Communication-efficient and Differentially-private Distributed SGD

Ananda Theertha Suresh

with

Naman Agarwal, Felix X. Yu Sanjiv Kumar, H. Brendan McMahan

Google Research

November 16, 2018

<ロ > < 団 > < 目 > < 目 > < 目 > < 目 > < 目 > < 1/36

Outline

Motivation Distributed SGD, federated learning

Problem formulation Distributed SGD \rightarrow distributed mean estimation

Communication efficiency

Three schemes, optimality

Differential privacy

Privacy via Binomial mechanism

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

Outline

Motivation Distributed SGD, federated learning

Problem formulation Distributed SGD \rightarrow distributed mean estimation

Communication efficiency

Three schemes, optimality

Differential privacy

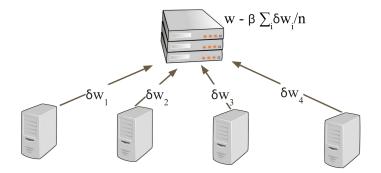
Privacy via Binomial mechanism

New in distributed SGD?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

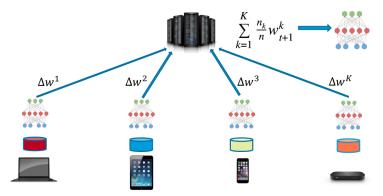
2/36

Server based distributed SGD



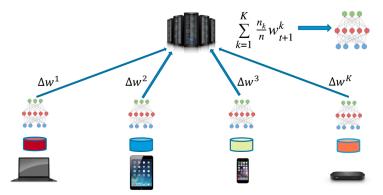
- A tool for computation efficiency
- Workers are efficient
- ▶ Well designed architecture e.g., data is i.i.d.

Client based distributed SGD



- Data is inherently distributed e.g., cellphones
- Clients (cellphones) are not computationally efficient
- Not well designed architecture e.g., data is not i.i.d.
- Constrained resources e.g., memory, bandwidth, power
- Privacy e.g., sensitive data

Client based distributed SGD



- Data is inherently distributed e.g., cellphones
- Clients (cellphones) are not computationally efficient
- Not well designed architecture e.g., data is not i.i.d.
- Constrained resources e.g., memory, bandwidth, power
- Privacy e.g., sensitive data
- Federated learning: Knoecny et al '17

<ロ>

Standard approach

Client *i* sends gradient g_i^t

Standard approach

Client *i* sends gradient g_i^t

Uplink communication cost

To send g_i^t to constant accuracy: $\approx d \log d$ bits

Expensive for large models with millions of parameters

Standard approach

Client *i* sends gradient g_i^t

Uplink communication cost

To send g_i^t to constant accuracy: $\approx d \log d$ bits

Expensive for large models with millions of parameters

Suppose g_i^t is a vector of 32-bit floats: $32 \cdot d$ bits

Medium LSTM model for PTB: 13.5 million parameters \sim 50 MB

Standard approach

Client *i* sends gradient g_i^t

Uplink communication cost

To send g_i^t to constant accuracy: $\approx d \log d$ bits

Expensive for large models with millions of parameters

Suppose g_i^t is a vector of 32-bit floats: $32 \cdot d$ bits

Medium LSTM model for PTB: 13.5 million parameters \sim 50 MB

This work

How to reduce the uplink communication cost?

Standard approach

Client *i* sends gradient g_i^t

Uplink communication cost

To send g_i^t to constant accuracy: $\approx d \log d$ bits

Expensive for large models with millions of parameters

Suppose g_i^t is a vector of 32-bit floats: $32 \cdot d$ bits

Medium LSTM model for PTB: 13.5 million parameters \sim 50 MB

This work

How to reduce the uplink communication cost?

Uplink is more expensive than downlink

Standard approach

Client *i* sends gradient g_i^t

Uplink communication cost

To send g_i^t to constant accuracy: $\approx d \log d$ bits

Expensive for large models with millions of parameters

Suppose g_i^t is a vector of 32-bit floats: $32 \cdot d$ bits

Medium LSTM model for PTB: 13.5 million parameters \sim 50 MB

This work

How to reduce the uplink communication cost?

Uplink is more expensive than downlink

What type of privacy guarantees for the users?

