Network Coding and Index Coding via Rank Minimization

Salim El Rouayheb IIT, Chicago

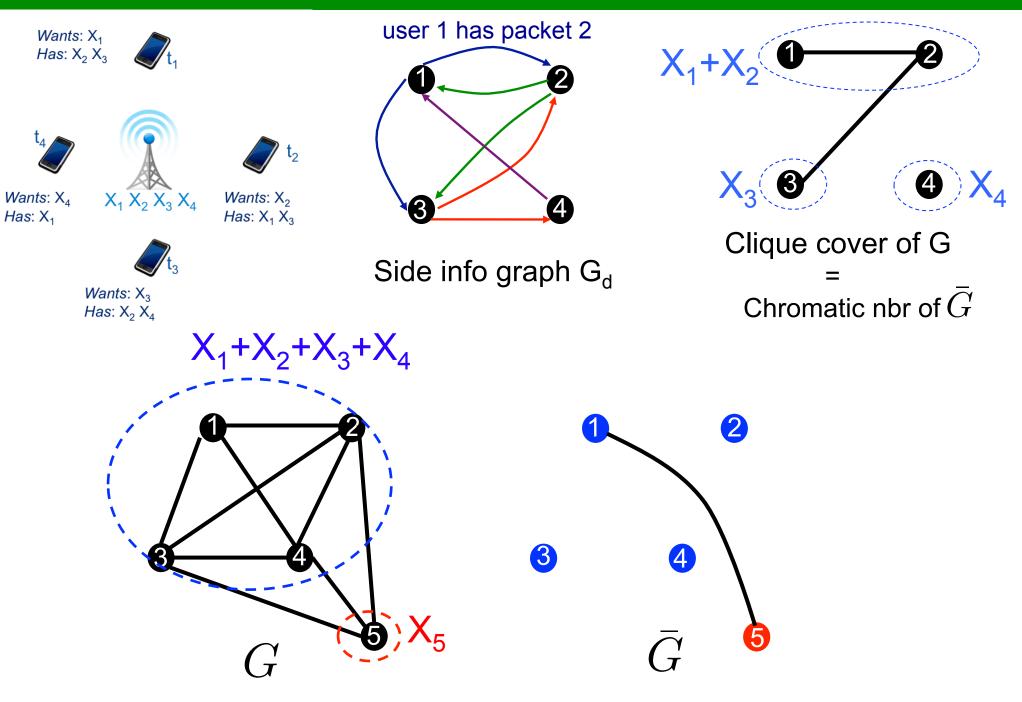
Joint work with Xiao Huang

Index Coding

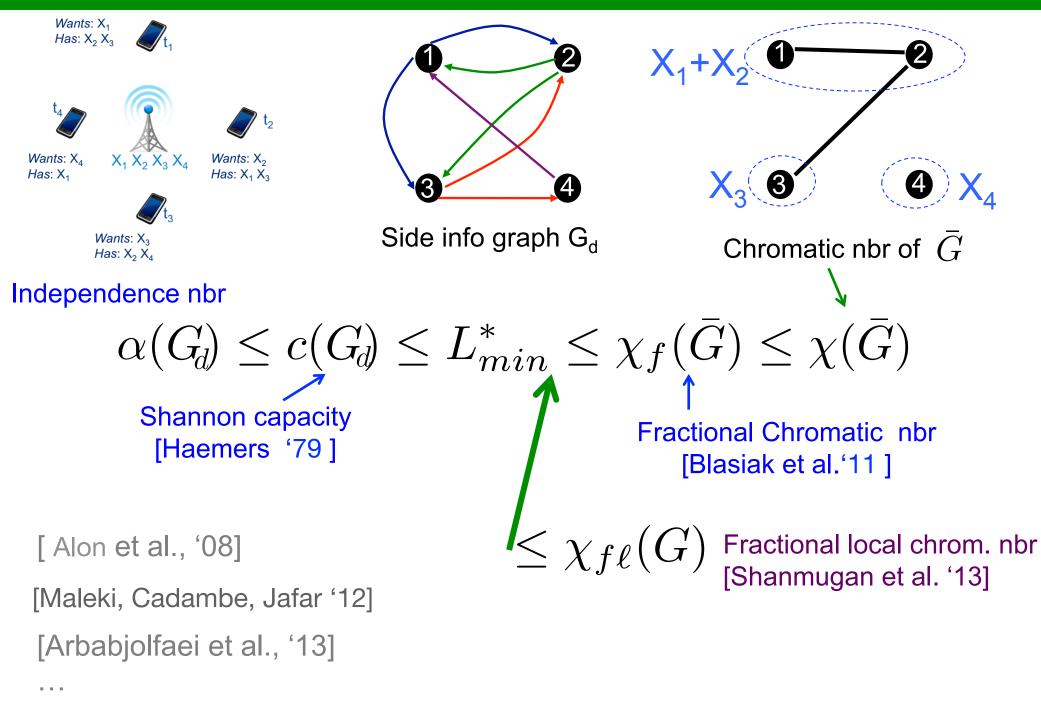
<i>Wants</i> : X ₁ <i>Has</i> : X ₂ X ₃	t ₁		Trans- mission #	Index code 1	Index code2
	$X_1 X_2 X_3 X_4$	Wants: X ₂ Has: X ₁ X ₃	1	X ₁	$X_1 + X_2$
t ₄			2	X_2	X ₃
			3	X ₃	X ₄
Wants: X_4 X Has: X_1			4	X_4	
	t ₃			L=4	L=3
Wants: X ₃ Has: X ₂ X ₄		Informed-source coding-on-demand [Birk & Kol infocom'98]			

& Kol infocom'98]

Index Coding & Graph Coloring



Index Coding & Graph Coloring

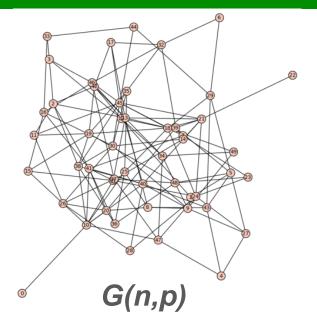


Index Coding on Erdős-Rényi Graphs

 $\begin{array}{ll} \text{Independence nbr} & \text{Chromatic nbr} \\ \alpha(G) \leq L^*_{min} \leq \chi(\bar{G}) \end{array}$

• When $n \to \infty$, we have with prob 1

$$\log n \le L_{min}^* \le \frac{n}{\log n}$$

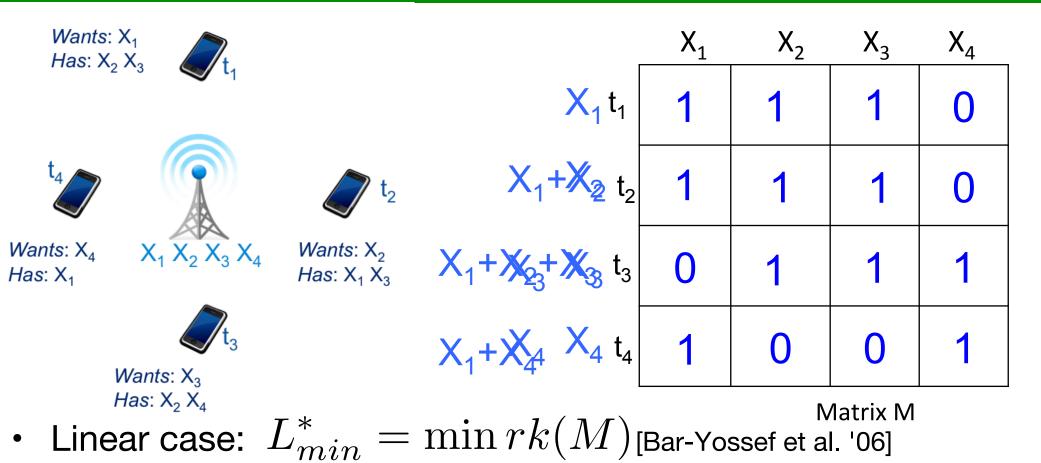


• Can improve the lower bound [Haviv & Langberg '11]

