Index Coding Algorithms for Constructing Network Codes

Salim El Rouayheb Illinois Institute of Technology, Chicago

Matlab Code with GUI for Constructing Linear Network Codes

GUI

Download Matlab code here:

www.tinyurl.com/IndexCodingRocks

Example 2

Non-linear code

Command Window

>> Network2=[1 4;2 4;2 5;3 5;4 6;5 7;6 8;6 9;7 8;7 14;3 9;8 10;9 11;10 12;10 13;11 13;11 14;1 12]; >> Demand=[0 0 0 0 0 0 0 0 0 0 0 3 2 1];

- >> NC=FindNetworkCode(Network2,Demand)

Cannot find scalar linear network code.

NC =

Locally Repairable Code

Locally Repairable Code

Matroids and Index Coding

Theorem: [R,Sprintson, Georghiades '09]

For any matroid M(E, r(.)), one can construct an index coding problem and an integer c=|E|+r(E) such that there exists a linear index code of length c over F, iff the matroid M has a representation over F.

Matlab Code Available Online

www.tinyurl.com/IndexCodingRocks

← → C 🗋 www.ec	re.iit.edu/~salim/software.html	=
Home Curriculum Vitae	Salim El Rouayheb – Software	
Google Scholar ResearchGate	Index Coding and Network Coding via Rank Minimization	
Students	Matlab code and tutorial	
Videos	The Matlab code above implements various rank minimization methods (Alternating Projections, Directional Alternating Projections, etc.) to construct near-optimal index codes as described in the paper below.	
Shannon's Channel	 X. Huang and S. El Rouayheb, Index Coding and Network Coding via Rank Minimization. 	
Research	Software Library for Distributed Storage Systems	
CSI Lab Publications	https://github.com/sreechakra/ChiC	
Software Index Coding Sys	This repository consists of codes which help generate the current state of the 'storage versus repair-bandwidth tradeoff curves' for exact-repairable regenerating code for distributed storage systems based on the work of the paper below.	s
The shine	 S. Goparaju, S. El Rouayheb and R. Calderbank, New Codes and Inner Bounds for Exact Repair in Distributed Storage Systems, IEEE International Symposium on Information Theory (ISIT). July 2014 	i
ECE 520	on mormation meory (1911), sury 2014.	
ECE 511		
Discrete Math	Page generated 2015-08-24 01:10:46 Central Daylight Time, by jemdoc.	

Index Coding

Wants: 2 Has: X ₂	$X_1 \\ X_3 $ V_1		Trans- mission #	Index code 1	Index code2
			1	X ₁	$X_1 + X_2$
t ₄		t_2	2	X_2	X ₃
			3	X ₃	X ₄
Has: X_1	$\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_4$	Has: $X_1 X_3$	4	X ₄	
	t ₃			L=4	L=3
Wants: X_3 Has: $X_2 X_4$		Informed-source coding-on-demand [Birk			

& Kol infocom'98]

Equivalence to Network Coding

An index code of length L that satisfies all the users

A network code that satisfies all the terminals

Stating the Equivalence

Theorem: [R,Sprintson, Georghiades'08] [Effros,R,Langberg ISIT'13]

For any network coding problem, one can construct an index coding problem and an integer L such that given any linear network code, one can efficiently construct a linear index code of length L, and vice versa. (same block length, same error probability).

Network Code → Index Code The linear case first

- All terminals in the index coding problem can decode
- Any linear network code gives an index code of length L=7

Index Code → Network Code

- Any linear index code of length L=7 can be mapped to a linear network code
- Works for scalar linear and vector linear

$$Y_{e_1} + f_{e_1}(X_1, X_2)$$

$$Y_{e_2} + f_{e_2}(X_1, X_2)$$

$$Y_{e_3} + f_{e_3}(X_1, X_2)$$

$$Y_{e_4} + f_{e_4}(X_1, X_2)$$

$$Y_{e_5} + f_{e_5}(X_1, X_2)$$

$$Y_{e_6} + f_{e_6}(X_1, X_2)$$

$$Y_{e_7} + f_{e_7}(X_1, X_2)$$

$$\begin{array}{|c|c|} & X_1, X_2 \\ & & \\ & Y_{e_1}, \dots, Y_{e_7} \end{array}$$

