# Communication-efficient and Differentially-private Distributed SGD

Ananda Theertha Suresh

with

### Naman Agarwal, Felix X. Yu Sanjiv Kumar, H. Brendan McMahan

Google Research

November 16, 2018

<ロ > < 団 > < 目 > < 目 > < 目 > < 目 > < 目 > < 1/36

# Outline

Motivation Distributed SGD, federated learning

Problem formulation Distributed SGD  $\rightarrow$  distributed mean estimation

Communication efficiency

Three schemes, optimality

Differential privacy

Privacy via Binomial mechanism

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

# Outline

Motivation Distributed SGD, federated learning

Problem formulation Distributed SGD  $\rightarrow$  distributed mean estimation

Communication efficiency

Three schemes, optimality

Differential privacy

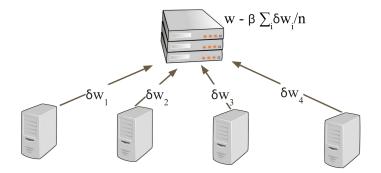
Privacy via Binomial mechanism

New in distributed SGD?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

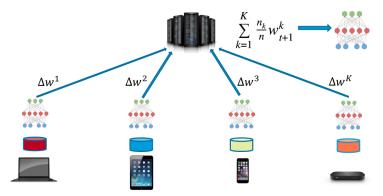
2/36

## Server based distributed SGD



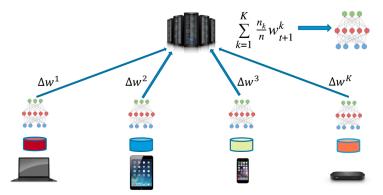
- A tool for computation efficiency
- Workers are efficient
- ▶ Well designed architecture e.g., data is i.i.d.

# Client based distributed SGD



- Data is inherently distributed e.g., cellphones
- Clients (cellphones) are not computationally efficient
- Not well designed architecture e.g., data is not i.i.d.
- Constrained resources e.g., memory, bandwidth, power
- Privacy e.g., sensitive data

# Client based distributed SGD



- Data is inherently distributed e.g., cellphones
- Clients (cellphones) are not computationally efficient
- Not well designed architecture e.g., data is not i.i.d.
- Constrained resources e.g., memory, bandwidth, power
- Privacy e.g., sensitive data
- Federated learning: Knoecny et al '17

<ロ>

Standard approach

Client *i* sends gradient  $g_i^t$ 

## Standard approach

Client *i* sends gradient  $g_i^t$ 

## Uplink communication cost

To send  $g_i^t$  to constant accuracy:  $\approx d \log d$  bits

Expensive for large models with millions of parameters

## Standard approach

Client *i* sends gradient  $g_i^t$ 

## Uplink communication cost

To send  $g_i^t$  to constant accuracy:  $\approx d \log d$  bits

Expensive for large models with millions of parameters

Suppose  $g_i^t$  is a vector of 32-bit floats:  $32 \cdot d$  bits

Medium LSTM model for PTB: 13.5 million parameters  $\sim$  50 MB

### Standard approach

Client *i* sends gradient  $g_i^t$ 

## Uplink communication cost

To send  $g_i^t$  to constant accuracy:  $\approx d \log d$  bits

Expensive for large models with millions of parameters

Suppose  $g_i^t$  is a vector of 32-bit floats:  $32 \cdot d$  bits

Medium LSTM model for PTB: 13.5 million parameters  $\sim$  50 MB

#### This work

How to reduce the uplink communication cost?

## Standard approach

Client *i* sends gradient  $g_i^t$ 

## Uplink communication cost

To send  $g_i^t$  to constant accuracy:  $\approx d \log d$  bits

Expensive for large models with millions of parameters

Suppose  $g_i^t$  is a vector of 32-bit floats:  $32 \cdot d$  bits

Medium LSTM model for PTB: 13.5 million parameters  $\sim$  50 MB

#### This work

How to reduce the uplink communication cost?

Uplink is more expensive than downlink

### Standard approach

Client *i* sends gradient  $g_i^t$ 

## Uplink communication cost

To send  $g_i^t$  to constant accuracy:  $\approx d \log d$  bits

Expensive for large models with millions of parameters

Suppose  $g_i^t$  is a vector of 32-bit floats:  $32 \cdot d$  bits

Medium LSTM model for PTB: 13.5 million parameters  $\sim$  50 MB

#### This work

How to reduce the uplink communication cost?

#### Uplink is more expensive than downlink

What type of privacy guarantees for the users?