$$c\sqrt{n} \le L_{min}^* \le \frac{n}{\log n}$$

Coloring is the best upper bound we know on random graphs. Is it tight? OPEN

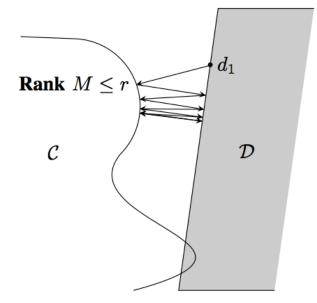
Index Coding & Rank Minimization



- Min rank introduced by Haemers in 79 to bound the Shannon graph capacity.
 - Computing L^*_{min} is NP hard. [R. et al. '07] [Peeters '96]
 - Recent work on matrix completion for index coding [Hassibi et al. '14]

Contributions

- Propose heuristics for solving index coding problem using rank minimization methods
- Compare to graph coloring solutions
- Matlab code for constructing
 - 1. Index codes (of course)
 - 2. Network codes for general networks
 - 3. Locally repairable codes
 - 4. Matroid representations

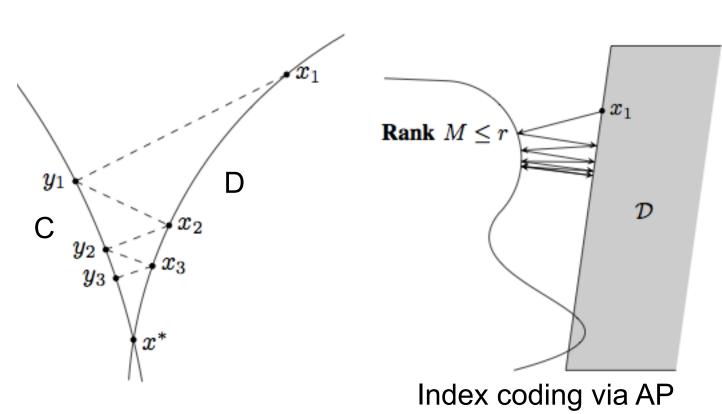


Index coding via Alternating Projections

- Interesting case where an optimization problem results in an "actual" code
- Open: theoretical guarantees

Use Matrix Completion Methods to Construct Index Codes

- Min nuclear norm [Recht & Candes '09] does not work here
- Try alternative rank minimization methods [Fazel et al. 2001]



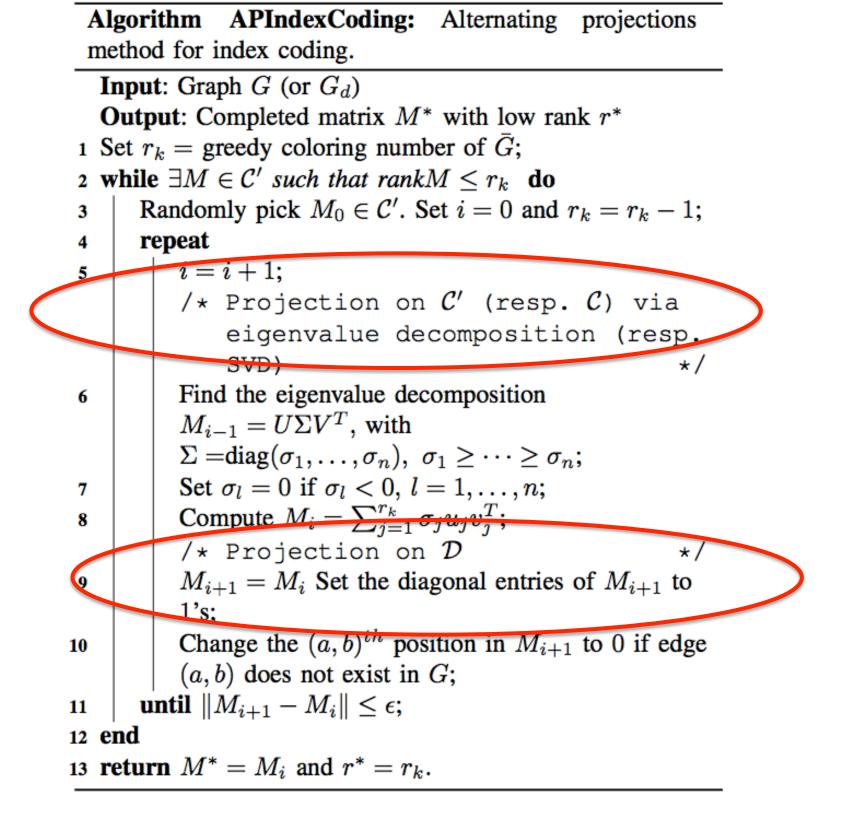
Two problems:

- Regions not convex
- 2) Optimization over the reals

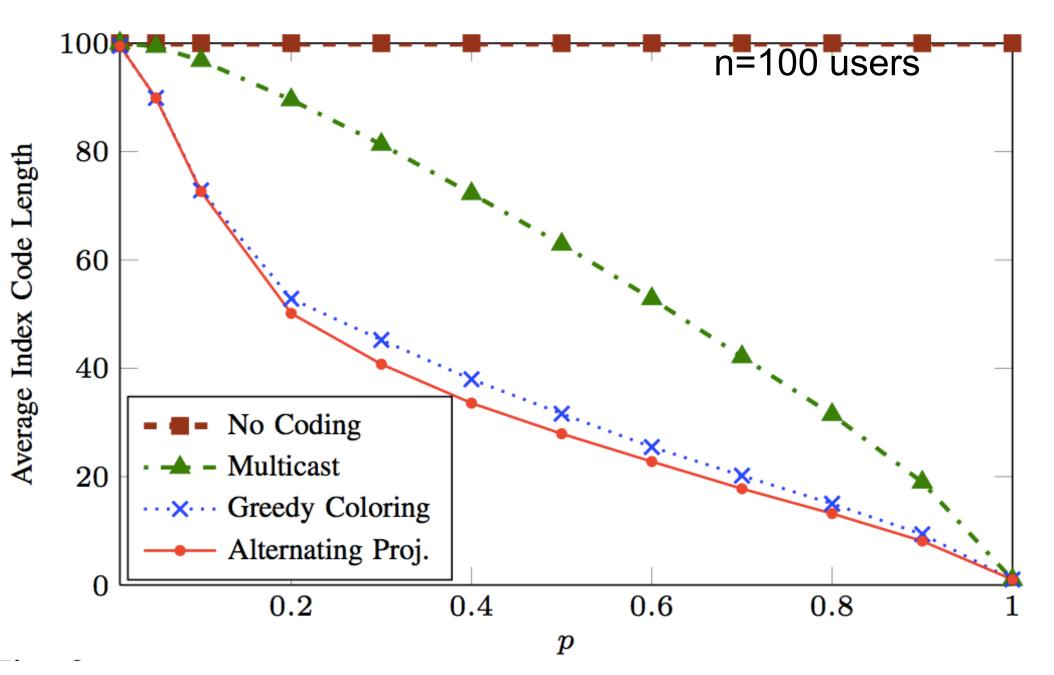
Network codes over the reals [Shwartz & Medard '14], Jaggi et al. '08]