Terminal	Wants	Has	Terminal	Wants	Has
U_{e_1}	Y_{e_1}	X_1	U_{e_6}	Y_{e_6}	Y_{e_5}
U_{e_2}	Y_{e_2}	X_1	U_{e_7}	Y_{e_7}	Y_{e_5}
U_{e_3}	Y_{e_3}	X_2	U_{t_1}	X_1	$Y_{e_4} Y_{e_7}$
U_{e_4}	Y_{e_4}	X_2	U_{t_2}	X_2	$Y_{e_1}Y_{e_6}$
U_{e_5}	Y_{e_5}	$Y_{e_2} Y_{e_3}$	U^*	$Y_{e_1} \dots Y_{e_7}$	$X_1 X_2$

Butterfly network

Equivalent index code

$${f_e}_i(X_1,X_2)$$
 : message on edge ${\mathsf e}_i$

Implications: Scalar vs. Vector Linear

Scalar linear index codes are not optimal

[Dougherty, Freiling, Zeger, '05]

Non-linear Index Codes -> Network Codes HARD!!!

Non-linear Index Code → Network Code

Broadcast message Decoding function $X1 = D_{U_{t1}}(B, Y_{e_4}, Y_{e_7})$ $Y_{e_4} = D_{U_{e_4}}(B, X_2)$

$$Y_{e_7} = D_{U_{e_7}}(B, Y_{e_5})$$

Fix a value for B, say B=0

- Destinations can decode with no errors:
- Recall that $B=f(X_1, X_2, Y_{e1}, \dots, Y_{e7})$
- For a fixed B and given values of X_1 and X_2 , there is a <u>unique</u> possible vector $(Y_{e1},...,Y_{e7})$
- Otherwise, U* cannot decode correctly

	$A I_{e_1}, \ldots, I_{e_7}$				
	Terminal	Wants	Has		
	U_{e_1}	Y_{e_1}	X_1		
	U_{e_2}	Y_{e_2}	X_1		
	U_{e_3}	Y_{e_3}	X_2		
/	U_{e_4}	Y_{e_4}	X_2		
	U_{e_5}	Y_{e_5}	$Y_{e_2} Y_{e_3}$		
	U_{e_6}	Y_{e_6}	Y_{e_5}		
	U_{e_7}	Y_{e_7}	Y_{e_5}		
1	U_{t_1}	X_1	$Y_{e_4} Y_{e_7}$		
	U_{t_2}	X_2	$Y_{e_1}Y_{e_6}$		
	U^*	$Y_{e_1} \dots Y_{e_7}$	$X_1 X_2$		

 (X_1, X_2)

Index Coding

Wants: 2 Has: X ₂	$X_1 \\ X_3 $ V_1		Trans- mission #	Index code 1	Index code2
			1	X ₁	$X_1 + X_2$
t ₄		t_2	2	X_2	X ₃
			3	X ₃	X ₄
Has: X_1	$\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_4$	Has: $X_1 X_3$	4	X ₄	
	t ₃			L=4	L=3
Wants: X_3 Has: $X_2 X_4$		Informed-source coding-on-demand [Birk			

& Kol infocom'98]

Index Coding & Graph Coloring

Index Coding & Graph Coloring

Index Coding on Erdős-Rényi Graphs

 $\begin{array}{ll} \text{Independence nbr} & \text{Chromatic nbr} \\ \alpha(G) \leq L^*_{min} \leq \chi(\bar{G}) \end{array}$

• When $n \to \infty$, we have with prob 1

$$\log n \le L_{min}^* \le \frac{n}{\log n}$$

• Can improve the lower bound [Haviv & Langberg '11]

$$c\sqrt{n} \le L_{min}^* \le \frac{n}{\log n}$$

Coloring is the best upper bound we know on random graphs. Is it tight? OPEN

Index Coding & Rank Minimization

- Linear case: $L^*_{min} = \min rk(M)$ [Bar-Yossef et al. '06]
- Min rank introduced by Haemers in 79 to bound the Shannon graph capacity.
 - Computing L^*_{min} is NP hard. [R. et al. '07] [Peeters '96]
 - Recent work on matrix completion for index coding [Hassibi et al. '14]

Use Matrix Completion Methods to Construct Index Codes

- Min nuclear norm [Recht & Candes '09] does not work here
- Try alternative rank minimization methods [Fazel et al. 2001]

Two problems:

- Regions not convex
- 2) Optimization over the reals

Network codes over the reals [Shwartz & Medard '14], Jaggi et al. '08]

Theorem: [Alternating Projections (AP)]

If C and D are convex, then an alternating projection sequence between these 2 regions converges to a point in their intersection.