## Standard approach

Client *i* sends gradient  $g_i^t$ 

## Uplink communication cost

To send  $g_i^t$  to constant accuracy:  $\approx d \log d$  bits

Expensive for large models with millions of parameters

Suppose  $g_i^t$  is a vector of 32-bit floats:  $32 \cdot d$  bits

Medium LSTM model for PTB: 13.5 million parameters  $\sim$  50 MB

### This work

How to reduce the uplink communication cost?

Uplink is more expensive than downlink

What type of privacy guarantees for the users?

Can we do both?

# Distributed SGD formulation

Goal

Given *m* functions  $F_1(w), F_2(w), \ldots, F_m(w)$  on *m* clients, minimize

$$\frac{1}{m}\sum_{i=1}^m F_i(w)$$

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うへで

6/36

# Distributed SGD formulation

Goal

Given *m* functions  $F_1(w), F_2(w), \ldots, F_m(w)$  on *m* clients, minimize

$$\frac{1}{m}\sum_{i=1}^m F_i(w)$$

## Algorithm

Initialize w to  $w^0$ For t from 0 to T:

- Randomly select n clients
- Selected clients compute gradients  $g_i^t = \nabla F_i(w^t)$
- Selected client send gradients to server
- Server computes average  $g^t = \frac{1}{n} \sum g_i^t$  and updates model by

$$w^{t+1} = w^t - \eta_t \cdot g^t$$

## Distributed SGD guarantees

## Non-convex problems Ghadimi et al '13 After *T* steps

$$\mathbb{E}_{t\sim T} \left\| \nabla F(w^t) \right\|_2^2 \lessapprox \frac{\sigma}{\sqrt{T}}$$

where

$$\sigma^{2} = \max_{1 \leq t \leq T} \mathbb{E} \left\| g^{t}(w^{t}) - \nabla F(w^{t}) \right\|_{2}^{2}$$

Similar results for convex and strongly convex problems

## Distributed SGD guarantees

# Non-convex problems Ghadimi et al '13 After *T* steps

$$\mathbb{E}_{t\sim T} \left\| \nabla F(w^t) \right\|_2^2 \lessapprox \frac{\sigma}{\sqrt{T}}$$

where

$$\sigma^{2} = \max_{1 \leq t \leq T} \mathbb{E} \left\| g^{t}(w^{t}) - \nabla F(w^{t}) \right\|_{2}^{2}$$

Similar results for convex and strongly convex problems

SGD guarantees depend on the MSE in gradients

<ロ > < />

## Distributed SGD guarantees

# Non-convex problems Ghadimi et al '13 After T steps

$$\mathbb{E}_{t\sim T} \left\| \nabla F(w^t) \right\|_2^2 \lessapprox \frac{\sigma}{\sqrt{T}}$$

where

$$\sigma^{2} = \max_{1 \leq t \leq T} \mathbb{E} \left\| g^{t}(w^{t}) - \nabla F(w^{t}) \right\|_{2}^{2}$$

Similar results for convex and strongly convex problems

SGD guarantees depend on the MSE in gradients

Guarantees with post-processing If  $g_i^t \to \tilde{g}_i^t$ , such that  $\mathbb{E}[\tilde{g}_i^t] = g_i^t$  and  $\tilde{g}^t = \frac{1}{n} \sum_i \tilde{g}_i^t$ :  $\tilde{\sigma}^2 = \max_{1 \le t \le T} \mathbb{E} \left\| \tilde{g}^t(w^t) - \nabla F(w^t) \right\|_2^2$ 

## Distributed mean estimation

#### Setting

*n* vectors  $X^n \stackrel{\text{def}}{=} X_1, X_2 \dots, X_n \in \mathbb{R}^d$  that reside on *n* clients

8/36

# Distributed mean estimation

### Setting

*n* vectors  $X^n \stackrel{\text{def}}{=} X_1, X_2 \dots, X_n \in \mathbb{R}^d$  that reside on *n* clients

#### Goal

Estimate the mean of the vectors:

$$\bar{X} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} X_i$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

# Distributed mean estimation

### Setting

*n* vectors  $X^n \stackrel{\text{def}}{=} X_1, X_2 \dots, X_n \in \mathbb{R}^d$  that reside on *n* clients

#### Goal

Estimate the mean of the vectors:

$$\bar{X} \stackrel{\mathrm{def}}{=} \frac{1}{n} \sum_{i=1}^{n} X_i$$

## Applications

- Distributed SGD: X<sub>i</sub> is the gradient
- Distributed power iteration
- Distributed Lloyd's algorithm