Theorem: [Alternating Projections (AP)]

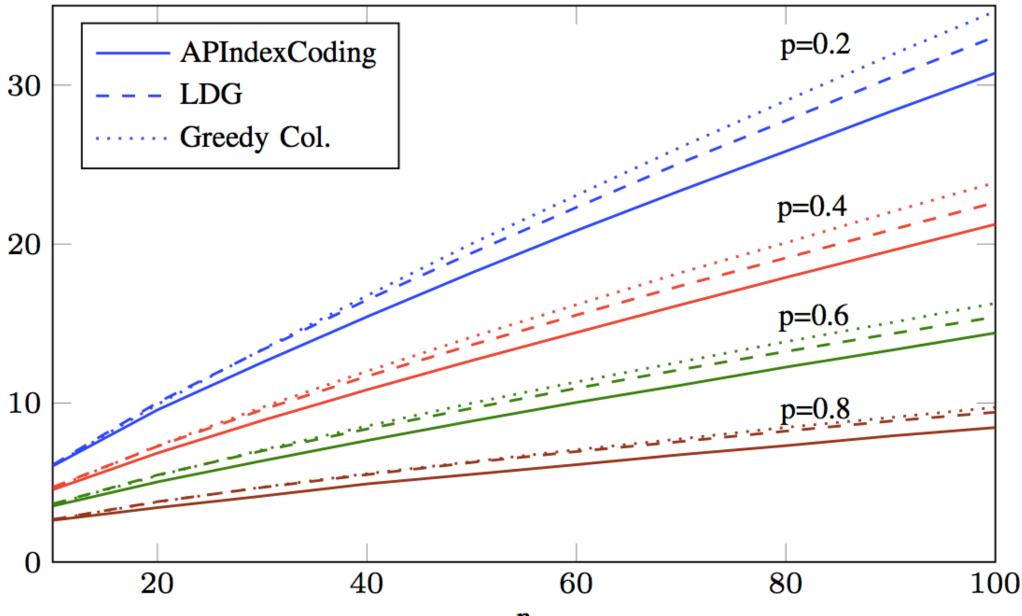
If C and D are convex, then an alternating projection sequence between these 2 regions converges to a point in their intersection.



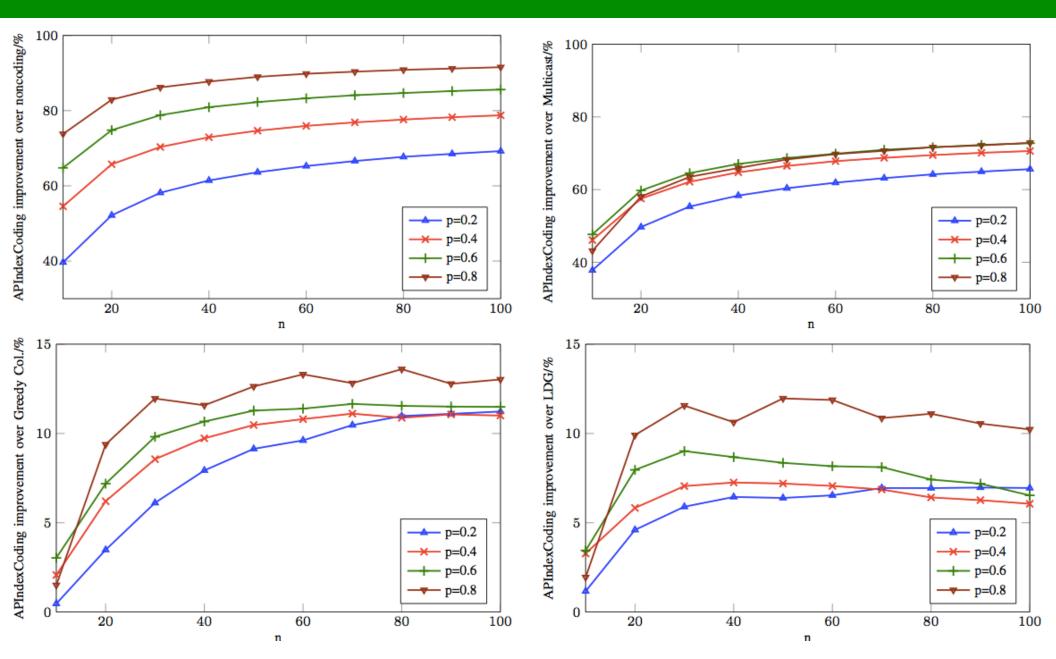
Index Coding via Alternating Proj on Random Undirected Graphs



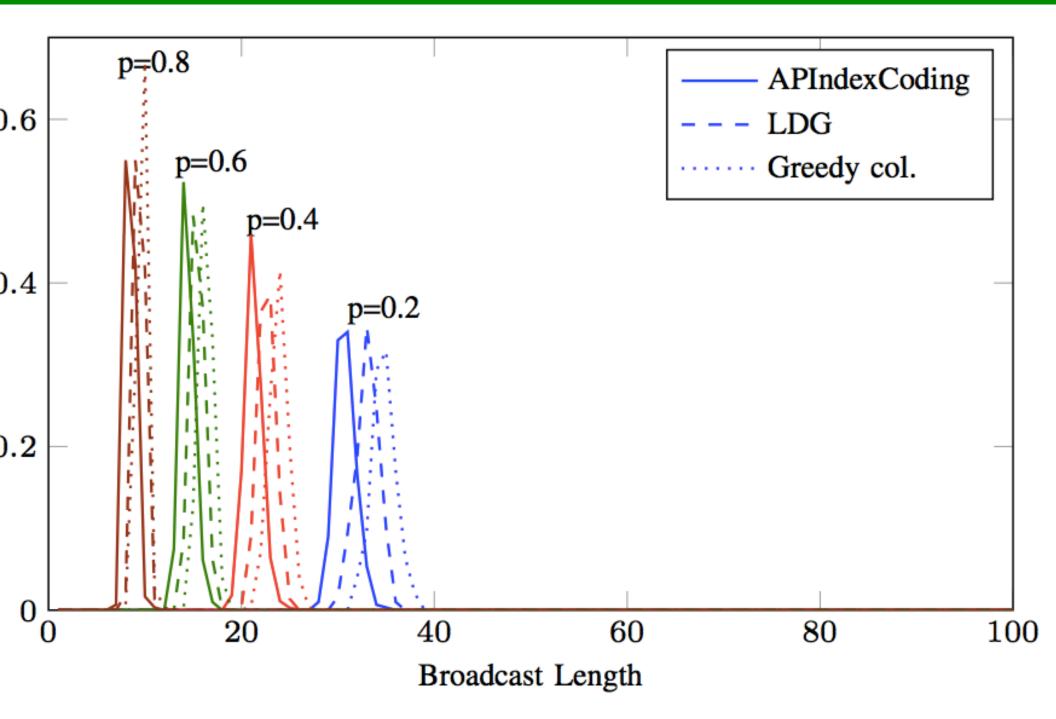
Performance with Increasing Number of Users



