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Matlab Code with GUI for Constructing Linear Network 
Codes 

www.tinyurl.com/IndexCodingRocks 
Download Matlab code here: 

GUI 

Matlab outputs network 
code 
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Non-linear code 

[Dougherty, Freiling, 
Zeger, ‘05] 



Locally Repairable Code 
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•  Constructing Linear Repairable 
Codes* is equivalent to constructing 
linear index codes 

•  [Mazumdar ‘14],[Shanmugam, 
Dimakis’14]  



Locally Repairable Code 
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node 1

X1 = 0.4708X2 + 0.4806X5

node 2

X2 = 0.5859X1 � 0.4915X3

node 3

X3 = �0.8669X2 + 0.73X4

node 4

X4 = 0.5639X3 + 0.4618X5

node 5

X5 = 1.0807X1 + 0.6124X4

1

node 1

X1 = ↵1

node 2

X2 = 0.5859↵1 � 0.4915↵2

node 3

X3 = ↵2

node 4

X4 = 0.6958↵1 + 0.7861↵2

node 5

X5 = 1.5068↵1 + 0.4812↵2
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Matroids and Index Coding 

Theorem: [R,Sprintson, Georghiades ’09] 
For any matroid M(E, r(.)), one can construct an index 
coding problem and an integer c=|E|+r(E) such that there 
exists a linear index code of length c over F, iff the matroid 
M has a representation over F.


Fano matroid Linear representation over GF(2) 
(does not exist over GF(3)) 



Matlab Code Available Online 

www.tinyurl.com/IndexCodingRocks 
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Distributed Storage Index Coding 

Informed-source coding-on-demand [Birk 
& Kol infocom’98] 

Trans-
mission # 

Index 
code 1 

Index  
code2 

1 X1 X1+X2 

2 X2 X3 

3 X3 X4 

4 X4 
X1 X2 X3 X4 

Wants: X1 
Has: X2 X3 

Wants: X3 
Has: X2 X4 

Wants: X2 
Has: X1 X3 

Wants: X4 
Has: X1  

t1 

t2 

t3 

t4 

L=4" L=3"



Equivalence to Network Coding 

An index code of length L 
that satisfies all the users 

A network code that 
satisfies all the terminals 

Terminals:     t4        t1           t2         t3 
     Wants:     X4      X1          X2        X3 

L



Stating the Equivalence 

Theorem: [R,Sprintson, Georghiades’08] 

 For any network coding problem, one can construct an index 
coding problem and an integer L such that given any linear network 
code, one can efficiently construct a linear index code of length L, 
and vice versa. (same block length, same error probability).


[Effros,R,Langberg ISIT’13] 

… 

X1, X2,…, Xr How many? Rates? 

Wants:  ?       ?              ? 
    Has:  ?       ?              ?  

How to map 
the codes? 



Network Code è Index Code 
The linear case first 

Butterfly network 
Equivalent index code 

Ye1+X1 
Ye2+X1 
Ye3+X2 
Ye4+X2 
Ye5+X1+X2 
Ye6+X1+X2 
Ye7+X1+X2 

•  All terminals in the index coding problem can decode
•  Any linear network code gives an index code of length L=7

X1, X2 
Ye1, Ye2, …, Ye7

  H(Yei)=c(ei)=1 

X1 X2 

X1 

X1 X2 

X1+X2 

X1+X2 

X2 

X1+X2 



Index Code è Network Code 

Butterfly network 

Ye1+X1 
Ye2+X1 
Ye3+X2 
Ye4+X2 
Ye5+X1+X2 
Ye6+X1+X2 
Ye7+X1+X2 

Given a linear 
index code

Ye1+Ye2 
Ye2+X1 
Ye3+X2 
Ye4+X2 
Ye5+Ye4+X1 
Ye6+X1+X2 
Ye6+Ye7 

Can always 
diagonalize 

•  Any linear index code of length L=7 can be mapped to a 
linear network code

•  Works for scalar linear and vector linear 



Non-Linear Network Code è Index Code 
EASY 

Butterfly network Equivalent index code 

fei(X1, X2) : message on edge ei 

Ye1 + fe1(X1, X2)

Ye2 + fe2(X1, X2)

Ye3 + fe3(X1, X2)

Ye4 + fe4(X1, X2)

Ye5 + fe5(X1, X2)

Ye6 + fe6(X1, X2)

Ye7 + fe7(X1, X2)



Implications: Scalar vs. Vector Linear 

Scalar linear index codes are not optimal


[Dougherty, Freiling, 
Zeger, ‘05] 



Non-linear Index Codes -> Network Codes 
HARD!!! 