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > ≥ < ⊃ < ⊘ < ⊘ 8/36

# Communication efficiency: approach

#### Problem statement

*n* vectors  $X^n \stackrel{\text{def}}{=} X_1, X_2 \dots, X_n \in \mathbb{R}^d$  that reside on *n* clients Estimate the mean:

$$\bar{X} \stackrel{\mathrm{def}}{=} \frac{1}{n} \sum_{i=1}^{n} X_i$$

# Communication efficiency: approach

#### Problem statement

*n* vectors  $X^n \stackrel{\text{def}}{=} X_1, X_2 \dots, X_n \in \mathbb{R}^d$  that reside on *n* clients Estimate the mean:

$$\bar{X} \stackrel{\mathrm{def}}{=} \frac{1}{n} \sum_{i=1}^{n} X_i$$

#### Communication protocol

- Client *i* transmits a compressed or private vector  $q(X_i)$
- ► Server estimates the mean by some function of q(X<sub>1</sub>), q(X<sub>2</sub>),..., q(X<sub>n</sub>)

- $\pi: {\rm communication}\ {\rm protocol}$
- $\hat{X}$  : estimated mean

 $\pi: {\rm communication}\ {\rm protocol}$ 

 $\hat{X}$  : estimated mean

Mean squared error (MSE)

$$\mathcal{E}(\pi, X^n) = \mathbb{E}\left[\left\|\hat{X} - \bar{X}\right\|_2^2\right]$$

Expectation over the randomization in the protocol

- $\pi: {\rm communication}\ {\rm protocol}$
- $\hat{ar{X}}$  : estimated mean
- Mean squared error (MSE)

$$\mathcal{E}(\pi, X^n) = \mathbb{E}\left[\left\|\hat{X} - \bar{X}\right\|_2^2\right]$$

Expectation over the randomization in the protocol

## Communication cost

- $C_i(\pi, X_i)$ : expected number of bits sent by *i*-th client
- Total number of bits transmitted by all clients

$$\mathcal{C}(\pi, X^n) = \sum_{i=1}^n \mathcal{C}_i(\pi, X_i)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- $\pi$  : communication protocol
- $\hat{X}$  : estimated mean
- Mean squared error (MSE)

$$\mathcal{E}(\pi, X^n) = \mathbb{E}\left[\left\|\hat{X} - \bar{X}\right\|_2^2\right]$$

Expectation over the randomization in the protocol

## Communication cost

- $C_i(\pi, X_i)$ : expected number of bits sent by *i*-th client
- Total number of bits transmitted by all clients

$$\mathcal{C}(\pi, X^n) = \sum_{i=1}^n \mathcal{C}_i(\pi, X_i)$$

MSE ( $\mathcal{E}$ ) vs communication ( $\mathcal{C}$ ) trade-off?

No assumptions on  $X_1, X_2, \ldots, X_n$ 



No assumptions on  $X_1, X_2, \ldots, X_n$ 

To characterize optimality:

► B<sup>d</sup>: unit Euclidean ball in d dimensions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

11/36

No assumptions on  $X_1, X_2, \ldots, X_n$ 

To characterize optimality:

► B<sup>d</sup>: unit Euclidean ball in d dimensions

## Minimax MSE

$$\mathcal{E}(c) \stackrel{\mathsf{def}}{=} \min_{\pi: \mathcal{C}(\pi) < c} \max_{X^n \in B^d} \mathcal{E}(\pi, X^n)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

11/36

# Related works

### Garg et al '14, Braverman et al '16

- ► Assume X<sub>1</sub>, X<sub>2</sub>,..., X<sub>n</sub> are generated i.i.d. from a distribution, typically Gaussian
- Estimate the distribution mean instead of the empirical mean

### Garg et al '14, Braverman et al '16

- ► Assume X<sub>1</sub>, X<sub>2</sub>,..., X<sub>n</sub> are generated i.i.d. from a distribution, typically Gaussian
- Estimate the distribution mean instead of the empirical mean
- Algorithms are tailored to the assumptions e.g.,
  - Estimate the mean of a Gaussian with unit variance
  - Compute  $\hat{p} = \Pr(X_i \ge 0)$
  - Output  $\hat{\mu}$  such that  $\Pr(N(\hat{\mu}, 1) > 0) = \hat{p}$

### Garg et al '14, Braverman et al '16

- ► Assume X<sub>1</sub>, X<sub>2</sub>,..., X<sub>n</sub> are generated i.i.d. from a distribution, typically Gaussian
- Estimate the distribution mean instead of the empirical mean
- Algorithms are tailored to the assumptions e.g.,
  - Estimate the mean of a Gaussian with unit variance
  - Compute  $\hat{p} = \Pr(X_i \ge 0)$
  - Output  $\hat{\mu}$  such that  $\Pr(N(\hat{\mu}, 1) > 0) = \hat{p}$

