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Server based distributed SGD

I A tool for computation efficiency

I Workers are efficient

I Well designed architecture e.g., data is i.i.d.
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Client based distributed SGD

I Data is inherently distributed e.g., cellphones
I Clients (cellphones) are not computationally efficient
I Not well designed architecture e.g., data is not i.i.d.
I Constrained resources e.g., memory, bandwidth, power
I Privacy e.g., sensitive data

I Federated learning: Knoecny et al ’17
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Distributed SGD over clients: challenges

Standard approach

Client i sends gradient g t
i

Uplink communication cost

To send g t
i to constant accuracy: ≈ d log d bits

Expensive for large models with millions of parameters

Suppose g t
i is a vector of 32-bit floats: 32 · d bits

Medium LSTM model for PTB: 13.5 million parameters ∼ 50 MB

This work
How to reduce the uplink communication cost?

I Uplink is more expensive than downlink

What type of privacy guarantees for the users?

Can we do both?
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Distributed SGD formulation

Goal
Given m functions F1(w),F2(w), . . . ,Fm(w) on m clients, minimize

1

m

m∑
i=1

Fi (w)

Algorithm

Initialize w to w0

For t from 0 to T :

I Randomly select n clients

I Selected clients compute gradients g t
i = OFi (w t)

I Selected client send gradients to server

I Server computes average g t = 1
n

∑
g t
i and updates model by

w t+1 = w t − ηt · g t
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Distributed SGD guarantees

Non-convex problems Ghadimi et al ’13

After T steps

Et∼T
∥∥OF (w t)

∥∥2
2
/

σ√
T

where
σ2 = max

1≤t≤T
E
∥∥g t(w t)− OF (w t)

∥∥2
2

Similar results for convex and strongly convex problems

SGD guarantees depend on the MSE in gradients

Guarantees with post-processing

If g t
i → g̃ t

i , such that E[g̃ t
i ] = g t

i and g̃ t = 1
n

∑
i g̃

t
i :

σ̃2 = max
1≤t≤T

E
∥∥g̃ t(w t)− OF (w t)

∥∥2
2
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Distributed mean estimation

Setting

n vectors X n def
= X1,X2 . . . ,Xn ∈ Rd that reside on n clients

Goal
Estimate the mean of the vectors:

X̄
def
=

1

n

n∑
i=1

Xi

Applications

I Distributed SGD: Xi is the gradient

I Distributed power iteration

I Distributed Lloyd’s algorithm

I ...
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Communication efficiency: approach

Problem statement

n vectors X n def
= X1,X2 . . . ,Xn ∈ Rd that reside on n clients

Estimate the mean:

X̄
def
=

1

n

n∑
i=1

Xi

Communication protocol

I Client i transmits a compressed or private vector q(Xi )

I Server estimates the mean by some function of
q(X1), q(X2), . . . , q(Xn)
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Definitions

π : communication protocol

ˆ̄X : estimated mean

Mean squared error (MSE)

E(π,X n) = E
[∥∥∥ ˆ̄X − X̄

∥∥∥2
2

]
Expectation over the randomization in the protocol

Communication cost

I Ci (π,Xi ): expected number of bits sent by i-th client

I Total number of bits transmitted by all clients

C(π,X n) =
n∑

i=1

Ci (π,Xi )

MSE (E) vs communication (C) trade-off?
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Minimax formulation

No assumptions on X1,X2, . . . ,Xn

To characterize optimality:

I Bd : unit Euclidean ball in d dimensions

Minimax MSE

E(c)
def
= min

π:C(π)<c
max
X n∈Bd

E(π,X n)
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Related works

Garg et al ’14, Braverman et al ’16

I Assume X1,X2, . . . ,Xn are generated i.i.d. from a distribution,
typically Gaussian

I Estimate the distribution mean instead of the empirical mean

I Algorithms are tailored to the assumptions e.g.,
I Estimate the mean of a Gaussian with unit variance
I Compute p̂ = Pr(Xi ≥ 0)
I Output µ̂ such that Pr(N(µ̂, 1) > 0) = p̂

We assume no distribution over data and want empirical mean

Alistarh et al ’16
Use quantization and Elias coding
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Three protocols

Stochastic uniform quantization

Binary
k-level

Stochastic rotated quantization

Quantization error significantly reduced by random rotation

Variable length coding

Optimal communication-MSE trade-off

13/36



Stochastic binary quantization

For client i with vector Xi ∈ Rd :

Xmax
i = max1≤j≤d Xi (j)

Xmin
i = min1≤j≤d Xi (j)

The quantized value for each coordinate j :

Yi (j) =

Xmax
i w.p.