Standard approach

Client *i* sends gradient g_i^t

Uplink communication cost

To send g_i^t to constant accuracy: $\approx d \log d$ bits

Expensive for large models with millions of parameters

Suppose g_i^t is a vector of 32-bit floats: $32 \cdot d$ bits

Medium LSTM model for PTB: 13.5 million parameters \sim 50 MB

This work

How to reduce the uplink communication cost?

Uplink is more expensive than downlink

What type of privacy guarantees for the users?

Can we do both?

Distributed SGD formulation

Goal

Given *m* functions $F_1(w), F_2(w), \ldots, F_m(w)$ on *m* clients, minimize

$$\frac{1}{m}\sum_{i=1}^m F_i(w)$$

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うへで

6/36

Distributed SGD formulation

Goal

Given *m* functions $F_1(w), F_2(w), \ldots, F_m(w)$ on *m* clients, minimize

$$\frac{1}{m}\sum_{i=1}^m F_i(w)$$

Algorithm

Initialize w to w^0 For t from 0 to T:

- Randomly select n clients
- Selected clients compute gradients $g_i^t = \nabla F_i(w^t)$
- Selected client send gradients to server
- Server computes average $g^t = \frac{1}{n} \sum g_i^t$ and updates model by

$$w^{t+1} = w^t - \eta_t \cdot g^t$$

Distributed SGD guarantees

Non-convex problems Ghadimi et al '13 After *T* steps

$$\mathbb{E}_{t\sim T} \left\| \nabla F(w^t) \right\|_2^2 \lessapprox \frac{\sigma}{\sqrt{T}}$$

where

$$\sigma^{2} = \max_{1 \leq t \leq T} \mathbb{E} \left\| g^{t}(w^{t}) - \nabla F(w^{t}) \right\|_{2}^{2}$$

Similar results for convex and strongly convex problems

Distributed SGD guarantees

Non-convex problems Ghadimi et al '13 After *T* steps

$$\mathbb{E}_{t\sim T} \left\| \nabla F(w^t) \right\|_2^2 \lessapprox \frac{\sigma}{\sqrt{T}}$$

where

$$\sigma^{2} = \max_{1 \leq t \leq T} \mathbb{E} \left\| g^{t}(w^{t}) - \nabla F(w^{t}) \right\|_{2}^{2}$$

Similar results for convex and strongly convex problems

SGD guarantees depend on the MSE in gradients

<ロ > < />

Distributed SGD guarantees

Non-convex problems Ghadimi et al '13 After T steps

$$\mathbb{E}_{t\sim T} \left\| \nabla F(w^t) \right\|_2^2 \lessapprox \frac{\sigma}{\sqrt{T}}$$

where

$$\sigma^{2} = \max_{1 \leq t \leq T} \mathbb{E} \left\| g^{t}(w^{t}) - \nabla F(w^{t}) \right\|_{2}^{2}$$

Similar results for convex and strongly convex problems

SGD guarantees depend on the MSE in gradients

Guarantees with post-processing If $g_i^t \to \tilde{g}_i^t$, such that $\mathbb{E}[\tilde{g}_i^t] = g_i^t$ and $\tilde{g}^t = \frac{1}{n} \sum_i \tilde{g}_i^t$: $\tilde{\sigma}^2 = \max_{1 \le t \le T} \mathbb{E} \left\| \tilde{g}^t(w^t) - \nabla F(w^t) \right\|_2^2$

Distributed mean estimation

Setting

n vectors $X^n \stackrel{\text{def}}{=} X_1, X_2 \dots, X_n \in \mathbb{R}^d$ that reside on *n* clients

8/36

Distributed mean estimation

Setting

n vectors $X^n \stackrel{\text{def}}{=} X_1, X_2 \dots, X_n \in \mathbb{R}^d$ that reside on *n* clients

Goal

Estimate the mean of the vectors:

$$\bar{X} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} X_i$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Distributed mean estimation

Setting

n vectors $X^n \stackrel{\text{def}}{=} X_1, X_2 \dots, X_n \in \mathbb{R}^d$ that reside on *n* clients

Goal

Estimate the mean of the vectors:

$$\bar{X} \stackrel{\mathrm{def}}{=} \frac{1}{n} \sum_{i=1}^{n} X_i$$

Applications

- Distributed SGD: X_i is the gradient
- Distributed power iteration
- Distributed Lloyd's algorithm