We assume no distribution over data and want empirical mean

### Garg et al '14, Braverman et al '16

- ► Assume X<sub>1</sub>, X<sub>2</sub>,..., X<sub>n</sub> are generated i.i.d. from a distribution, typically Gaussian
- Estimate the distribution mean instead of the empirical mean
- Algorithms are tailored to the assumptions e.g.,
  - Estimate the mean of a Gaussian with unit variance
  - Compute  $\hat{p} = \Pr(X_i \ge 0)$
  - Output  $\hat{\mu}$  such that  $\Pr(N(\hat{\mu}, 1) > 0) = \hat{p}$

We assume no distribution over data and want empirical mean

Alistarh et al '16 Use quantization and Elias coding

## Stochastic uniform quantization

Binary k-level

## Stochastic rotated quantization

Quantization error significantly reduced by random rotation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

13/36

## Variable length coding

Optimal communication-MSE trade-off

## Stochastic binary quantization

For client *i* with vector  $X_i \in \mathbb{R}^d$ :

$$X_i^{\max} = \max_{1 \le j \le d} X_i(j)$$
  
 $X_i^{\min} = \min_{1 \le j \le d} X_i(j)$ 

The quantized value for each coordinate j:

$$Y_i(j) = \begin{cases} X_i^{\max} & \text{w.p. } \frac{X_i(j) - X_i^{\min}}{X_i^{\max} - X_i^{\min}} \\ X_i^{\min} & \text{otherwise} \end{cases}$$

For client *i* with vector  $X_i \in \mathbb{R}^d$ :

$$X_i^{\max} = \max_{1 \le j \le d} X_i(j)$$
  
 $X_i^{\min} = \min_{1 \le j \le d} X_i(j)$ 

The quantized value for each coordinate j:

$$Y_{i}(j) = \begin{cases} X_{i}^{\max} & \text{w.p.} \quad \frac{X_{i}(j) - X_{i}^{\min}}{X_{i}^{\max} - X_{i}^{\min}} \\ X_{i}^{\min} & \text{otherwise} \end{cases}$$

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の 4 (\*)
14/36

For client *i* with vector  $X_i \in \mathbb{R}^d$ :

$$X_i^{\max} = \max_{1 \le j \le d} X_i(j)$$
  
 $X_i^{\min} = \min_{1 \le j \le d} X_i(j)$ 

The quantized value for each coordinate j:

$$Y_{i}(j) = \begin{cases} X_{i}^{\max} & \text{w.p.} \ \frac{X_{i}(j) - X_{i}^{\min}}{X_{i}^{\max} - X_{i}^{\min}} \\ X_{i}^{\min} & \text{otherwise} \end{cases}$$

$$X_{i}^{\min} \quad X_{i}(j) \quad X_{i}^{\max}$$

Observe  $\mathbb{E}Y_i(j) = X_i(j)$ 

Estimated mean

$$\hat{\bar{X}} = \frac{1}{n} \cdot \sum_{i=1}^{n} Y_i$$

<ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 15/36

Estimated mean

$$\hat{\bar{X}} = \frac{1}{n} \cdot \sum_{i=1}^{n} Y_i$$

Communication cost

 $d+ ilde{\mathcal{O}}(1)$  bits per client and hence

$$\mathcal{C} = n \cdot (d + \tilde{\mathcal{O}}(1))$$

Estimated mean

$$\hat{\bar{X}} = \frac{1}{n} \cdot \sum_{i=1}^{n} Y_i$$

Communication cost

 $d+ ilde{\mathcal{O}}(1)$  bits per client and hence

$$\mathcal{C} = n \cdot (d + \tilde{\mathcal{O}}(1))$$

Mean squared error

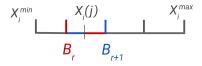
$$\mathcal{E} = \mathcal{O}\left(rac{d}{n} \cdot rac{1}{n} \sum_{i=1}^{n} \|X_i\|_2^2
ight)$$

d bits per client  $\implies$  MSE is  $\mathcal{O}(d/n)$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

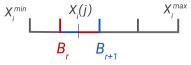
## Stochastic k-level quantization

Divide the interval into k-levels



## Stochastic k-level quantization

Divide the interval into k-levels



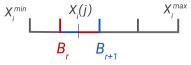
Communication cost

 $d\lceil \log_2 k \rceil + ilde{\mathcal{O}}(1)$  bits per client and hence

$$\mathcal{C} = n \cdot \left( d \lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1) \right)$$

