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Abstract—We study the communication efficient
secret sharing (CESS) problem. A classical thresh-
old secret sharing scheme encodes a secret into n
shares given to n parties, such that any set of at
least t, t < n, parties can reconstruct the secret,
and any set of at most z, z < t < n, collud-
ing parties cannot obtain any information about
the secret. A CESS scheme satisfies the previous
properties of threshold secret sharing. Moreover,
it allows to reconstruct the secret from any set of
d ≥ t, parties by reading and communicating the
minimum amount of information. In this paper,
we introduce three explicit constructions of CESS
codes called Staircase codes. The first construction
achieves optimal communication and read costs for
a given d. The second construction achieves optimal
costs universally for all possible values of d between
t and n. The third construction, which is the most
general, achieves optimal costs universally for all
values of d in any given set ∆ ⊆ {t, . . . , n}. The
introduced Staircase codes can store a secret of
maximal size, i.e., equal to t − z shares, and they
are all designed over a small finite field GF (q),
for any prime power q > n. However, Staircase
codes may require to divide the secret and the
shares into many symbols. We also describe how
Staircase codes can be used to construct threshold
changeable secret sharing with minimum storage
cost, i.e., minimum share size.
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I. INTRODUCTION

Consider the threshold secret sharing (SS)
problem [2], [3] in which a dealer encodes a
secret using random keys into n shares and
distributes them to n parties. The threshold SS
allows a legitimate user contacting any set of
at least t, t < n, parties to reconstruct the
secret by downloading their shares. In addition,
the scheme ensures that any set of at most z,
z < t < n, colluding parties cannot obtain any
information, in an information theoretic sense,
about the secret. The following example illus-
trates the construction of a threshold SS on n = 4
shares.

Example 1 (Threshold SS). Let n = 4, t = 2
and z = 1 and let s be a secret uniformly
distributed over GF (5). Then, the following 4
shares (s+r, s+2r, s+3r, s+4r) form a threshold
SS scheme, with r being a random symbol, called
key, chosen uniformly at random from GF (5) and
independently of s. A user can decode the secret
by contacting any t = 2 parties, downloading
their shares and decoding s and r. Secrecy is
ensured, because the secret is padded with the
key in each share.

Threshold secret sharing code constructions
have been extensively studied in the literature,
e.g., [2]–[8]. The literature on secret sharing pre-
dominantly studies non-threshold secret sharing
schemes, with so-called general access structures,
e.g., [9]–[11]. We refer the interested reader to the
following survey works [12]–[14] and references
within. In this paper, we focus on the problem of
communication (and read) efficient secret sharing
(CESS). A CESS scheme satisfies the properties
of threshold secret sharing described in the previ-
ous paragraph. In addition, it achieves minimum
communication and read overheads when the user
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Party 1 Party 2 Party 3 Party 4
s1 + s2 + r1 s1 + 2s2 + 4r1 s1 + 3s2 + 4r1 s1 + 4s2 + r1

r1 + r2 r1 + 2r2 r1 + 3r2 r1 + 4r2

TABLE I: An example of a CESS code based on the Staircase code construction over GF (5) for
n = 4 parties, threshold t = 2, z = 1 colluding parties and any d = 3 parties can efficiently
reconstruct the secret. A user contacting any t = 2 parties downloads all their shares, i.e., 4 symbols
in total, in order to decode the secret. The resulting overheads are CO = RO = 2 symbols. However,
a user contacting any d = 3 parties decodes the secret by downloading the first symbol (in blue) of
each share, i.e., 3 symbols in total. Hence, CO = RO = 1 symbol. For instance, a user contacting
parties 1, 2 and 3 downloads s1 +s2 +r1, s1 +2s2 +4r1, and s1 +3s2 +4r1 and can decode the secret
and r1. Notice that a user contacting d = 3 parties can only decode r1, whereas a user contacting
t = 2 parties has to decode r1 and r2.

contacts d parties for any t ≤ d ≤ n. The
communication overhead (CO) is defined as the
extra amount of information (beyond the secret
size) downloaded by a user contacting d parties
in order to decode the secret. The read overhead
RO is defined similarly. Next, we give an example
of a CESS code that minimizes CO and RO.
The CESS code in this example belongs to the
family of Staircase codes which we introduce in
Section III-A.