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > ≥ < ⊃ < ⊘ < ⊘ 8/36

Communication efficiency: approach

Problem statement

n vectors $X^n \stackrel{\text{def}}{=} X_1, X_2 \dots, X_n \in \mathbb{R}^d$ that reside on *n* clients Estimate the mean:

$$\bar{X} \stackrel{\mathrm{def}}{=} \frac{1}{n} \sum_{i=1}^{n} X_i$$

Communication efficiency: approach

Problem statement

n vectors $X^n \stackrel{\text{def}}{=} X_1, X_2 \dots, X_n \in \mathbb{R}^d$ that reside on *n* clients Estimate the mean:

$$\bar{X} \stackrel{\mathrm{def}}{=} \frac{1}{n} \sum_{i=1}^{n} X_i$$

Communication protocol

- Client *i* transmits a compressed or private vector $q(X_i)$
- ► Server estimates the mean by some function of q(X₁), q(X₂),..., q(X_n)

- $\pi: {\rm communication}\ {\rm protocol}$
- \hat{X} : estimated mean

 $\pi: {\rm communication}\ {\rm protocol}$

 \hat{X} : estimated mean

Mean squared error (MSE)

$$\mathcal{E}(\pi, X^n) = \mathbb{E}\left[\left\|\hat{X} - \bar{X}\right\|_2^2\right]$$

Expectation over the randomization in the protocol

- $\pi: {\rm communication}\ {\rm protocol}$
- $\hat{ar{X}}$: estimated mean
- Mean squared error (MSE)

$$\mathcal{E}(\pi, X^n) = \mathbb{E}\left[\left\|\hat{X} - \bar{X}\right\|_2^2\right]$$

Expectation over the randomization in the protocol

Communication cost

- $C_i(\pi, X_i)$: expected number of bits sent by *i*-th client
- Total number of bits transmitted by all clients

$$\mathcal{C}(\pi, X^n) = \sum_{i=1}^n \mathcal{C}_i(\pi, X_i)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- π : communication protocol
- \hat{X} : estimated mean
- Mean squared error (MSE)

$$\mathcal{E}(\pi, X^n) = \mathbb{E}\left[\left\|\hat{X} - \bar{X}\right\|_2^2\right]$$

Expectation over the randomization in the protocol

Communication cost

- $C_i(\pi, X_i)$: expected number of bits sent by *i*-th client
- Total number of bits transmitted by all clients

$$\mathcal{C}(\pi, X^n) = \sum_{i=1}^n \mathcal{C}_i(\pi, X_i)$$

MSE (\mathcal{E}) vs communication (\mathcal{C}) trade-off?

No assumptions on X_1, X_2, \ldots, X_n



No assumptions on X_1, X_2, \ldots, X_n

To characterize optimality:

► B^d: unit Euclidean ball in d dimensions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

11/36

No assumptions on X_1, X_2, \ldots, X_n

To characterize optimality:

► B^d: unit Euclidean ball in d dimensions

Minimax MSE

$$\mathcal{E}(c) \stackrel{\mathsf{def}}{=} \min_{\pi: \mathcal{C}(\pi) < c} \max_{X^n \in B^d} \mathcal{E}(\pi, X^n)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

11/36

Related works

Garg et al '14, Braverman et al '16

- ► Assume X₁, X₂,..., X_n are generated i.i.d. from a distribution, typically Gaussian
- Estimate the distribution mean instead of the empirical mean

Garg et al '14, Braverman et al '16

- ► Assume X₁, X₂,..., X_n are generated i.i.d. from a distribution, typically Gaussian
- Estimate the distribution mean instead of the empirical mean
- Algorithms are tailored to the assumptions e.g.,
 - Estimate the mean of a Gaussian with unit variance
 - Compute $\hat{p} = \Pr(X_i \ge 0)$
 - Output $\hat{\mu}$ such that $\Pr(N(\hat{\mu}, 1) > 0) = \hat{p}$

Garg et al '14, Braverman et al '16

- ► Assume X₁, X₂,..., X_n are generated i.i.d. from a distribution, typically Gaussian
- Estimate the distribution mean instead of the empirical mean
- Algorithms are tailored to the assumptions e.g.,
 - Estimate the mean of a Gaussian with unit variance
 - Compute $\hat{p} = \Pr(X_i \ge 0)$
 - Output $\hat{\mu}$ such that $\Pr(N(\hat{\mu}, 1) > 0) = \hat{p}$