## Stochastic k-level quantization

Divide the interval into k-levels



Communication cost

 $d\lceil \log_2 k \rceil + ilde{\mathcal{O}}(1)$  bits per client and hence

$$\mathcal{C} = n \cdot \left( d \lceil \log_2 k \rceil + ilde{\mathcal{O}}(1) 
ight)$$

Mean squared error

$$\mathcal{E} = \mathcal{O}\left(\frac{d}{n(k-1)^2} \cdot \frac{1}{n} \sum_{i=1}^n \|X_i\|_2^2\right)$$

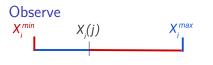
 $d \log_2 k$  bits per client  $\implies$  MSE is  $\mathcal{O}(d/nk^2)$ 

## 1. Stochastic rotated *k*-level quantization Rotates the vectors before quantization

### 2. Variable length coding

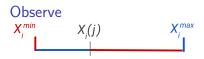
Use Huffman/Arithmetic coding + universal compression

◆□ → < □ → < Ξ → < Ξ → Ξ < の < ? 17/36</p>



Smaller  $X_i^{\text{max}} - X_i^{\text{min}}$ , smaller the error

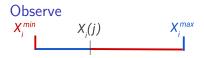
<ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 目 > 3000 18/36



Smaller  $X_i^{\text{max}} - X_i^{\text{min}}$ , smaller the error

Random rotation reduces  $X_i^{\max} - X_i^{\min}$  to  $\mathcal{O}\left(\sqrt{\frac{\log d}{d}} \|X_i\|_2\right)$ 

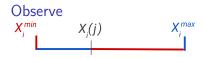
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ● 臣 ● のへの



Smaller  $X_i^{\max} - X_i^{\min}$ , smaller the error Random rotation reduces  $X_i^{\max} - X_i^{\min}$  to  $\mathcal{O}\left(\sqrt{\frac{\log d}{d}} \|X_i\|_2\right)$ 

#### For each client

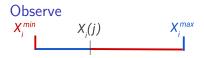
Rotate the vector using a random rotation matrix:  $Z_i = RX_i$ 



Smaller  $X_i^{\max} - X_i^{\min}$ , smaller the error Random rotation reduces  $X_i^{\max} - X_i^{\min}$  to  $\mathcal{O}\left(\sqrt{\frac{\log d}{d}} \|X_i\|_2\right)$ 

#### For each client

Rotate the vector using a random rotation matrix:  $Z_i = RX_i$ Quantize each coordinate of  $Z_i$  in k levels to obtain  $Y_i$ 



Smaller  $X_i^{\max} - X_i^{\min}$ , smaller the error Random rotation reduces  $X_i^{\max} - X_i^{\min}$  to  $\mathcal{O}\left(\sqrt{\frac{\log d}{d}} \|X_i\|_2\right)$ 

### For each client

Rotate the vector using a random rotation matrix:  $Z_i = RX_i$ Quantize each coordinate of  $Z_i$  in k levels to obtain  $Y_i$ 

Server Estimate the mean by

$$\hat{\bar{X}} = R^{-1} \cdot \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Communication cost

 $d\lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1)$  bits per client

$$\mathcal{C} = n \cdot \left( d \lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1) \right)$$

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ < つ < ○</p>
19/36

### Communication cost

 $d\lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1)$  bits per client

$$\mathcal{C} = n \cdot \left( d \lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1) \right)$$

#### Mean squared error

$$\mathcal{E} = \mathcal{O}\left(\frac{\log d}{n(k-1)^2} \cdot \frac{1}{n} \sum_{i=1}^n \|X_i\|_2^2\right)$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ > < 2 > < 2 > < 19/36

### Communication cost

 $d\lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1)$  bits per client

$$\mathcal{C} = n \cdot \left( d \lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1) \right)$$

### Mean squared error

$$\mathcal{E} = \mathcal{O}\left(\frac{\log d}{n(k-1)^2} \cdot \frac{1}{n} \sum_{i=1}^n \|X_i\|_2^2\right)$$

 $\mathcal{O}(d \log k)$  bits/client, MSE  $\mathcal{O}(d/nk^2) \rightarrow \mathcal{O}(\log d/nk^2)$ 

<ロ> < □ > < □ > < 三 > < 三 > < 三 > ○ < ○ 19/36

### Communication cost

 $d\lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1)$  bits per client

$$\mathcal{C} = n \cdot \left( d \lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1) \right)$$