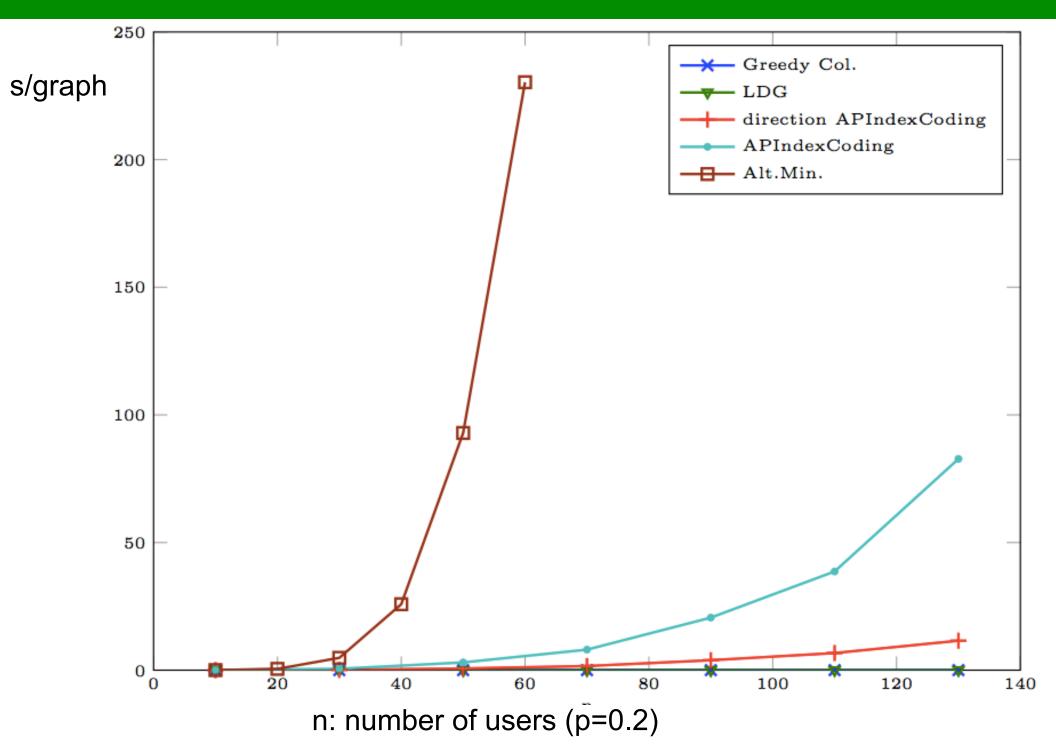
Improvement in Percentage



Concentration around the Average



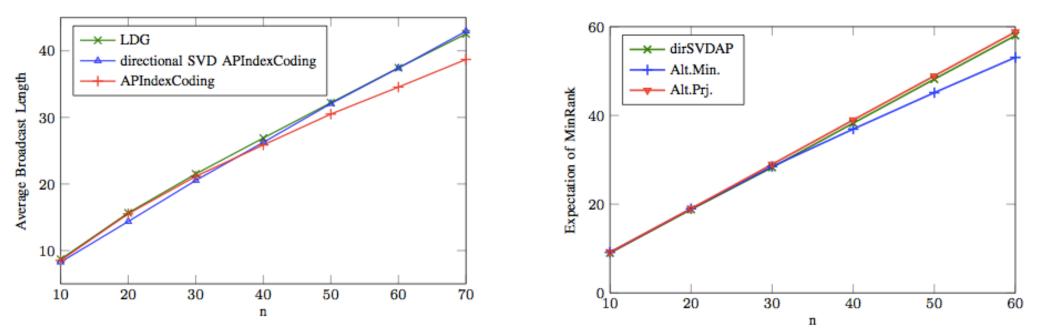
Running Time



Random Directed Graphs



Which Method to use for Directed Graphs?



How close are these heuristics to the actual minimum

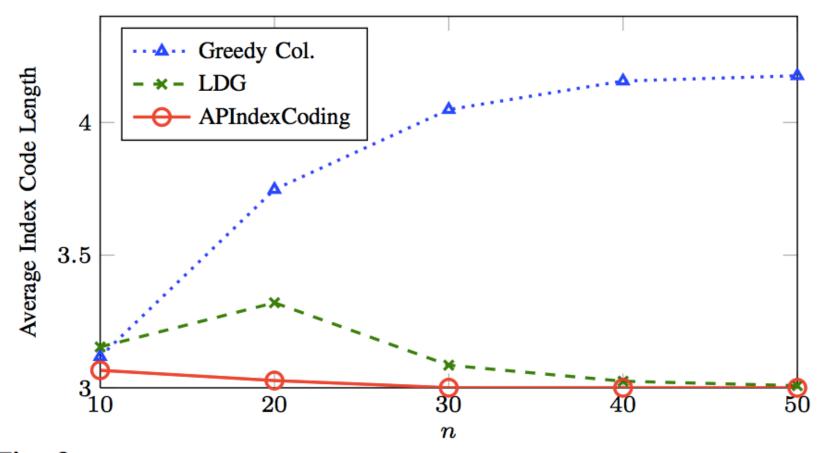
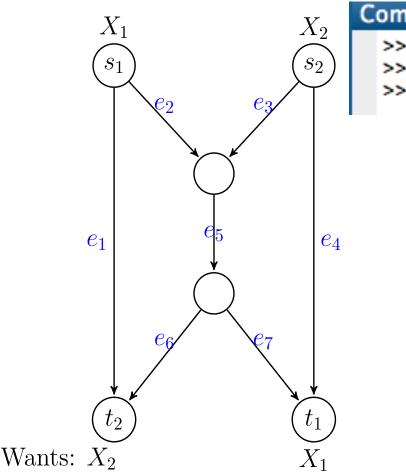


Fig. 9: Average index code length obtained by using Greedy Coloring, LDG and APIndexCoding for random 3-colorable graphs when p = 0.5.

- For n≤5, linear index coding achieve capacity [Ong,'14]. Online list of optimal index coding rates [kim]
- APindex coding was able to achieve all these rates whenever they are integers

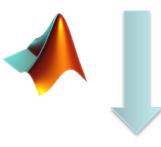
"Application" to Network Coding & Storage & Matroids

Goal



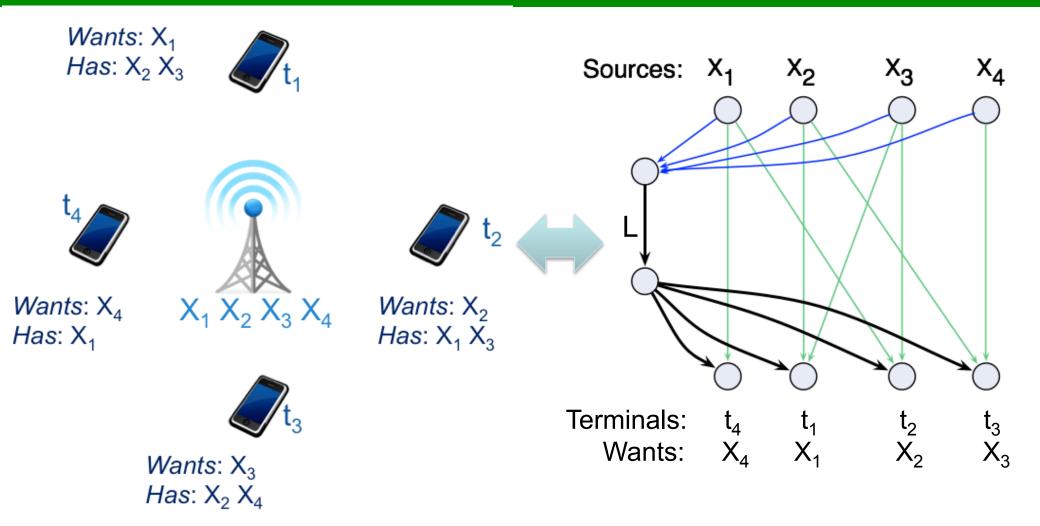
Command Window

- >> Butterfly_Network=[1 5 ;1 3;2 3;2 6;3 4;4 5;4 6];
 >> Demand=[0 0 0 0 2 1];
- >> NC=FindNetworkCode(Butterfly_Network,Demand)