Index Coding via Alternating Proj on Random Undirected Graphs

Performance with Increasing Number of Users

Improvement in Percentage

Concentration around the Average

Running Time

Random Directed Graphs

Which Method to use for Directed Graphs?

How close are these heuristics to the actual minimum

Fig. 9: Average index code length obtained by using Greedy Coloring, LDG and APIndexCoding for random 3-colorable graphs when p = 0.5.

- For n≤5, linear index coding achieve capacity [Ong,'14]. Online list of optimal index coding rates [kim]
- APindex coding was able to achieve all these rates whenever they are integers

Concluding Remarks

- Index coding is NP hard. But, this is not the end of the story.
- Proposed the use of different rank minimizations methods for constructing index codes
- Index coding is connected to many other interesting topic in the literature
- Many theoretical open questions: From reals to finite fields? theoretical guarantees? Index coding on random graphs? Need a stronger equivalence for equivalence of capacity regions....
- To do list for the matlab library
 - Vector linear network codes
 - Now only multiple unicast
 - Include more methods (heuristics) for index coding: Now only LDG and minrank
 - Network desgin...

QUESTIONS?

www.tinyurl.com/IndexCodingRocks

Dealing with Errors

- Consider an index code where decoding errors only happen when the broadcast message B=0
- ϵ : Prob of error in the index code =1/2^c=1/2⁷=0.0078
- Prob of error in the network code =1 (bad).

<u>Claim</u>: There exists σ , such that for B= σ , in the previous construction, the network code will have a prob of error at most ε (ε =error prob of the index code).

 Intuition: if for every value of B, the resulting network code will have a prob of error>ε, this implies that the prob of error in the index code >ε. A contradiction. X_1, X_2 Y_{e_1}, \dots, Y_{e_7}

Terminal	Wants	Has
U_{e_1}	Y_{e_1}	X_1
U_{e_2}	Y_{e_2}	X_1
U_{e_3}	Y_{e_3}	X_2
U_{e_4}	Y_{e_4}	X_2
U_{e_5}	Y_{e_5}	$Y_{e_2} Y_{e_3}$
U_{e_6}	Y_{e_6}	Y_{e_5}
U_{e_7}	Y_{e_7}	Y_{e_5}
U_{t_1}	X_1	$Y_{e_4} Y_{e_7}$
$\overline{U_{t_2}}$	X_2	$Y_{e_1}Y_{e_6}$
U^*	$Y_{e_1} \dots Y_{e_7}$	$X_1 X_2$

 $\mathbf{X} = (X_1, X_2)$ \mathbf{E}_{i} \mathbf{E}_{i}

X: decoding error

► Each ✓ corresponds to a different "good" value of (X,Ye)

Total # of $\checkmark < (1-\epsilon)|\Sigma_{B}|.|\Sigma_{X}|$ But $|\Sigma_{B}|=|\Sigma_{Ye}|$

→ Total # of "good" values<(1-ε)|Σ_{Ye}|.|Σ_X|

contradiction

Capacity Regions

- If there is a code that achieves P "exactly", then P' is in $\mathcal{R}_{\mathcal{I}} \cap \mathcal{H}$, and vice versa.
- What if a sequence of points (not necessarily in \mathcal{H}) converges to P. Does this mean that P is in \mathcal{R}_N ?
- If true this will solve a long-standing open problem: Is zero-error capacity= ε-error capacity of networks?
- True for index coding problems [Langberg, Effros '11]

The Case of Co-located Sources

<u>Theorem</u>: For any network \mathcal{N} with co-located sources one can efficiently construct an index coding problem \mathcal{I} and an integer L such that **R** is in the capacity region of \mathcal{N} iff **R**' is in the capacity region of \mathcal{I} with broadcast length L.

Fig. 12: Average decoding error $||\mathbf{X} - \hat{\mathbf{X}}||$ in APIndexcoding on random undirected graphs when p = 0.2, $\epsilon = 0.001$ and $X_i \in [-10, 10]$ ($X_{\text{max}} = 10$).

Information Flows in Wireline Networks: What do we know in one slide

Unicast networks

Max Flow Min Cut theorem

[Ford & Fulkerson, '56] [Elias, Feinstein, Shannon '56]

Multicast networks

Network coding can achieve min mincut [Ahlswede et al. '00]

General Demands

Open!

Non-linear codes, Non-Shannon inequalities [Zeger et al. '06] Two-unicast is as hard. [Kamath, Tse, Wang '14]

Fig. 9: Time consumption of APIndexCoding on random undirected graphs