### Mean squared error

$$\mathcal{E} = \mathcal{O}\left(\frac{\log d}{n(k-1)^2} \cdot \frac{1}{n} \sum_{i=1}^n \|X_i\|_2^2\right)$$

 $\mathcal{O}(d \log k)$  bits/client, MSE  $\mathcal{O}(d/nk^2) \rightarrow \mathcal{O}(\log d/nk^2)$ 

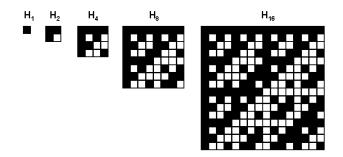
Rotation of high-dimensional vector is slow:  $\mathcal{O}(d^2)!$ 

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > ○ < ○</p>
19/36

## Fast random rotation

Use structured rotation R = HD

- H : Walsh-Hadamard matrix
- D: Diagonal matrix with independent Radamacher entries



(日) (四) (三) (三) (三)

Matrix-vector multiplication time:  $O(d \log d)$ Used in other contexts: Ailon et al '09, Yu et al '16 1. Stochastic rotated *k*-Level Quantization Rotates the vectors before quantization

### 2. Variable length coding

Uses Huffman/Arithmetic coding + universal compression Information theoretically optimal

# Variable length coding

Previous schemes used fixed log k bits for each dimension Variable length: use different number of bits for each dimension Key Idea: Use fewer bits for more frequent bins Described quantized distribution, encode using arithmetic coding

for quantized distribution, encode using arithmetic coding

# Variable length coding

Previous schemes used fixed log k bits for each dimension Variable length: use different number of bits for each dimension Key Idea: Use fewer bits for more frequent bins

Described quantized distribution, encode using arithmetic coding for quantized distribution

### Communication Cost

Arithmetic/Huffman coding + universal compression yields

$$\mathcal{C} \leq n \cdot \mathcal{O}\Big(d(1 + \log(k^2/d + 1)) + \tilde{\mathcal{O}}(1)\Big)$$

For  $k \leq \sqrt{d}$ ,  $\mathcal{O}(d \log k) \rightarrow \mathcal{O}(d)$  bits per client, MSE  $\mathcal{O}(d/nk^2)$ 

 $k = \sqrt{d}$ ,  $\mathcal{O}(d)$  bits per client, MSE  $\mathcal{O}(1/n)$ 

What is the best protocol for any worst case dataset? Variable length coding combined with client sampling is optimal What is the best protocol for any worst case dataset? Variable length coding combined with client sampling is optimal

Min-max result Let t < 1 be a constant. For communication cost  $c \leq tnd$ ,

$$\mathcal{E}(c) = \min_{\pi: \mathcal{C}(\pi) < c} \max_{X^n \in B^d} \mathcal{E}(\pi, X^n) = \Theta\left(\min\left(1, \frac{d}{c}\right)\right)$$

Product of communication cost and MSE scales linearly with d

・ロ ・ ・ @ ・ ・ 注 ・ 注 ・ う へ (?)
23/36

What is the best protocol for any worst case dataset? Variable length coding combined with client sampling is optimal

Min-max result Let t < 1 be a constant. For communication cost  $c \leq tnd$ ,

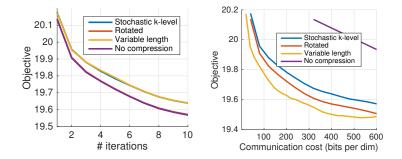
$$\mathcal{E}(c) = \min_{\pi: \mathcal{C}(\pi) < c} \max_{X^n \in B^d} \mathcal{E}(\pi, X^n) = \Theta\left(\min\left(1, \frac{d}{c}\right)\right)$$

Product of communication cost and MSE scales linearly with d

Lower bound from results in Zhang et al NIPS '13

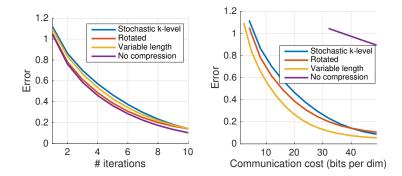
## Experiments: Lloyd's algorithm (kmeans)

MNIST, m = 60K, d = 784, n = 10 clients, 10 centers, k = 16



## Experiments: Power iteration (PCA)

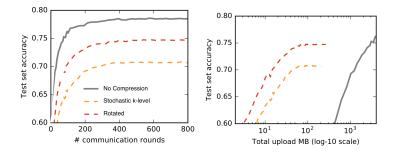
MNIST, m = 60K, d = 784, n = 10 clients, k = 16 levels