Output: Network Code

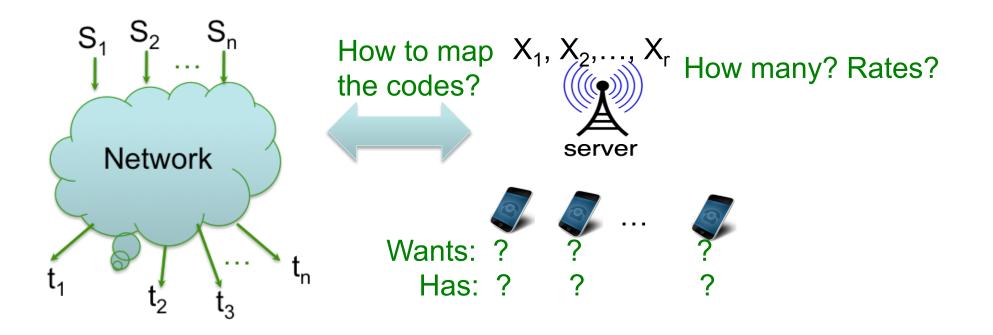
Equivalence to Network Coding



An index code of length L that satisfies all the users

A network code that satisfies all the terminals

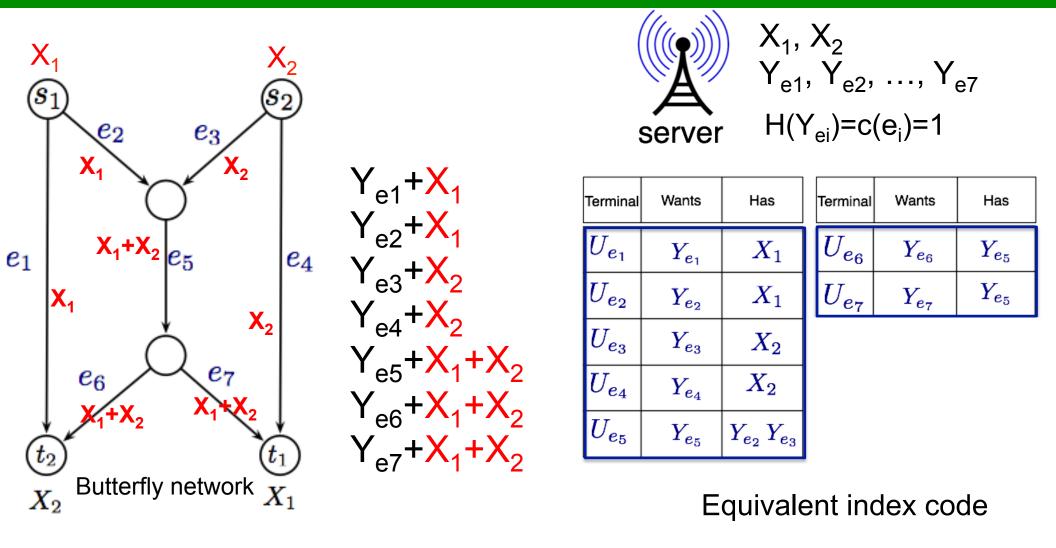
Equivalence bw Index Coding & Network Coding



Theorem: [R,Sprintson, Georghiades'08] [Effros,R,Langberg ISIT'13]

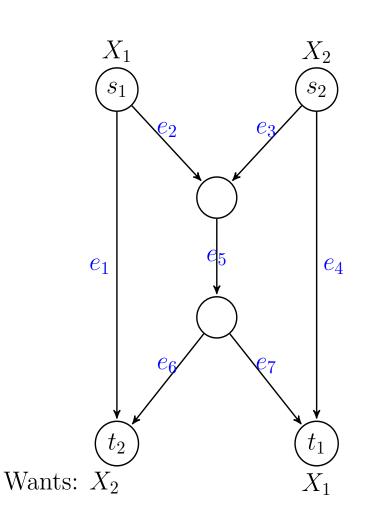
For any network coding problem, one can construct an index coding problem and an integer L such that given any network code, one can efficiently construct a index code of length L, and vice versa. (same block length, same error probability).

Example



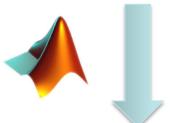
- All terminals in the index coding problem can decode
- Any linear network code gives an index code of length L=7

Butterfly Network



Command Window

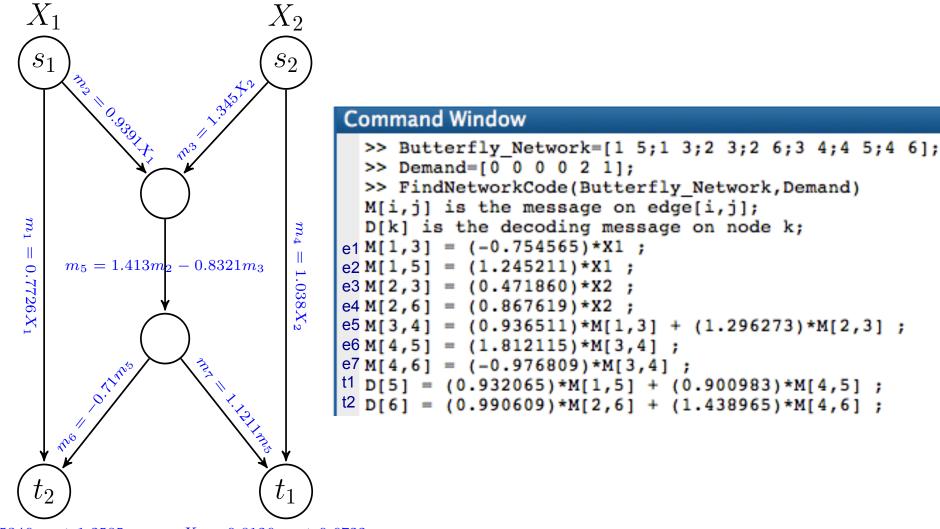
- >> Butterfly_Network=[1 5;1 3;2 3;2 6;3 4;4 5;4 6];
- >> Demand=[0 0 0 0 2 1];
- >> FindNetworkCode(Butterfly_Network,Demand)



Equivalent Index Coding Problem

```
M[i,j] is the message on edge[i,j];
D[k] is the decoding message on node k;
   ,3] = (-0.754565) * X1;
M[1
          (1.245211)*X1 ;
M[1
    51
       =
          (0.471860)*X2 ;
M[2
   ,31
       =
         (0.867619)*X2 ;
M[2
   ,61
       =
          (0.936511)*M[1,3] + (1.296273)*M[2,3] ;
M[3
    41 =
         (1.812115)*M[3,4];
       =
M<sub>f</sub>4
   ,51
M[4,6] = (-0.976809) * M[3,4];
D[5] = (0.932065) * M[1,5] + (0.900983) * M[4,5];
D[6] = (0.990609) * M[2,6] + (1.438965) * M[4,6];
```