We assume no distribution over data and want empirical mean

Garg et al '14, Braverman et al '16

- ► Assume X₁, X₂,..., X_n are generated i.i.d. from a distribution, typically Gaussian
- Estimate the distribution mean instead of the empirical mean
- Algorithms are tailored to the assumptions e.g.,
 - Estimate the mean of a Gaussian with unit variance
 - Compute $\hat{p} = \Pr(X_i \ge 0)$
 - Output $\hat{\mu}$ such that $\Pr(N(\hat{\mu}, 1) > 0) = \hat{p}$

We assume no distribution over data and want empirical mean

Alistarh et al '16 Use quantization and Elias coding

Stochastic uniform quantization

Binary k-level

Stochastic rotated quantization

Quantization error significantly reduced by random rotation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

13/36

Variable length coding

Optimal communication-MSE trade-off

Stochastic binary quantization

For client *i* with vector $X_i \in \mathbb{R}^d$:

$$X_i^{\max} = \max_{1 \le j \le d} X_i(j)$$

 $X_i^{\min} = \min_{1 \le j \le d} X_i(j)$

The quantized value for each coordinate j:

$$Y_i(j) = \begin{cases} X_i^{\max} & \text{w.p. } \frac{X_i(j) - X_i^{\min}}{X_i^{\max} - X_i^{\min}} \\ X_i^{\min} & \text{otherwise} \end{cases}$$

For client *i* with vector $X_i \in \mathbb{R}^d$:

$$X_i^{\max} = \max_{1 \le j \le d} X_i(j)$$

 $X_i^{\min} = \min_{1 \le j \le d} X_i(j)$

The quantized value for each coordinate j:

$$Y_{i}(j) = \begin{cases} X_{i}^{\max} & \text{w.p.} \quad \frac{X_{i}(j) - X_{i}^{\min}}{X_{i}^{\max} - X_{i}^{\min}} \\ X_{i}^{\min} & \text{otherwise} \end{cases}$$

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の 4 (*)
14/36

For client *i* with vector $X_i \in \mathbb{R}^d$:

$$X_i^{\max} = \max_{1 \le j \le d} X_i(j)$$

 $X_i^{\min} = \min_{1 \le j \le d} X_i(j)$

The quantized value for each coordinate j:

$$Y_{i}(j) = \begin{cases} X_{i}^{\max} & \text{w.p.} \ \frac{X_{i}(j) - X_{i}^{\min}}{X_{i}^{\max} - X_{i}^{\min}} \\ X_{i}^{\min} & \text{otherwise} \end{cases}$$

$$X_{i}^{\min} \quad X_{i}(j) \quad X_{i}^{\max}$$

Observe $\mathbb{E}Y_i(j) = X_i(j)$

Estimated mean

$$\hat{\bar{X}} = \frac{1}{n} \cdot \sum_{i=1}^{n} Y_i$$

<ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 15/36

Estimated mean

$$\hat{\bar{X}} = \frac{1}{n} \cdot \sum_{i=1}^{n} Y_i$$

Communication cost

 $d+ ilde{\mathcal{O}}(1)$ bits per client and hence

$$\mathcal{C} = n \cdot (d + \tilde{\mathcal{O}}(1))$$

Estimated mean

$$\hat{\bar{X}} = \frac{1}{n} \cdot \sum_{i=1}^{n} Y_i$$

Communication cost

 $d+ ilde{\mathcal{O}}(1)$ bits per client and hence

$$\mathcal{C} = n \cdot (d + \tilde{\mathcal{O}}(1))$$

Mean squared error

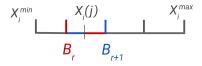
$$\mathcal{E} = \mathcal{O}\left(rac{d}{n} \cdot rac{1}{n} \sum_{i=1}^{n} \|X_i\|_2^2
ight)$$

d bits per client \implies MSE is $\mathcal{O}(d/n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

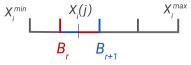
Stochastic k-level quantization

Divide the interval into k-levels



Stochastic k-level quantization

Divide the interval into k-levels



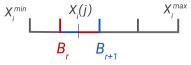
Communication cost

 $d\lceil \log_2 k \rceil + ilde{\mathcal{O}}(1)$ bits per client and hence

$$\mathcal{C} = n \cdot \left(d \lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1) \right)$$

