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Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu

Chapter 1: Introduction to Probability Theory

1 Random Experiment

Definition 1 (Sample space). The Sample space, Ω, is the set of all possible outcomes.

Example 1. When we toss a coin, all the possible outcomes are Heads or Tails. Therefore, the
sample space of a coin toss is Ω = {Heads, Tails}.

Definition 2 (Event). An event E is a subset of the sample space, i.e., E ⊆ Ω.

Example 2. If we toss a fair coin twice, then the sample space is Ω = {HH, HT, TH, TT}.
Consider the event A “at least one Head occurs”; then, the event is A = {HH, HT, TH}.

Let B be the event of tossing the coin repeatedly until a Head occurs. Then, B = {H, TH, TTH, . . . }.
Let C be the event of tossing the coin an even number of times until a Head occurs. Then,
C = {TH, TTTH, . . . }.

Remark 1. Not all subset of Ω are events. You can define sets that have no probability. For this
class, any subset of Ω is an event.

Definition 3 (Axioms of probability). A probability measure P on Ω is a function

P : 2Ω → [0, 1],

E → P (E) ,

such that it satisfies the following properties:

(1) P (∅) = 0.

(2) P (Ω) = 1.

(3) If A1, A2, A3 . . . are disjoint subsets of Ω,

P

( ∞∪
i=1

Ai

)
=
∑
i

P (Ai).

Here, 2Ω is the power set of Ω.

Lemma 1. Let A and B be two subsets of Ω. We define Ā to be the complement of A in Ω, we
have:
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(a) P (Ā) = 1− P (A).

(b) If A ⊆ B, then P (A) ≤ P (B).

(c) P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. For part(a),

P (A ∪ Ā) = P (Ω) = 1 and A, Ā are disjoint

⇒ P (A) + P (Ā) = 1

⇒ P (Ā) = 1− p(A)

For part(b),

B = A ∪ (B \A)
⇒ P (B) = P (A) + P (B \A)

≥ P (A)

For part(c),
P (A ∪B) = P (A) + P (B|A) = P (A) + P (B|A ∩B).

Now,
(A ∩B) ⊆ B ⇒ P (B|A ∩B) = P (B)− P (A ∩B).

Lemma 2 (Union bound). Let A and B be two subsets of Ω, then

P (A ∪B) ≤ P (A) + P (B).

In general,

P

(
n∪

i=1

Ai

)
≤

n∑
i=1

P (Ai).

Example 3 (Tossing a Die (a)). A1: The result number is a multiple of 2. A2: The result number
is a multiple of 3.

A1 = {2, 4, 6}, P (A1) =
1
2 . A2 = {3, 6}, P (A2) =

1
3 .

P (A1 ∪A2) ≤ P (A1) + P (A2) =
1

2
+

1

3
=

5

6

In fact, A1 ∪A2 = {2, 3, 4, 6} and P (A1 ∪A2) =
2
3 .

Example 4 (Tossing a Die (b)). A1: The result number is less than or equal to 3. A2: The result
number is prime.

A1 = {3, 4, 5, 6}, P (A1) =
2
3 . A2 = {2, 3, 5}, P (A2) =

1
2 .

P (A1 ∪A2) ≤ P (A1) + P (A2) =
2

3
+

1

2
=

7

6
> 1

In fact, A1 ∪A2 = {2, 3, 4, 5, 6} and P (A1 ∪A2) =
5
6 .
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Figure 1: Graph connection.

Example 5 (Random Graphs). Consider the graph G = (V,E) over 4 vertices, given in Figure 1,
where V = {1, 2, 3, 4} is the vertex set and E = {{1, 2}, {2, 3}, {3, 4}} is the edge set.

A random graph G defined over the vertex set V is a graph where an edge between any two vertices
exists with a probability p. If we take a graph on n vertices and the edge exists between 2 vertices

with probability=p=0.5. Then the number of subsets of V of size 2 =
n(n− 1)

2
=
(
n
2

)
. The number

of subsets of V of size k =
(
n
k

)
.