Butterfly network 

Given a non-
linear index code

Cannot always 
Diagonalize 

    

B1 = g1(Ȳe, X̄)

B2 = g2(Ȳe, X̄)

B3 = g3(Ȳe, X̄)

B4 = g4(Ȳe, X̄)

B5 = g5(Ȳe, X̄)

B6 = g6(Ȳe, X̄)

B7 = g7(Ȳe, X̄)

B0
1 = g01(Ye1 , X̄)

B0
2 = g02(Ye2 , X̄)

B0
3 = g03(Ye3 , X̄)

B0
4 = g04(Ye4 , X̄)

B0
5 = g05(Ye5 , X̄)

B0
6 = g06(Ye6 , X̄)

B0
7 = g07(Ye7 , X̄)



Non-linear Index Code è Network Code 

X1 = DUt1(B, Ye4 , Ye7)

Ye4 = DUe4
(B,X2)

Ye7 = DUe7
(B, Ye5)

DUe4
(0, X2)

DUe7
(0, Ye5)

DUe6
(0, Ye5)

DUe5
(0, Ye2 , Ye3)

DUe1
(0, X1)

DUe2
(0, X1)

DUe3
(0, X2)

Broadcast message  Decoding function 

•  Destinations can decode with no errors:
•  Recall that B=f(X1,X2, Ye1,…,Ye7)
•  For a fixed B and given values of X1 and X2, there is a 

unique possible vector (Ye1,…,Ye7)
•  Otherwise, U* cannot decode correctly

Fix a value for B, say B=0 
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Distributed Storage Index Coding 

Informed-source coding-on-demand [Birk 
& Kol infocom’98] 

Trans-
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code 1 
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Index Coding & Graph Coloring 
1 
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3 

1 

4 

2 

3 

5 

1 

4 

2 

3 

5 
G Ḡ
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Index Coding & Graph Coloring 
1 

4 3 

2 1 

4 3 

2 

Side info graph Gd 

X1+X2 

X3 X4 

Chromatic nbr of  

Fractional Chromatic  nbr  
[Blasiak et al.‘11 ] 

Ḡ

↵(G)  c(G)  L⇤
min  �f (Ḡ)  �(Ḡ)

Shannon capacity 
[Haemers  ‘79 ] 

Independence nbr 

 �f`(G) Fractional local chrom. nbr 
[Shanmugan et al. ‘13] 

d d

[Arbabjolfaei et al., ‘13]
… 

[ Alon et al., ‘08] 

[Maleki, Cadambe, Jafar ‘12]  



Index Coding on Erdős-Rényi Graphs  

↵(G)  L⇤
min  �(Ḡ)

G(n,p) 

•  When            , we have with prob 1n ! 1

log n  L⇤
min  n

log n
•  Can improve the lower bound [Haviv & Langberg ‘11 ]

c
p
n  L⇤

min  n

log n

•  Coloring is the best upper bound we know on random 
graphs. Is it tight? OPEN

Chromatic nbr Independence nbr 



•  Computing            is NP hard. [R. et al. '07] [Peeters ’96] 

•  Recent work on matrix completion for index coding 
[Hassibi et al. ‘14]

L⇤
min

Index Coding & Rank Minimization 

1 * * 0 

* 1 * 0 

0 * 1 * 

* 0 0 1 

	  	  	  	  	  X1	  	  	  	  	  	  	  	  	  	  X2	  	  	  	  	  	  	  	  X3	  	  	  	  	  	  	  	  	  	  	  	  X4	  	  	  

t1 

t2 

t3 

t4 

Matrix	  M	  
•  Linear case:                                       [Bar-Yossef et al. '06] L⇤

min = min rk(M)

•  Min rank introduced by Haemers in 79 to bound the Shannon 
graph capacity. 



C 
D 

Use Matrix Completion Methods to Construct Index 
Codes 

•  Min nuclear norm [Recht & Candes ‘09] does not work here 
•  Try alternative rank minimization methods [Fazel et al. 2001 ] 

Theorem: [Alternating Projections (AP)] 

 If C and D are convex, then an alternating projection sequence 
between these 2 regions converges to a point in their intersection.