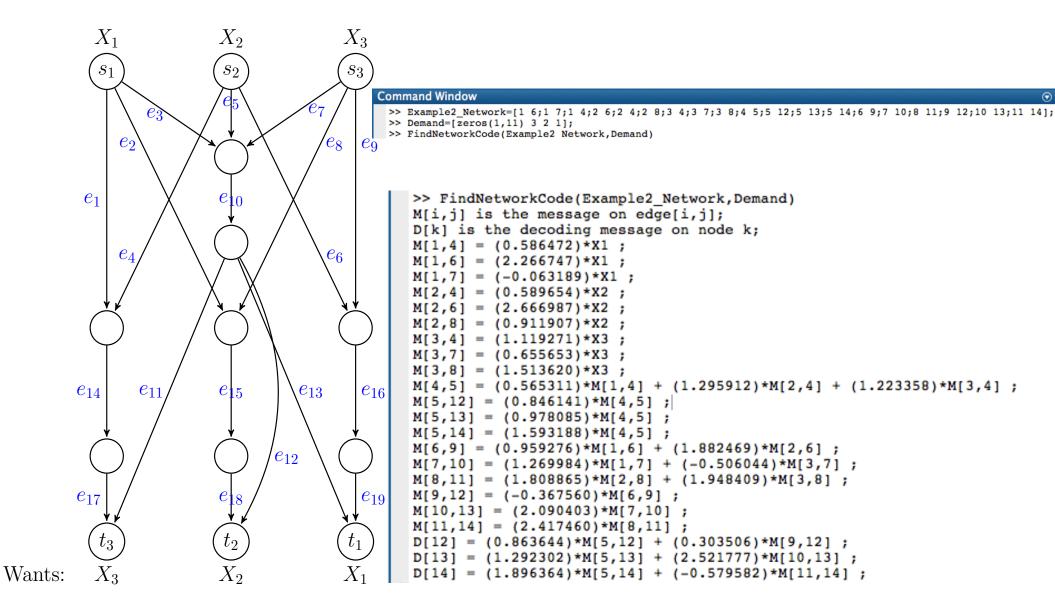
Index code



 $X_2 = 1.5346m_1 + 1.2585m_6$

 $X_1 = 0.8126m_4 + 0.6722m_7$

Example 2

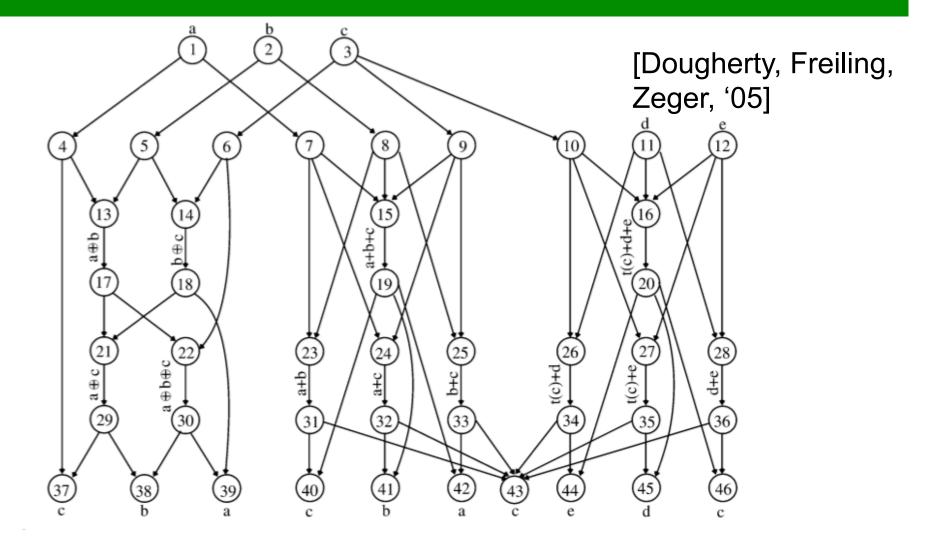


Solution of example 2

Command Window

```
>> Example2 Network=[1 6;1 7;1 4;2 6;2 4;2 8;3 4;3 7;3 8;4 5;5 12;5 13;5 14;6 9;7 10;8 11;9 12;10 13;11 14];
>> Demand=[zeros(1,11) 3 2 1];
>> FindNetworkCode(Example2 Network,Demand)
M[i,j] is the message on edge[i,j];
D[k] is the decoding message on node k;
M[1,4] = (0.586472) * X1;
M[1,6] = (2.266747) * X1 ;
M[1,7] = (-0.063189) * X1;
M[2,4] = (0.589654) \times X2;
M[2,6] = (2.666987) \times X2;
M[2,8] = (0.911907) * X2;
M[3,4] = (1.119271) * X3;
M[3,7] = (0.655653) * X3;
M[3,8] = (1.513620) * X3;
M[4,5] = (0.565311) * M[1,4] + (1.295912) * M[2,4] + (1.223358) * M[3,4];
M[5,12] = (0.846141) * M[4,5];
M[5,13] = (0.978085) * M[4,5];
M[5,14] = (1.593188) * M[4,5];
M[6,9] = (0.959276) * M[1,6] + (1.882469) * M[2,6];
M[7,10] = (1.269984) * M[1,7] + (-0.506044) * M[3,7];
M[8,11] = (1.808865) * M[2,8] + (1.948409) * M[3,8];
M[9,12] = (-0.367560) * M[6,9];
M[10,13] = (2.090403) * M[7,10];
M[11, 14] = (2.417460) * M[8, 11];
D[12] = (0.863644) * M[5, 12] + (0.303506) * M[9, 12];
D[13] = (1.292302) * M[5,13] + (2.521777) * M[10,13];
D[14] = (1.896364) * M[5, 14] + (-0.579582) * M[11, 14];
```

Non – linear code



Command Window

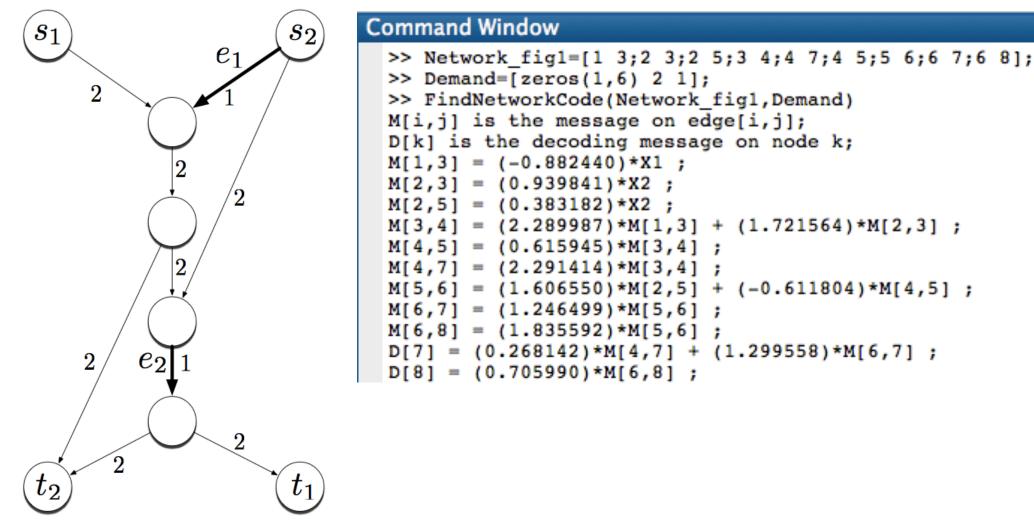
>> Network2=[1 4;2 4;2 5;3 5;4 6;5 7;6 8;6 9;7 8;7 14;3 9;8 10;9 11;10 12;10 13;11 13;11 14;1 12]; >> Demand=[0 0 0 0 0 0 0 0 0 0 0 3 2 1];

- >> NC=FindNetworkCode(Network2,Demand)

Cannot find scalar linear network code.