Xi (j)−Xmin
i

Xmax
i −Xmin

i

Xmin
i otherwise

Observe EYi (j) = Xi (j)

14/36
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Stochastic binary quantization

Estimated mean ˆ̄X =
1

n
·

n∑
i=1

Yi

Communication cost

d + Õ(1) bits per client and hence

C = n ·
(
d + Õ(1)

)
Mean squared error

E = O

(
d

n
· 1

n

n∑
i=1

‖Xi‖22

)

d bits per client =⇒ MSE is O(d/n)

15/36



Stochastic binary quantization

Estimated mean ˆ̄X =
1

n
·

n∑
i=1

Yi

Communication cost
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Stochastic k-level quantization

Divide the interval into k-levels

Communication cost

ddlog2 ke+ Õ(1) bits per client and hence

C = n ·
(
ddlog2 ke+ Õ(1)

)
Mean squared error

E = O

(
d

n(k − 1)2
· 1

n

n∑
i=1

‖Xi‖22

)

d log2 k bits per client =⇒ MSE is O(d/nk2)
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Two improvements

1. Stochastic rotated k-level quantization

Rotates the vectors before quantization

2. Variable length coding

Use Huffman/Arithmetic coding + universal compression

17/36



Stochastic rotated k-level quantization

Observe

Smaller Xmax
i − Xmin

i , smaller the error

Random rotation reduces Xmax
i − Xmin

i to O
(√

log d
d ‖Xi‖2

)
For each client

Rotate the vector using a random rotation matrix: Zi = RXi

Quantize each coordinate of Zi in k levels to obtain Yi

Server
Estimate the mean by

ˆ̄X = R−1 · 1

n

n∑
i=1

Yi
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Stochastic rotated k-level quantization

Communication cost

ddlog2 ke+ Õ(1) bits per client

C = n ·
(
ddlog2 ke+ Õ(1)

)

Mean squared error

E = O

(
log d

n(k − 1)2
· 1

n

n∑
i=1

‖Xi‖22

)

O(d log k) bits/client, MSE O(d/nk2)→ O(log d/nk2)

Rotation of high-dimensional vector is slow: O(d2)!
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Fast random rotation

Use structured rotation R = HD

H : Walsh-Hadamard matrix

D : Diagonal matrix with independent Radamacher entries

Matrix-vector multiplication time: O(d log d)

Used in other contexts: Ailon et al ’09, Yu et al ’16

20/36



Two improvements

1. Stochastic rotated k-Level Quantization
Rotates the vectors before quantization

2. Variable length coding

Uses Huffman/Arithmetic coding + universal compression
Information theoretically optimal

21/36



Variable length coding

Previous schemes used fixed log k bits for each dimension

Variable length: use different number of bits for each dimension

Key Idea: Use fewer bits for more frequent bins

Described quantized distribution, encode using arithmetic coding
for quantized distribution

Communication Cost
Arithmetic/Huffman coding + universal compression yields

C ≤ n · O
(
d(1 + log(k2/d + 1)) + Õ(1)

)

For k ≤
√
d , O(d log k)→ O(d) bits per client, MSE O(d/nk2)

k =
√
d , O(d) bits per client, MSE O(1/n)
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Information theoretic optimality

What is the best protocol for any worst case dataset?