Example 2. Consider again the SS problem of
Example 1 with n = 4, t = 2, z = 1. We assume
now that the secret s is formed of 2 symbols s1, s2

uniformly distributed over GF (5) and we use two
keys r1, r2 drawn independently and uniformly at
random from GF (5). To construct the Staircase
code, the secret symbols and keys are arranged
in a matrix M as shown in (1). The matrix M
is multiplied by a 4 × 3 Vandermonde matrix V
to obtain the matrix C = VM . The 4 rows of C
form the 4 different shares and give the Staircase1

code shown in Table I. s1 r1

s2 r2

r1 0

 .


1 1 1
1 2 4
1 3 4
1 4 1


V

M

C = VM = (1)

The CESS scheme enjoys the following prop-
erties. First, a user decodes the secret either by

1The nomenclature of Staircase codes comes from the
position of the zero block matrices in the general structure
of the matrix M (see the general construction in Table III).

contacting any t = 2 parties and downloading
all their shares, i.e., 4 symbols, or by contacting
any d = 3 parties and downloading the first
symbol (in blue) of each share, i.e., 3 symbols
in total. The key idea here is that the user is
only interested in decoding the secret and not
necessarily the keys. When d = 3, the user
decodes the secret and only the key r1, whereas
when d = t = 2, the user has to decode the secret
and both of the keys. This code actually achieves
the minimum CO and RO equal to 1 symbol for
d = 3 (and 2 symbols for d = t = 2) given
later in (4) and (5). Second, secrecy is achieved
because the secret s1, s2 is padded by random
keys r1, r2 and each z = 1 party cannot obtain
any information about s1 and s2.

Related work: The CESS problem was introduced
by Wang and Wong in [15] where they focused on
perfect CESS, i.e., the case in which z = t−1 <
n − 1. The authors showed that there exists a
tradeoff between the number of contacted parties
d and the amount of information downloaded by
a user in order to decode the secret. They derived
a lower bound on CO and constructed codes for
the special case of z = t − 1 using polynomial
evaluation over GF (q), where q > n + v, that
achieve minimum CO and RO universally for all
t ≤ d ≤ t + v − 1, for some positive integer v.
Zhang et al. [16] constructed CESS codes for the
special case of z = t − 1 over GF (q), where
q > n, that achieve minimum CO and RO for
any given t ≤ d ≤ n. Recently, Huang et al.
[17] studied the CESS problem for all values of
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z, i.e., z < t < n, and generalized the lower
bound on CO. The authors constructed explicit
CESS codes for any z achieving the minimum
CO and RO for d = n over GF (q), q > n(n −
z). Moreover, they proved the achievability of the
lower bound on CO and RO universally for all
possible values of t ≤ d ≤ n using random linear
code constructions2. In our setting, we assume
that the dealer has direct access to all the parties.
In the case where the dealer can access the parties
through a network, Shah et al. [21] studied the
problem of minimizing the communication cost
of securely delivering the shares to the parties.
Contributions: In this paper, we introduce three
new classes of explicit constructions of linear
CESS codes that achieve minimum CO and RO.
More specifically, we make the following contri-
butions:

1) We describe the Staircase code construction
that achieves minimum CO and RO for any
given t ≤ d ≤ n. This construction general-
izes the construction in Example 2.

2) We describe the Universal Staircase code
construction that achieves minimum CO and
RO simultaneously for all values of t ≤ d ≤
n.

3) We generalize the previous two construc-
tions into the ∆-Universal Staircase code
construction, which achieves minimum CO
and RO simultaneously for all possible val-
ues of d ∈ ∆, for any given set ∆ ⊆
{t, . . . , n}.