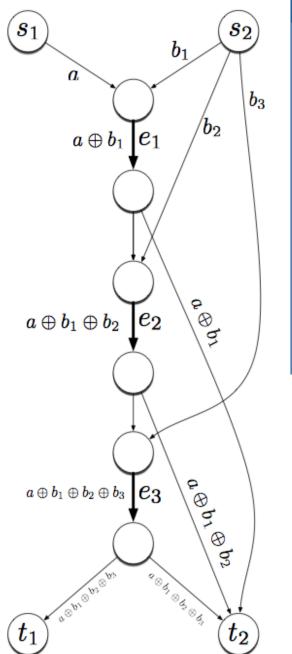
NC =

Example



S. Kamath et al., Generalized Network Sharing Outer Bound and the Two-Unicast Problem, 2011

Examples

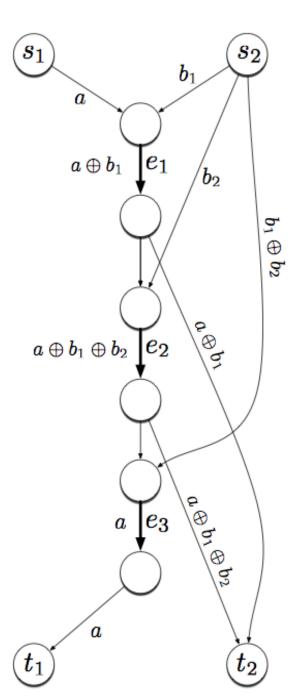


Command Window

```
>> Network fig2b=[1 3;2 3;2 5;2 7;3 4;4 10;4 5;5 6;6 7;6 10;7 8;8 9];
>> Demand=[zeros(1,8) 1 2];
>> FindNetworkCode(Network fig2b,Demand)
M[i,j] is the message on edge[i,j];
D[k] is the decoding message on node k;
M[1,3] = (1.839097) * X1;
M[2,3] = (1.246397) \times X2;
M[2,5] = (1.196041) * X2;
M[2,7] = (0.958880) * X2;
M[3,4] = (-0.078045) * M[1,3] + (0.219144) * M[2,3];
M[4,5] = (0.432557) * M[3,4];
M[4,10] = (-0.266030) * M[3,4];
M[5,6] = (0.641976) * M[2,5] + (0.659312) * M[4,5];
M[6,7] = (-0.644002) * M[5,6];
M[6,10] = (1.009827) * M[5,6];
M[7,8] = (1.812203) * M[2,7] + (3.204077) * M[6,7];
M[8,9] = (3.814314) * M[7,8];
D[9] = (3.200609) * M[8,9];
D[10] = (1.249332) * M[4,10] + (1.279767) * M[6,10];
```

S. Kamath, Tse, Anantharam, "Generalized Network Sharing Outer Bound and the Two-Unicast Problem", 2011.

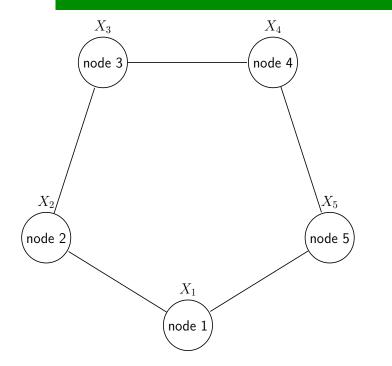
Examples



Command Window

```
>> Network fig2a=[1 3;2 3;2 5;2 7;3 4;4 10;4 5;5 6;6 7;6 10;7 8;8 9;8 10];
>> Demand=[zeros(1,8) 1 2];
>> FindNetworkCode(Network fig2a,Demand)
M[i,j] is the message on edge[i,j];
D[k] is the decoding message on node k;
M[1,3] = (0.357853) * X1;
M[2,3] = (1.160702) * X2;
M[2,5] = (0.873565) * X2;
M[2,7] = (-0.145219) \times X2;
M[3,4] = (-0.313999) * M[1,3] + (0.817991) * M[2,3];
M[4,5] = (-0.626207) * M[3,4];
M[4,10] = (0.880154) * M[3,4];
M[5,6] = (0.854540) * M[2,5] + (1.230356) * M[4,5];
M[6,7] = (1.472249) * M[5,6];
M[6,10] = (1.092611) * M[5,6];
M[7,8] = (0.304585) * M[2,7] + (1.737330) * M[6,7];
M[8,9] = (2.388991) * M[7,8];
M[8,10] = (0.565171) * M[7,8];
D[9] = (1.855486) * M[8,9];
D[10] = (1.174221) * M[4,10] + (0.997828) * M[6,10] + (0.148880) * M[8,10];
```

Locally Repairable Code



- Constructing Linear Repairable Codes* is equivalent to constructing linear index codes
- [Mazumdar '14],[Shanmugam, Dimakis'14]

Command Window

```
>> Pentagon=[1 2;2 3;3 4;4 5;1 5];
```

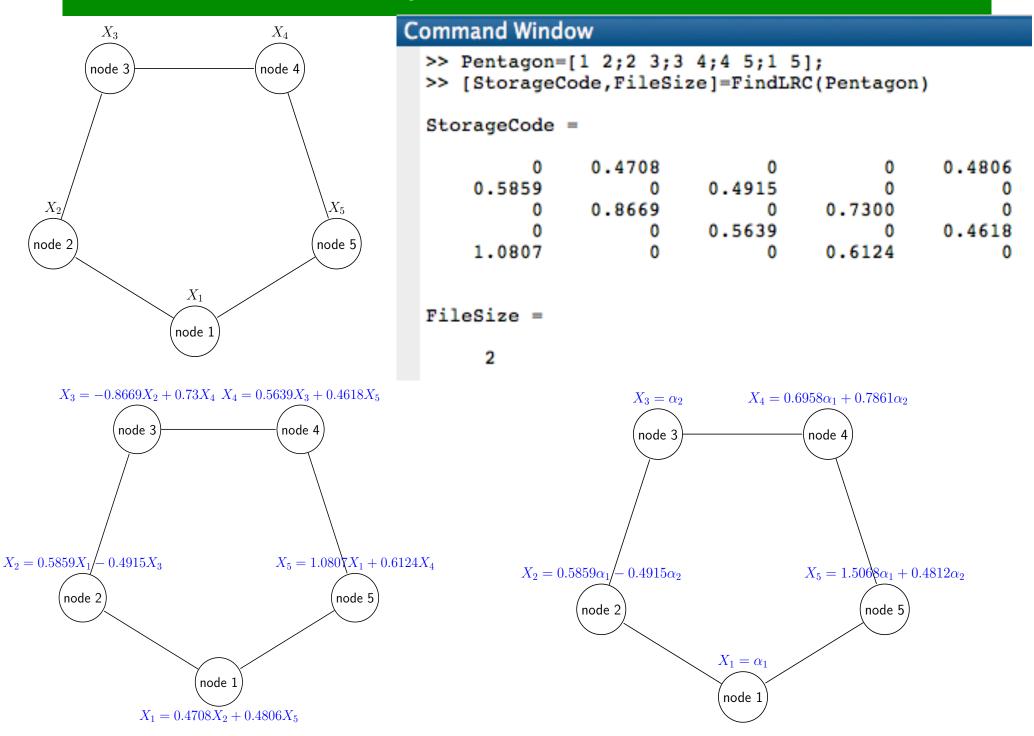
```
>> [StorageCode,FileSize]=FindLRC(Pentagon)
```

```
StorageCode =
```