▲□▶ ▲□▶ ▲国▶ ▲国▶ - 国 - のの⊙ - -

### Experiments: distributed SGD

CIFAR, m = 50K,  $d > 10^6$ , n = 100 clients (500 examples each), k = 2



# Communication efficiency: conclusion

Three approaches for compressed distributed mean estimation without any assumption on data distribution

For k = 2,

|                    | Bits per client  | MSE                      |
|--------------------|------------------|--------------------------|
| Stochastic k-level | d                | $\mathcal{O}(d/n)$       |
| Rotated            | d                | $\mathcal{O}(\log(d)/n)$ |
| Variable-length*   | $\mathcal{O}(d)$ | $\mathcal{O}(1/n)$       |

\*Communication optimal in minimax sense

# Communication efficiency: conclusion

Three approaches for compressed distributed mean estimation without any assumption on data distribution

For k = 2,

|                    | Bits per client  | MSE                      |
|--------------------|------------------|--------------------------|
| Stochastic k-level | d                | $\mathcal{O}(d/n)$       |
| Rotated            | d                | $\mathcal{O}(\log(d)/n)$ |
| Variable-length*   | $\mathcal{O}(d)$ | $\mathcal{O}(1/n)$       |

\*Communication optimal in minimax sense

Privacy?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

# Differential privacy

### Communication protocol

Client *i* transmits a compressed / private vector  $q(X_i)$ Server estimates the mean by some function of  $q(X_1), \ldots, q(X_n)$ Let the estimate be  $\hat{X}$ 

# Differential privacy

### Communication protocol

Client *i* transmits a compressed / private vector  $q(X_i)$ Server estimates the mean by some function of  $q(X_1), \ldots, q(X_n)$ Let the estimate be  $\hat{X}$ 

### Differential privacy

Two sets:  $X^n = X_1, X_2, \dots, X_n$  and  $X'^n = X_1, X_2, \dots, X'_n$ 

A mean estimator is  $(\epsilon, \delta)$  differential private, if for any set S

$$\mathsf{Pr}(\hat{ar{X}}(X^n)\in S)\leq e^\epsilon\,\mathsf{Pr}(\hat{ar{X}}(X'^n)\in S)+\delta$$

# Differential privacy

### Communication protocol

Client *i* transmits a compressed / private vector  $q(X_i)$ Server estimates the mean by some function of  $q(X_1), \ldots, q(X_n)$ Let the estimate be  $\hat{X}$ 

#### Differential privacy

Two sets:  $X^n = X_1, X_2, \dots, X_n$  and  $X'^n = X_1, X_2, \dots, X'_n$ 

A mean estimator is  $(\epsilon, \delta)$  differential private, if for any set S

$$\mathsf{Pr}(\hat{ar{X}}(X^n)\in S)\leq \mathsf{e}^\epsilon\,\mathsf{Pr}(\hat{ar{X}}(X'^n)\in S)+\delta$$

#### No one can identify $X_i$ of a single user

## Gaussian mechanism

### Algorithm

Server computes the average  $\hat{X}$  using  $q(X_1), q(X_2), \ldots, q(X_n)$  and releases

$$\hat{\bar{X}} + N(0, \sigma^2 \mathbb{I}_d),$$

where  $\sigma \approx \frac{1}{n\epsilon} \log \frac{1}{\delta}$ 

<ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 29/36

## Gaussian mechanism

### Algorithm

Server computes the average  $\hat{X}$  using  $q(X_1), q(X_2), \ldots, q(X_n)$  and releases

$$\hat{\bar{X}} + N(0, \sigma^2 \mathbb{I}_d),$$

where  $\sigma \approx \frac{1}{n\epsilon} \log \frac{1}{\delta}$ 

#### Guarantees

Released model is  $(\epsilon, \delta)$  differential private

## Gaussian mechanism

### Algorithm

Server computes the average  $\hat{X}$  using  $q(X_1), q(X_2), \ldots, q(X_n)$  and releases

$$\hat{\bar{X}} + N(0, \sigma^2 \mathbb{I}_d),$$

where  $\sigma \approx \frac{1}{n\epsilon} \log \frac{1}{\delta}$ 

#### Guarantees

Released model is  $(\epsilon, \delta)$  differential private

#### Issues

Server may not add noise Server knows true  $\hat{\bar{X}}$ 

<ロ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ の Q () 29/36

# Distributed Gaussian mechanism

### Algorithm

Clients send  $g(X_i) = q(X_i) + N(0, \sigma\sqrt{n})$ Server computes average by

$$\frac{1}{n} \cdot \sum_{i=1}^{n} g(X_i)$$

30/36

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 • のへで

# Distributed Gaussian mechanism

### Algorithm

Clients send  $g(X_i) = q(X_i) + N(0, \sigma\sqrt{n})$ Server computes average by

$$\frac{1}{n} \cdot \sum_{i=1}^{n} g(X_i)$$

### Analysis

Average of Gaussians is a Gaussian Total noise variance:

$$\frac{1}{n} \cdot \sigma^2 n = \sigma^2$$

 $\implies$  Learned model is  $(\epsilon, \delta)$  differentially private

Server is negligent but not malicious Estimate of the average is differentially private Learned model is private and safe to release