Moreover, we construct a class of secret shar-
ing codes, called threshold changeable secret
sharing (TCSS) codes [22], based on the intro-
duced Staircase codes. In all the previous con-
structions, the threshold t satisfies t < n and
the parameter z that represents the number of
colluding parties can take any value between 0
and t− 1.
The Staircase codes and the resulting TCSS codes
can store a secret of maximal size, i.e., equal to
t−z shares, and require a small finite field GF (q)
of size q > n, which is the same requirement
for Reed Solomon based SS codes [4]. However,

2After the appearance of the original version of this work
on Arxiv [18], an equivalent CESS code construction for all
parameters was given concurrently in [19] and [20].

unlike SS codes, these codes require to divide the
secret and the shares into α symbols (α defined
later).

Organization: The paper is organized as follows.
In Section II, we formulate the CESS problem,
introduce the necessary notations and summarize
our results. We describe the Staircase code and
Universal Staircase code constructions in Sec-
tion III. In Section IV, we prove that the Staircase
codes achieve secrecy and minimum CO and RO.
In Section V, we prove that the Universal Stair-
case codes achieve secrecy and minimum CO and
RO. We describe the most general ∆-Universal
Staircase code construction in Section VI. In
Section VII we show how to use the Staircase
codes to construct threshold changeable secret
sharing. We conclude in Section VIII.

II. PROBLEM FORMULATION AND MAIN

RESULTS

We consider the CESS problem and follow the
majority of the notations in [17]. A secret s of
size k units is formed of kα symbols (1 unit =
α symbols). The secret symbols are drawn inde-
pendently and uniformly at random from a finite
alphabet, typically a finite field. A CESS code is
a scheme that encodes the secret, using random
keys, into n shares w1, . . . , wn, of unit size each,
and distributes them to n distinct parties. Let
Wi denote the random variable representing the
share of party i, let S denote the random variable
representing the secret s, let [n] = {1, . . . , n},
and for any subset B ⊆ [n] denote by WB the
set of random variables representing the shares
indexed by B, i.e., WB = {Wi; i ∈ B}. Then, a
CESS code must satisfy the following properties:

1) Perfect secrecy: Any subset of z or less
parties should not be able to get any infor-
mation about the secret. The perfect secrecy
condition can be expressed as

H(S |WZ) = H(S), ∀Z ⊂ [n] s.t. |Z| = z.
(2)

2) MDS: A user downloading t shares is able
to recover the secret, i.e.,

H(S |WA) = 0, ∀A ⊆ [n] s.t. |A| = t,
(3)
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and the secret is of maximal size k = t −
z units as implied by (2) and (3) (see [17,
Proposition 1]).

3) Minimum CO and RO: a user contacting d
parties, t ≤ d ≤ n, is able to decode the
secret by reading and downloading exactly
k+CO(d) units of information in total from
all the contacted shares, where

CO(d) =
kz

d− z
. (4)

Equation (4) represents the achievable in-
formation theoretic lower bound [15, Theo-
rem 3.1], [17, Theorem 1] on the communication
overhead, CO(d), needed to satisfy the constraints
in (2) and (3), when the user contacts d parties3.
Since the amount of information read cannot be
less than the downloaded amount, the following
lower bound on RO holds,

RO(d) ≥ CO(d). (5)

We will refer to a CESS code described above as
an (n, k, z, d) CESS code, where the threshold is
t = k + z. For instance, the code in Example 2
is an (4, 1, 1, 3) CESS code. We define a univer-
sal (n, k, z) CESS code that achieves minimum
CO(d) and RO(d) simultaneously for all possible
values of d. Note that the MDS constraint can
be omitted since it is subsumed by the minimum
CO and RO constraint since it corresponds to the
case of d = t and CO(t) = z. However, we will
make this distinction for clarity of exposition.
In the sequel whenever referring to t, t < n
should be understood and whenever referring to
z, z < t < n should be understood. Also,
whenever referring to d, k + z ≤ d ≤ n should
be understood unless otherwise stated.