Stochastic k-level quantization

Divide the interval into k-levels



Communication cost

 $d\lceil \log_2 k \rceil + ilde{\mathcal{O}}(1)$ bits per client and hence

$$\mathcal{C} = n \cdot \left(d \lceil \log_2 k \rceil + ilde{\mathcal{O}}(1)
ight)$$

Mean squared error

$$\mathcal{E} = \mathcal{O}\left(\frac{d}{n(k-1)^2} \cdot \frac{1}{n} \sum_{i=1}^n \|X_i\|_2^2\right)$$

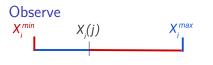
 $d \log_2 k$ bits per client \implies MSE is $\mathcal{O}(d/nk^2)$

1. Stochastic rotated *k*-level quantization Rotates the vectors before quantization

2. Variable length coding

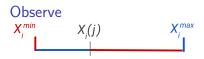
Use Huffman/Arithmetic coding + universal compression

◆□ → < □ → < Ξ → < Ξ → Ξ < の < ? 17/36</p>



Smaller $X_i^{\text{max}} - X_i^{\text{min}}$, smaller the error

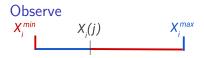
<ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 目 > 3000 18/36



Smaller $X_i^{\text{max}} - X_i^{\text{min}}$, smaller the error

Random rotation reduces $X_i^{\max} - X_i^{\min}$ to $\mathcal{O}\left(\sqrt{\frac{\log d}{d}} \|X_i\|_2\right)$

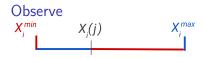
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ● 臣 ● のへの



Smaller $X_i^{\max} - X_i^{\min}$, smaller the error Random rotation reduces $X_i^{\max} - X_i^{\min}$ to $\mathcal{O}\left(\sqrt{\frac{\log d}{d}} \|X_i\|_2\right)$

For each client

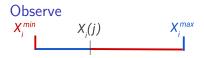
Rotate the vector using a random rotation matrix: $Z_i = RX_i$



Smaller $X_i^{\max} - X_i^{\min}$, smaller the error Random rotation reduces $X_i^{\max} - X_i^{\min}$ to $\mathcal{O}\left(\sqrt{\frac{\log d}{d}} \|X_i\|_2\right)$

For each client

Rotate the vector using a random rotation matrix: $Z_i = RX_i$ Quantize each coordinate of Z_i in k levels to obtain Y_i



Smaller $X_i^{\max} - X_i^{\min}$, smaller the error Random rotation reduces $X_i^{\max} - X_i^{\min}$ to $\mathcal{O}\left(\sqrt{\frac{\log d}{d}} \|X_i\|_2\right)$

For each client

Rotate the vector using a random rotation matrix: $Z_i = RX_i$ Quantize each coordinate of Z_i in k levels to obtain Y_i

Server Estimate the mean by

$$\hat{\bar{X}} = R^{-1} \cdot \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Communication cost

 $d\lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1)$ bits per client

$$\mathcal{C} = n \cdot \left(d \lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1) \right)$$

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ < つ < ○</p>
19/36

Communication cost

 $d\lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1)$ bits per client

$$\mathcal{C} = n \cdot \left(d \lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1) \right)$$

Mean squared error

$$\mathcal{E} = \mathcal{O}\left(\frac{\log d}{n(k-1)^2} \cdot \frac{1}{n} \sum_{i=1}^n \|X_i\|_2^2\right)$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ > < 2 > < 2 > < 19/36

Communication cost

 $d\lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1)$ bits per client

$$\mathcal{C} = n \cdot \left(d \lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1) \right)$$

Mean squared error

$$\mathcal{E} = \mathcal{O}\left(\frac{\log d}{n(k-1)^2} \cdot \frac{1}{n} \sum_{i=1}^n \|X_i\|_2^2\right)$$

 $\mathcal{O}(d \log k)$ bits/client, MSE $\mathcal{O}(d/nk^2) \rightarrow \mathcal{O}(\log d/nk^2)$

<ロ> < □ > < □ > < 三 > < 三 > < 三 > ○ < ○ 19/36

Communication cost

 $d\lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1)$ bits per client

$$\mathcal{C} = n \cdot \left(d \lceil \log_2 k \rceil + \tilde{\mathcal{O}}(1) \right)$$