If we have 4 vertices in a graph.What is the probability that vertex 1 is connected to k other nodes?
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(a) vertices 2,3,4 are connected to each other

.

(b) vertices 1,2 are connected to each other

.
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(c) vertices 1,3 are connected to each other

.

(d) vertices 1,2,3,4 connected to each other clockwise

Figure 2: Graph connection for 4 vertices

Let N be the neighbors of vertex 1, N = ϕ in fig(a), N = (1, 2) in fig(b), N = (1, 3) in fig(c),
N = (2, 3, 4) in fig(d).
Then we define the event AN is that the vertex 1 is connected to the vertices in N

We say vertex 1 is connected to k other vertices, if k =2, all the possible graph are as (Figure 3).
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(a): Node 1 connected to 2 and 3

.

(b): Node 1 connected to 3 and 4.

.

(c): Node 1 connected to 2 and 4.

..

Figure 3: vertex 1 is connected to two vertices

Define event A vertex 1 is connected to 2 other vertices,therefore:

A = A{2,3} ∪A{3,4} ∪A{2,4}.

The probability of this event A is

P (A) = P (A{2,3}) + P (A{3,4}) + P (A{2,4}).

The probability of vertex 1 is connected to vertex 2 and 3 is

P (A{2,3}) = (
1

2
)3 = p2(1− p) = P (A{3,4}) = P (A{2,4}),

therefore,

P (A) = 3p2(1− p).

In general, the probability vertex 1 is connected to k specific vertices is

P (AN ) = pk(1− p)n−1−k.

The probability vertex 1 is connected to k other vertices is

P (A) = ΣP (AN ),

=

(
n− 1

k

)
pk(1− p)n−1−k.

1.1 Conditional Probability

Example 6. Let A be the event of tossing two fair dice such that the total exceeds 6.

(a) Find P (A). The set of all events Ω is given by the following set:

Ω =


(1, 1), (1, 2), . . . (1, 4),
(2, 1), (2, 2), . . . (2, 6),

...
...

. . .
...

(6, 1), (6, 2), . . . (6, 6).

 .
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Now, we need to find P (A). All the possible outcomes of A (total exceeds 6) are:

A = {(1, 6)
(2, 5), (2, 6)

(3, 4), (3, 5), (3, 6)

(4, 3), (4, 4), (4, 5), (4, 6)

(5, 2), (5, 3), (5, 4), (5, 5), (5, 6)

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.

We know that

P (A) =
Number of possible outcomes

Number of all outcomes

P (A) =
21

36
.

(b) Let B the event that the first dice shows 3. Find P (B) .

All the possible outcomes of event B are:

B = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}. (1)

Then all the possible outcomes of event A given B are the events in equation (1) satisfying A
(total exceeds 6), hence

(A ∩B) = {(3, 4), (3, 5), (3, 6)}.

So the conditional probability of A given B is

P (A|B) =
3

6
,

we can find that

P (A|B) =
P (A ∩B)

P (B)
.

Definition 4 (Conditional probability). We define the conditional probability of an event A given
that event B happened (with P (B) > 0) by:

P (A|B) =
P (A ∩B)

P (B)
.

Definition 5 (Independent events). Two events A and B are independent iff

P (A ∩B) = P (A)P (B).

In general,

P (A ∩B) = P (A)P (B|A) (2)

= P (B)P (A|B). (3)
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Figure 4: Binary Symmetric Channel (BSC) with probability of error Pe = ε.

We can also say that the events A and B are independent iff

P (A|B) = P (A), (P (B) ̸= 0)

P (B|A) = P (B), (P (A) ̸= 0).

Example 7 (Binary symmetric channel).
In the BSC of Fig. 8 the bits are flipped with probability ε (ε is called crossover probability), we can
write

ε = P (Y = 0|X = 1)

= P (Y = 1|X = 0).