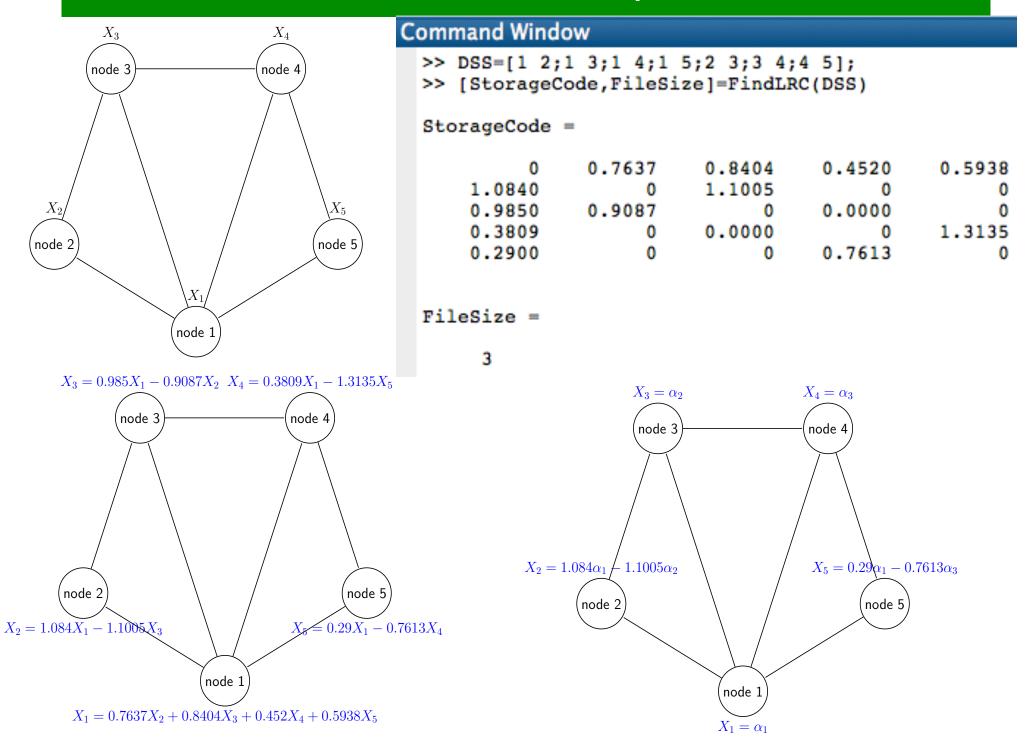
0	0.4708	0	0	0.4806
0.5859	0	0.4915	0	0
0	0.8669	0	0.7300	0
0	0	0.5639	0	0.4618
1.0807	0	0	0.6124	0

FileSize =

Locally Repairable Code



Another Example



Concluding Remarks

- Index coding is NP hard. But, this is not the end of the story.
- Proposed the use of different rank minimizations methods for constructing index codes
- Index coding is connected to many other interesting topic in the literature
- Building a matlab library to
 - Construct network codes
 - Codes with locality for distributed storage
 - Matroid representations
- Open questions:
- Provide theoretical guarantees on the performance of these algorithms
- How to go from the reals to finite fields?

Code Available Online

www.ece.iit.edu/~salim/codes.html

← → C 🗋 www	v.ece.iit.edu/~salim/codes.html	2	7	≡
Home Curriculum Vitae	Salim El Rouayheb – Software			_
Google Scholar ResearchGate Students	Index Coding via Rank Minimization Matlab code			_
Videos Research	The Matlab code above implements various rank minimization methods (Alternating Projections, Directional Alternating Projections, etc.) to construct optimal index codes.	t nea	ar-	

Full Paper available on Arxiv.

QUESTIONS?

Lemma 3: Let $\mathbf{X} = [X_1, X_2, \dots, X_n]^T$ be the message vector at the transmitter. Assume that the index code given by matrix M^* is used and let $\hat{\mathbf{X}} = [\hat{X}_1, \hat{X}_2, \dots, \hat{X}_n]^T$ be the messages decoded by the users. Then,

$$\|\mathbf{X} - \hat{\mathbf{X}}\| \le \epsilon X_{\max} \sqrt{n}.$$
 (5)

$$\|\mathbf{X} - \hat{\mathbf{X}}\| = \|\mathbf{X} - M^* A^{\dagger} A \mathbf{X} - M^* \circ \Phi \mathbf{X}\|$$
(10)
= $\|\mathbf{X} - M^* \mathbf{X} - M^* \circ \Phi \mathbf{X}\|$ (11)

$$= \|(I + M^* \circ \Phi - M^*)\mathbf{X}\| \tag{12}$$

$$= \|(M_{\mathcal{D}} - M^*)\mathbf{X}\| \tag{13}$$

$$\leq \|M_{\mathcal{D}} - M^*\| \|\mathbf{X}\| \tag{14}$$

$$= \| U \begin{bmatrix} 0 & 0 \\ 0 & \Sigma_{n-r^*} \end{bmatrix} V^T \| X_{\max} \sqrt{n} \qquad (15)$$

$$\leq \sigma_{r^*+1} X_{\max} \sqrt{n} \tag{16}$$

$$\leq \epsilon X_{\max} \sqrt{n}.$$
 (17)

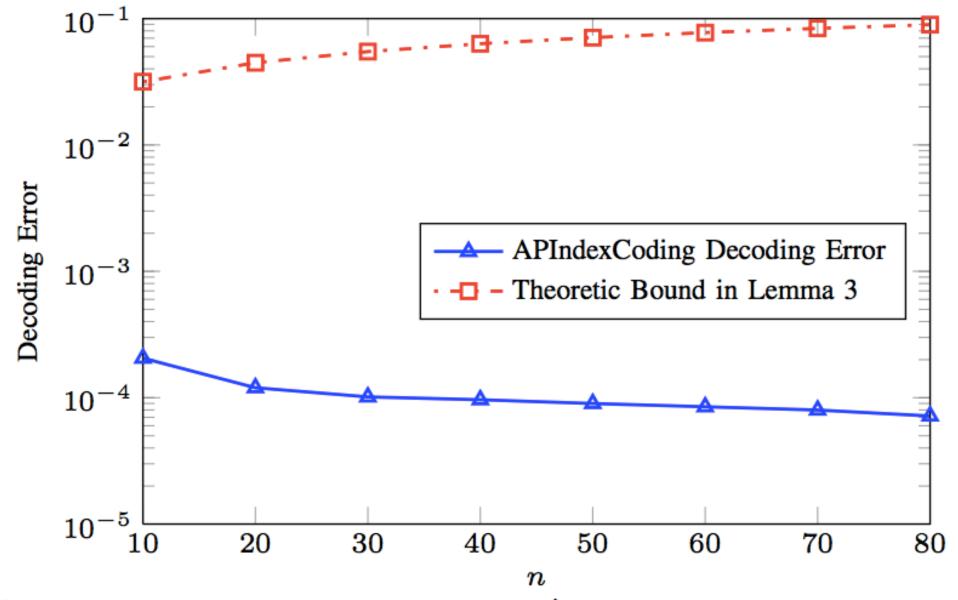


Fig. 12: Average decoding error $||\mathbf{X} - \hat{\mathbf{X}}||$ in APIndexcoding on random undirected graphs when p = 0.2, $\epsilon = 0.001$ and $X_i \in [-10, 10]$ ($X_{\text{max}} = 10$).