Mean squared error

$$\mathcal{E} = \mathcal{O}\left(\frac{\log d}{n(k-1)^2} \cdot \frac{1}{n} \sum_{i=1}^n \|X_i\|_2^2\right)$$

 $\mathcal{O}(d \log k)$ bits/client, MSE $\mathcal{O}(d/nk^2) \rightarrow \mathcal{O}(\log d/nk^2)$

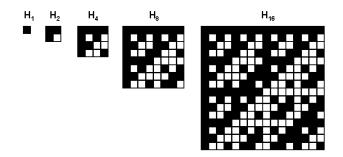
Rotation of high-dimensional vector is slow: $\mathcal{O}(d^2)!$

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > ○ < ○</p>
19/36

Fast random rotation

Use structured rotation R = HD

- H : Walsh-Hadamard matrix
- D: Diagonal matrix with independent Radamacher entries



(日) (四) (三) (三) (三)

Matrix-vector multiplication time: $O(d \log d)$ Used in other contexts: Ailon et al '09, Yu et al '16 1. Stochastic rotated *k*-Level Quantization Rotates the vectors before quantization

2. Variable length coding

Uses Huffman/Arithmetic coding + universal compression Information theoretically optimal

Variable length coding

Previous schemes used fixed log k bits for each dimension Variable length: use different number of bits for each dimension Key Idea: Use fewer bits for more frequent bins Described quantized distribution, encode using arithmetic coding

for quantized distribution, encode using arithmetic coding

Variable length coding

Previous schemes used fixed log k bits for each dimension Variable length: use different number of bits for each dimension Key Idea: Use fewer bits for more frequent bins

Described quantized distribution, encode using arithmetic coding for quantized distribution

Communication Cost

Arithmetic/Huffman coding + universal compression yields

$$\mathcal{C} \leq n \cdot \mathcal{O}\Big(d(1 + \log(k^2/d + 1)) + \tilde{\mathcal{O}}(1)\Big)$$

For $k \leq \sqrt{d}$, $\mathcal{O}(d \log k) \rightarrow \mathcal{O}(d)$ bits per client, MSE $\mathcal{O}(d/nk^2)$

 $k = \sqrt{d}$, $\mathcal{O}(d)$ bits per client, MSE $\mathcal{O}(1/n)$

What is the best protocol for any worst case dataset? Variable length coding combined with client sampling is optimal What is the best protocol for any worst case dataset? Variable length coding combined with client sampling is optimal

Min-max result Let t < 1 be a constant. For communication cost $c \leq tnd$,

$$\mathcal{E}(c) = \min_{\pi: \mathcal{C}(\pi) < c} \max_{X^n \in B^d} \mathcal{E}(\pi, X^n) = \Theta\left(\min\left(1, \frac{d}{c}\right)\right)$$

Product of communication cost and MSE scales linearly with d

・ロ ・ ・ @ ・ ・ 注 ・ 注 ・ う へ (?)
23/36

What is the best protocol for any worst case dataset? Variable length coding combined with client sampling is optimal

Min-max result Let t < 1 be a constant. For communication cost $c \leq tnd$,

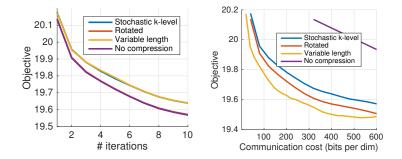
$$\mathcal{E}(c) = \min_{\pi: \mathcal{C}(\pi) < c} \max_{X^n \in B^d} \mathcal{E}(\pi, X^n) = \Theta\left(\min\left(1, \frac{d}{c}\right)\right)$$

Product of communication cost and MSE scales linearly with d

Lower bound from results in Zhang et al NIPS '13

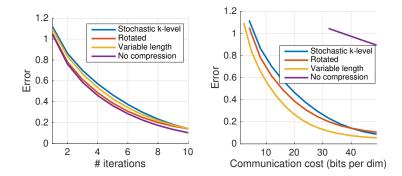
Experiments: Lloyd's algorithm (kmeans)

MNIST, m = 60K, d = 784, n = 10 clients, 10 centers, k = 16



Experiments: Power iteration (PCA)