Variable length coding combined with client sampling is optimal

Min-max result
Let t < 1 be a constant. For communication cost c ≤ tnd ,

E(c) = min
π:C(π)<c

max
X n∈Bd

E(π,X n) = Θ

(
min

(
1,

d

c

))
Product of communication cost and MSE scales linearly with d

Lower bound from results in Zhang et al NIPS ’13
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E(π,X n) = Θ
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Experiments: Lloyd’s algorithm (kmeans)

MNIST, m = 60K , d = 784, n = 10 clients, 10 centers, k = 16
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Experiments: Power iteration (PCA)

MNIST, m = 60K , d = 784, n = 10 clients, k = 16 levels
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Experiments: distributed SGD

CIFAR, m = 50K , d > 106, n = 100 clients (500 examples each),
k = 2
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Communication efficiency: conclusion

Three approaches for compressed distributed mean estimation
without any assumption on data distribution

For k = 2,

Bits per client MSE

Stochastic k-level d O(d/n)

Rotated d O(log(d)/n)

Variable-length* O(d) O(1/n)

*Communication optimal in minimax sense

Privacy?
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Differential privacy

Communication protocol

Client i transmits a compressed / private vector q(Xi )

Server estimates the mean by some function of q(X1), . . . , q(Xn)

Let the estimate be ˆ̄X

Differential privacy

Two sets: X n = X1,X2, . . . ,Xn and X ′n = X1,X2, . . . ,X
′
n

A mean estimator is (ε, δ) differential private, if for any set S

Pr( ˆ̄X (X n) ∈ S) ≤ eε Pr( ˆ̄X (X ′n) ∈ S) + δ

No one can identify Xi of a single user
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Gaussian mechanism

Algorithm

Server computes the average ˆ̄X using q(X1), q(X2), . . . , q(Xn) and
releases

ˆ̄X + N(0, σ2Id),

where σ ≈ 1
nε log 1

δ

Guarantees
Released model is (ε, δ) differential private

Issues
Server may not add noise

Server knows true ˆ̄X
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Distributed Gaussian mechanism

Algorithm

Clients send g(Xi ) = q(Xi ) + N(0, σ
√
n)

Server computes average by

1

n
·

n∑
i=1

g(Xi )

Analysis

Average of Gaussians is a Gaussian
Total noise variance:

1

n
· σ2n = σ2

=⇒ Learned model is (ε, δ) differentially private
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Differential privacy guarantees

Server is negligent but not malicious

Estimate of the average is differentially private

Learned model is private and safe to release

Clients do not trust the server
Secure aggregation: cryptographic scheme to ensure that the

server learns only the average ˆ̄X

Server does not learn anything about individual users

Issue
Algorithm is not communication efficient

Cryptographic protocol operates over discrete values
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Distributed Gaussian mechanism: attempt 2

Quantized Gaussians

I Clients send g(Xi ) = Xi + N(0, σ
√
n)

I Quantizes g(Xi ) to obtain q(g(Xi ))

I Servers compute average by

1

n
·

n∑
i=1

q(g(Xi ))

Differential privacy

Sum of quantized Gaussians is not Gaussian
Needs proof that quantization does not affect privacy
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Binomial mechanism

Algorithm

I Client i computes the compressed vector q(Xi )

I Adds Binomial noise Zi = Bin(m, p) and transmits

q(Xi ) + Zi

Advantages

I Finite number of bits to send Binomial random variable

I Communication cost

n · d · dlog2(m + k)e

I Sum of Binomial noise
∑

i Zi is also binomial

I By CLT: Binomial → Gaussian
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Binomial mechanism results

Gaussian mechanism Dwork et al ’06
N(0, σ2) is (ε, δ) differentially private for

ε ≥
∆2

√
2 log 1.25

δ

σ

Binomial mechanism
Bin(N, p) is (ε, δ) differentially private for

ε ≥
∆2

√
2 log 1.25

δ

σ
+ Õ

(
∆1 + ∆∞

σ2

)
σ = Np(1− p)

High privacy regime: ε→ 0, σ →∞, mechanisms are same
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cpSGD

Rotated quantization + Binomial mechanism

Achieves same MSE as Gaussian mechanism and has a
communication cost

n · d ·
(

log2

(
1 +

d

nε2

)
+O

(
log log

nd

εδ

))

If n ≈ d , then log log(nd/εδ) bits are sufficient
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Conclusions and future directions

Conclusions

I Distributed SGD → distributed mean estimation

I Minimax optimal scheme for distributed mean estimation

I Communication-efficient DP by Binomial mechanism

Future directions

I Distributed SGD: correlation between gradients over time

I Distributed SGD: better privacy algorithms

I Distributed mean estimation: competitive / instance optimal

Thank you!
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