### Server is negligent but not malicious

Estimate of the average is differentially private

Learned model is private and safe to release

#### Clients do not trust the server

Secure aggregation: cryptographic scheme to ensure that the server learns only the average  $\hat{X}$ 

Server does not learn anything about individual users

#### Server is negligent but not malicious

Estimate of the average is differentially private

Learned model is private and safe to release

#### Clients do not trust the server

Secure aggregation: cryptographic scheme to ensure that the server learns only the average  $\hat{X}$ 

Server does not learn anything about individual users

#### Issue Algorithm is not communication efficient

Cryptographic protocol operates over discrete values

# Distributed Gaussian mechanism: attempt 2

## Quantized Gaussians

- Clients send  $g(X_i) = X_i + N(0, \sigma\sqrt{n})$
- Quantizes  $g(X_i)$  to obtain  $q(g(X_i))$
- Servers compute average by

$$\frac{1}{n} \cdot \sum_{i=1}^{n} q(g(X_i))$$

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

# Distributed Gaussian mechanism: attempt 2

## Quantized Gaussians

- Clients send  $g(X_i) = X_i + N(0, \sigma\sqrt{n})$
- Quantizes  $g(X_i)$  to obtain  $q(g(X_i))$
- Servers compute average by

$$\frac{1}{n} \cdot \sum_{i=1}^{n} q(g(X_i))$$

## Differential privacy

Sum of quantized Gaussians is not Gaussian Needs proof that quantization does not affect privacy

# Binomial mechanism

# Algorithm

- Client *i* computes the compressed vector  $q(X_i)$
- Adds Binomial noise  $Z_i = Bin(m, p)$  and transmits

 $q(X_i) + Z_i$ 

# Binomial mechanism

# Algorithm

- Client i computes the compressed vector q(X<sub>i</sub>)
- Adds Binomial noise  $Z_i = Bin(m, p)$  and transmits

$$q(X_i) + Z_i$$

### Advantages

- Finite number of bits to send Binomial random variable
- Communication cost

$$n \cdot d \cdot \lceil \log_2(m+k) \rceil$$

- Sum of Binomial noise  $\sum_i Z_i$  is also binomial
- By CLT: Binomial  $\rightarrow$  Gaussian

# Binomial mechanism results

Gaussian mechanism Dwork et al '06  $N(0, \sigma^2)$  is  $(\epsilon, \delta)$  differentially private for

$$\epsilon \geq \frac{\Delta_2 \sqrt{2\log \frac{1.25}{\delta}}}{\sigma}$$

Binomial mechanism Bin(N, p) is  $(\epsilon, \delta)$  differentially private for

$$\epsilon \geq \frac{\Delta_2 \sqrt{2\log\frac{1.25}{\delta}}}{\sigma} + \tilde{\mathcal{O}}\left(\frac{\Delta_1 + \Delta_\infty}{\sigma^2}\right)$$

 $\sigma = Np(1-p)$ 

High privacy regime:  $\epsilon \to \mathbf{0}, \sigma \to \infty$ , mechanisms are same

### Rotated quantization + Binomial mechanism

Achieves same MSE as Gaussian mechanism and has a communication cost

$$n \cdot d \cdot \left( \log_2 \left( 1 + \frac{d}{n\epsilon^2} \right) + \mathcal{O}\left( \log \log \frac{nd}{\epsilon\delta} \right) \right)$$

If  $n \approx d$ , then  $\log \log(nd/\epsilon \delta)$  bits are sufficient

# Conclusions and future directions

### Conclusions

- $\blacktriangleright$  Distributed SGD  $\rightarrow$  distributed mean estimation
- Minimax optimal scheme for distributed mean estimation
- Communication-efficient DP by Binomial mechanism

#### Future directions

- Distributed SGD: correlation between gradients over time
- Distributed SGD: better privacy algorithms
- Distributed mean estimation: competitive / instance optimal

### Thank you!