Two problems: 
1)  Regions not 

convex  
2)  Optimization over 

the reals 

Index coding via AP 

Network codes over 
the reals [Shwartz & 
Medard ’14], Jaggi 
et al. ‘08]  





Index Coding via Alternating Proj on Random 
Undirected Graphs 

n=100 users 



Performance with Increasing Number of Users 



Improvement in Percentage 



Concentration around the Average 



Running Time 

n: number of users (p=0.2) 

s/graph 



Random Directed Graphs 



Which Method to use for Directed Graphs? 



How close are these heuristics to the actual minimum 

•  For n≤5, linear index coding achieve capacity [Ong,’14]. Online list 
of optimal index coding rates [kim] 

•  APindex coding was able to achieve all these rates whenever they 
are integers 



Concluding Remarks 

•  Index coding is NP hard. But, this is not the end of the story. 
•  Proposed the use of different rank minimizations methods for 

constructing index codes 
•  Index coding is connected to many other interesting topic in 

the literature 
•  Many theoretical open questions: From reals to finite fields? 

theoretical guarantees? Index coding on random graphs? 
Need a stronger equivalence for equivalence of capacity 
regions…. 

•  To do list for the matlab library   
–  Vector linear network codes 
–  Now only multiple unicast 
–  Include more methods (heuristics) for index coding: Now only LDG and 

minrank 
–  Network desgin… 



QUESTIONS? 
www.tinyurl.com/IndexCodingRocks 



Dealing with Errors 
•  Consider an index code where decoding errors only 

happen when the broadcast message B=0
•  ε: Prob of error in the index code =1/2c=1/27=0.0078
•  Prob of error in the network code =1 (bad).
Claim: There exists σ, such that for B=σ, in the previous 
construction, the network code will have a prob of error 
at most ε (ε=error prob of the index code).

•  Intuition: if for every value of B, the resulting network 
code will have a prob of error>ε, this implies that the 
prob of error in the index code >ε. A contradiction.

✗: decoding error 
Each ✓ corresponds to a different “good” value of (X,Ye) 

Total # of ✓<(1-ε)|ΣB|.|ΣX| 
But  |ΣB|=|ΣYe| 
èTotal # of “good” values<(1-ε)|ΣYe|.|ΣX| 
 
 
 

contradiction DU⇤(B,X1, X2)

X=(X1,X2) 

B ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ye= 

≠ 
✓ 

|ΣX|=22 

|ΣB| 
=2c 



Capacity Regions 

      :Capacity region 
of a network 

RX1

RX2

RX1

RX2

1 

1 P P’ 

1 

1 

RN

      :Capacity region of the 
equivalent  index code 
RI

H


•  What if a sequence of points (not necessarily in    ) 

converges to P. Does this mean that P is in      ?   RN

H

•  If true this will solve a long-standing open problem: Is 
zero-error capacity= ε-error capacity of networks? 

•  True for index coding problems [Langberg, Effros ‘11] 

RB

RB = 7

•  If there is a code that achieves P “exactly”, then P’ is 
in                , and vice versa.  RI \H



The Case of Co-located Sources 

      :Capacity region 
of a network 

RX1

RX2

RX2

1 

1 P P’ 

1 

1 

RN

      :Capacity region of the 
equivalent  index code 
RI

H

RB

RB = 7

Theorem: For any network     with co-located sources one 
can efficiently construct an index coding problem    and an 
integer L such that R is in the capacity region of     iff R’ is 
in the capacity region of     with broadcast length L. 

N
I

N
I





Information Flows in Wireline Networks: 
What do we know in one slide 

Source S 

Terminal t 

Network 

Unicast networks 
 

Max Flow Min Cut theorem 
 

cut 

S 

t1 

Network 

Multicast networks 
 

Network coding can 
achieve min mincut 

 

t2 t3 

tn 
… 

S1 

t1 

Network 

t2 t3 

tn 

S2 Sn 

… 

… 

General Demands 
 

Open! 
 Non-linear codes, Non-

Shannon inequalities 
[Zeger et al. ‘06] 

[Ford & Fulkerson, ‘56] 
[Elias, Feinstein, Shannon 

’56] 
[Ahlswede et al. ‘00] 

Two-unicast is as hard. 
[Kamath, Tse, Wang ‘14] 