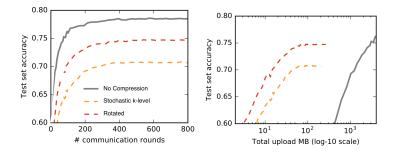
MNIST, m = 60K, d = 784, n = 10 clients, k = 16 levels



▲□▶ ▲□▶ ▲国▶ ▲国▶ - 国 - のの⊙ - -

Experiments: distributed SGD

CIFAR, m = 50K, $d > 10^6$, n = 100 clients (500 examples each), k = 2



Communication efficiency: conclusion

Three approaches for compressed distributed mean estimation without any assumption on data distribution

For k = 2,

	Bits per client	MSE
Stochastic k-level	d	$\mathcal{O}(d/n)$
Rotated	d	$\mathcal{O}(\log(d)/n)$
Variable-length*	$\mathcal{O}(d)$	$\mathcal{O}(1/n)$

*Communication optimal in minimax sense

Communication efficiency: conclusion

Three approaches for compressed distributed mean estimation without any assumption on data distribution

For k = 2,

	Bits per client	MSE
Stochastic k-level	d	$\mathcal{O}(d/n)$
Rotated	d	$\mathcal{O}(\log(d)/n)$
Variable-length*	$\mathcal{O}(d)$	$\mathcal{O}(1/n)$

*Communication optimal in minimax sense

Privacy?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Differential privacy

Communication protocol

Client *i* transmits a compressed / private vector $q(X_i)$ Server estimates the mean by some function of $q(X_1), \ldots, q(X_n)$ Let the estimate be \hat{X}

Differential privacy

Communication protocol

Client *i* transmits a compressed / private vector $q(X_i)$ Server estimates the mean by some function of $q(X_1), \ldots, q(X_n)$ Let the estimate be \hat{X}

Differential privacy

Two sets: $X^n = X_1, X_2, \dots, X_n$ and $X'^n = X_1, X_2, \dots, X'_n$

A mean estimator is (ϵ, δ) differential private, if for any set S

$$\mathsf{Pr}(\hat{ar{X}}(X^n)\in S)\leq e^\epsilon\,\mathsf{Pr}(\hat{ar{X}}(X'^n)\in S)+\delta$$

Differential privacy

Communication protocol

Client *i* transmits a compressed / private vector $q(X_i)$ Server estimates the mean by some function of $q(X_1), \ldots, q(X_n)$ Let the estimate be \hat{X}

Differential privacy

Two sets: $X^n = X_1, X_2, \dots, X_n$ and $X'^n = X_1, X_2, \dots, X'_n$

A mean estimator is (ϵ, δ) differential private, if for any set S

$$\mathsf{Pr}(\hat{ar{X}}(X^n)\in S)\leq \mathsf{e}^\epsilon\,\mathsf{Pr}(\hat{ar{X}}(X'^n)\in S)+\delta$$

No one can identify X_i of a single user

Gaussian mechanism

Algorithm

Server computes the average \hat{X} using $q(X_1), q(X_2), \ldots, q(X_n)$ and releases

$$\hat{\bar{X}} + N(0, \sigma^2 \mathbb{I}_d),$$

where $\sigma \approx \frac{1}{n\epsilon} \log \frac{1}{\delta}$

<ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 29/36

Gaussian mechanism

Algorithm

Server computes the average \hat{X} using $q(X_1), q(X_2), \ldots, q(X_n)$ and releases

$$\hat{\bar{X}} + N(0, \sigma^2 \mathbb{I}_d),$$

where $\sigma \approx \frac{1}{n\epsilon} \log \frac{1}{\delta}$

Guarantees

Released model is (ϵ, δ) differential private

Gaussian mechanism

Algorithm

Server computes the average \hat{X} using $q(X_1), q(X_2), \ldots, q(X_n)$ and releases

$$\hat{\bar{X}} + N(0, \sigma^2 \mathbb{I}_d),$$

where $\sigma \approx \frac{1}{n\epsilon} \log \frac{1}{\delta}$

Guarantees

Released model is (ϵ, δ) differential private

Issues

Server may not add noise Server knows true $\hat{\bar{X}}$

<ロ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ の Q () 29/36

Distributed Gaussian mechanism

Algorithm

Clients send $g(X_i) = q(X_i) + N(0, \sigma\sqrt{n})$ Server computes average by

$$\frac{1}{n} \cdot \sum_{i=1}^{n} g(X_i)$$

30/36

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 • のへで

Distributed Gaussian mechanism

Algorithm

Clients send $g(X_i) = q(X_i) + N(0, \sigma\sqrt{n})$ Server computes average by

$$\frac{1}{n} \cdot \sum_{i=1}^{n} g(X_i)$$

Analysis

Average of Gaussians is a Gaussian Total noise variance:

$$\frac{1}{n} \cdot \sigma^2 n = \sigma^2$$

 \implies Learned model is (ϵ, δ) differentially private

Server is negligent but not malicious Estimate of the average is differentially private Learned model is private and safe to release