Suppose the bits ‘0’ and ‘1’ are equal likely to be sent, i.e.,

P (X = 0) = P (X = 1) = 0.5,

Q. Find the probability of sending a ‘0’ and receiving a ‘0’.

Ans.

P (X = 0, Y = 0) = P (X = 0)P (Y = 0|X = 0)

= 0.5(1− ε).

1.2 Total Law of Probability

Theorem 1. Let A1, A2, . . . , An be n mutually disjoint events such that

Ω =

n∪
i=1

Ai (P (Ai) ̸= 0), (4)

then for any event B ⊆ Ω we have

P (B) = P (A1)P (B|A1) + P (A2)P (B|A2) + ...+ P (An)P (B|An).

Proof. For n=2

B = (B ∩A1) ∪ (B ∩A2), (5)

P (B) = P (B ∩A1) + P (B ∩A2), (6)

= P (A1)P (B|A1) + P (A2)P (B|A2). (7)
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Figure 5: Total law of probability.

Example 8. (BSC) Consider a BSC in Fig. 6 with crossover probability ε = 0.1. The probability
of sending ‘0’ is 0.4 and the probability of sending ‘1’ is 0.6.

Q. Find the probability of receiving a ‘0’.
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Figure 6: Binary Symmetric Channel with probability of error Pe = 0.1.

Ans. The probability of sending ‘1’ is P (X = 1) = 0.6, and the probability of sending ‘0’ is
P (X = 0) = 0.4. Then if we want to know the probability of receiving ‘0’, we can use the total law
of probability to calculate P (Y = 0),

P (Y = 0) = P (X = 0)P (Y = 0|X = 0) + P (X = 1)P (Y = 0|X = 1),

= (0.4)× (0.9) + (0.6)× (0.1) = 0.42.

1.3 Birthday paradox

Question:What is the probability that at least 2 students in class have the same birthday.
E:at least 2 students have the same birthday.
Number of birthdays per year is n, number of students in class is m.
Ē: each student has distinct birthday.
Answer:

P (Ē) = 1× (1− 1

n
)× (1− 2

n
)× · · · × (1− m− 1

n
).

We know that

1− k

n
≈ e

−
k

n , k ≪ n.
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Then,

P (Ē) = e
−
1

n × e
−
2

n × · · · × e
−
m− 1

n ,

= exp(− 1

n
(1 + 2 + · · ·+m− 1)),

= e
−
m(m− 1)

2n ,

≈ e
−
m2

2n .

Now we have student m = 50, and number of birthdays n = 365.

P (E) ≈ 1− e
−

502

2× 365 ,

≈ 96.7%.

Question:How big the class should be if the probability of 2 students have same birthday is larger
than 50%?
Answer:

P (E) =
1

2
.

Then

1− e
−
m2

2n =
1

2
,

so

m2

2n
= ln 2,

m =
√
2 ln 2×

√
n,

≈ 23.

So we need approximately 23 students in same class to make the probability that at least 2 students
have the same birthday is larger than 1

2 .

Theorem 2 (Baye’s Theorem).

P (Ai|B) =
P (B|Ai)P (Ai)∑n
i=1 P (B|Ai)P (Ai)

. (8)

Example 9 (BSC). In this case we have P (X = 0) = P (X = 1) =
1

2
(0s and 1s are equal likely

transmitted)
Suppose we observe Y = 1. What value of X should we decode?

P (X = 1|Y = 1) =
P (X = 1, Y = 1)

P (Y = 1)
.
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Figure 7: Baye’s theorem.
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Figure 8: Binary Symmetric Channel (BSC) with probability of error Pe = ϵ.

According to the Baye’s theorem

P (X = 1|Y = 1) =
P (X = 1)P (Y = 1|X = 1)

P (X = 0)P (Y = 1|X = 0) + P (X = 1)P (Y = 1|X = 1)
,

=
0.5(1− ε)

0.5ε+ 0.5(1− ε)
,

= 1− ε.
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