Random Variables

Example 10. Let X and Y be Bernoulli Random Variable. If Y = 0, we know X must equal to

Y=0 Y=1

X=0 1
2

1
4

X=1 0 1
4

Table 1: Joint probability mass function of X and Y .

0, so X and Y are dependent.

P (X = 0) =
3

4
,

P (X = 1) =
1

4
.

Here is a example which X and Y are independent, but they have the same marginal distribution.

Y=0 Y=1

X=0 3
8

3
8

X=1 1
8

1
8

Table 2: Joint probability mass function of X and Y .

2.1 Marginalization

You have the joint distribution PX,Y (x, y).

PX(x0) =
∑
y

PX,Y (x0, y), (37)

PY (y0) =
∑
x

PX,Y (x, y0). (38)

Definition 7. If X and Y are continuous random variables, then the joint CDF:

FX,Y (x, y) = P (X ≤ x, Y ≤ y). (39)

11



Given joint CDF FX,Y (x, y),

FX(x0) = FX,Y (x0,+∞). (40)

Definition 8. When the CDF is differentiable, the joint pdf is defined as

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
, (41)

fX(x) =

∫ −∞

∞
fX,Y (x, y)dy, (42)

fY (y) =

∫ −∞

∞
fX,Y (x, y)dx. (43)

Definition 9. X and Y are independent if and only if

FX,Y (x, y) = FX(x)FY (y), (44)

fX,Y (x, y) = fX(x)fY (y). (45)

Definition 10. Conditional CDF of marginal distribution is

FX,Y (x|y) = P (X ≤ x|Y ≤ y), (46)

=
FX,Y (X ≤ x, Y ≤ y)

P (Y ≤ y)
. (47)

Example 11. X and Y are 2 random variables given by the joint pdf

fX,Y (x, y) =
1

2πσ2
√

1− ρ2
exp[

−1

2σ2(1− ρ2)
(x2 + y2 − 2ρxy)].

What is fX(x)?

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy,

=
1

2πσ2
√

1− ρ2

∫ ∞

−∞
exp[

−1

2σ2(1− ρ2)
(x2 + y2 − 2ρxy)]dy,

=
exp[ −x2

2σ2(1−ρ2)
]

2πσ2
√

1− ρ2

∫ ∞

−∞
exp[

−1

2σ2(1− ρ2)
(y2 − 2ρxy + ρx2 − ρ2x2)]dy,

=
exp[−x2+ρ2x2

2σ2(1−ρ2)
]

2πσ2
√

σρ2

∫ ∞

−∞
e

−(y−ρx)

2σ2(1−ρ2)dy,

=
exp[−(1−ρ2)x2

2σ2(1−ρ2)
]

√
2πσ

√
1− ρ2x√
2πσ

∫ ∞

−∞
e

−(y−ρx)

2σ2(1−ρ2)dy.

Because

1√
2πσ

∫ ∞

−∞
e

−(x−µ)2

2σ dx = 1.
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So if ρ = 0,

fX(x) =
1√
2πσ

e
−x2

2σ2 .

Similarly,

fY (y) =
1√
2πσ

e
−y2

2σ2 .

We can have

fX,Y (x, y) = fX(x)fY (y).

So X and Y are independent. If ρ ̸= 0, X and Y are not independent.
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