Server is negligent but not malicious

Estimate of the average is differentially private

Learned model is private and safe to release

Clients do not trust the server

Secure aggregation: cryptographic scheme to ensure that the server learns only the average \hat{X}

Server does not learn anything about individual users

Server is negligent but not malicious

Estimate of the average is differentially private

Learned model is private and safe to release

Clients do not trust the server

Secure aggregation: cryptographic scheme to ensure that the server learns only the average \hat{X}

Server does not learn anything about individual users

Issue Algorithm is not communication efficient

Cryptographic protocol operates over discrete values

Distributed Gaussian mechanism: attempt 2

Quantized Gaussians

- Clients send $g(X_i) = X_i + N(0, \sigma\sqrt{n})$
- Quantizes $g(X_i)$ to obtain $q(g(X_i))$
- Servers compute average by

$$\frac{1}{n} \cdot \sum_{i=1}^{n} q(g(X_i))$$

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

Distributed Gaussian mechanism: attempt 2

Quantized Gaussians

- Clients send $g(X_i) = X_i + N(0, \sigma\sqrt{n})$
- Quantizes $g(X_i)$ to obtain $q(g(X_i))$
- Servers compute average by

$$\frac{1}{n} \cdot \sum_{i=1}^{n} q(g(X_i))$$

Differential privacy

Sum of quantized Gaussians is not Gaussian Needs proof that quantization does not affect privacy

Binomial mechanism

Algorithm

- Client *i* computes the compressed vector $q(X_i)$
- Adds Binomial noise $Z_i = Bin(m, p)$ and transmits

 $q(X_i) + Z_i$

Binomial mechanism

Algorithm

- Client i computes the compressed vector q(X_i)
- Adds Binomial noise $Z_i = Bin(m, p)$ and transmits

$$q(X_i) + Z_i$$

Advantages

- Finite number of bits to send Binomial random variable
- Communication cost

$$n \cdot d \cdot \lceil \log_2(m+k) \rceil$$

- Sum of Binomial noise $\sum_i Z_i$ is also binomial
- By CLT: Binomial \rightarrow Gaussian

Binomial mechanism results

Gaussian mechanism Dwork et al '06 $N(0, \sigma^2)$ is (ϵ, δ) differentially private for

$$\epsilon \geq \frac{\Delta_2 \sqrt{2\log \frac{1.25}{\delta}}}{\sigma}$$

Binomial mechanism Bin(N, p) is (ϵ, δ) differentially private for

$$\epsilon \geq \frac{\Delta_2 \sqrt{2\log\frac{1.25}{\delta}}}{\sigma} + \tilde{\mathcal{O}}\left(\frac{\Delta_1 + \Delta_\infty}{\sigma^2}\right)$$

 $\sigma = Np(1-p)$

High privacy regime: $\epsilon \to \mathbf{0}, \sigma \to \infty$, mechanisms are same

Rotated quantization + Binomial mechanism

Achieves same MSE as Gaussian mechanism and has a communication cost

$$n \cdot d \cdot \left(\log_2 \left(1 + \frac{d}{n\epsilon^2} \right) + \mathcal{O}\left(\log \log \frac{nd}{\epsilon\delta} \right) \right)$$

If $n \approx d$, then $\log \log(nd/\epsilon \delta)$ bits are sufficient

Conclusions and future directions

Conclusions

- \blacktriangleright Distributed SGD \rightarrow distributed mean estimation
- Minimax optimal scheme for distributed mean estimation
- Communication-efficient DP by Binomial mechanism

Future directions

- Distributed SGD: correlation between gradients over time
- Distributed SGD: better privacy algorithms
- Distributed mean estimation: competitive / instance optimal

Thank you!