Given the model described above, we are ready
to state our main results. We introduce the first
class of Staircase codes that satisfy minimum CO
and RO for any given d.

Theorem 1. The (n, k, z, d) Staircase CESS code
defined in Section III-A over GF (q), q > n,
satisfies the required MDS and perfect secrecy

3Note that a user contacting d parties and achieving (4)
for a threshold secret sharing with threshold t downloads the
same amount of information as a user contacting d parties
in a threshold secret sharing with threshold d.

constraints given in (2) and (3) for any given
z < t < n, and achieves optimal communica-
tion and read overheads CO(d) and RO(d) given
in (4) and (5) for any given k + z ≤ d ≤ n.

Our next result introduces the Universal Staircase
codes which achieve optimal overheads simulta-
neously for all possible values of d.

Theorem 2. The (n, k, z) Universal Staircase
CESS code defined in Section III-B over GF (q),
q > n, satisfies the required MDS and per-
fect secrecy constraints given in (2) and (3) for
any given z < t < n, and achieves optimal
communication and read overheads CO(d) and
RO(d) given in (4) and (5) simultaneously for all
k + z ≤ d ≤ n.

Theorem 3 generalizes the first two constructions.

Theorem 3. Let ∆ ⊆ {k + z, . . . , n}. The
(n, k, z,∆) ∆-universal Staircase codes defined
in Section VI over GF (q), q > n, satisfies the
required MDS and perfect secrecy constraints
given in (2) and (3) for any given z < t < n, and
achieves optimal communication overhead CO(d)
and read overhead RO(d) given in (4) and (5)
simultaneously for all d ∈ ∆.

All Staircase codes constructions require di-
viding the shares into α symbols (therefore di-
viding the secret into kα symbols) as defined in
Sections III and VI. No lower bounds on α are
currently known for a given field size q.

We note that codes achieving minimum CO
and RO for all possible values of d were pre-
sented in [19] and [20] concurrently with the
original version of this work [18]. As explained
in [20], the Staircase code constructions and the
construction in [20] are equivalent. The equiv-
alence between the two constructions is similar
to the equivalence between the construction of
threshold SS codes based on linear block codes
and the one based on polynomial evaluations4.
Staircase codes presented here is a linear block
code construction based on Vandermonde matri-
ces, whereas the construction presented in [20] is
based on polynomial evaluations.

4This is also similar to constructing Reed Solomon codes
either based on polynomial evaluations, or based on linear
block codes with a Vandermonde generator matrix.
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III. STAIRCASE CODE CONSTRUCTIONS

A. Staircase code construction for given d

We describe the (n, k, z, d) Staircase code con-
struction that achieves optimal communication
and read overheads CO(d) and RO(d) for any
given k + z ≤ d ≤ n. In this construction, we
take α = d − z. Hence, the secret s of size k
units is formed of k(d− z) symbols s1, . . . , skα,
where si ∈ GF (q) and q > n. The symbols si are
arranged in an α× k matrix S. The construction
uses zα iid random keys drawn uniformly at
random from GF (q) and independently of the
secret. The keys are partitioned into two matrices
R1 and R2 of dimensions z× k and z× (α− k)
respectively. Let D be the transpose of the last

(α − k) rows of the matrix
[
S
R1

]
5 and let 0

be the all zero square matrix of dimensions
(α − k) × (α − k), note that α − k ≥ 0 since
d ≥ z+k. The key ingredient of the construction
is to arrange the secret and the keys in a d × α
matrix M defined in Table II. The inspiration
behind this construction is the class of Product
Matrix codes that minimizes the repair bandwidth
in distributed storage systems6 [24].

M =

 S
D

R2

R1 0


d×α

α−kk

α

z

k

z

α−k

TABLE II: The structure of the matrix M that
contains the secret and keys in the Staircase code
construction for given d.

Encoding: Let V be an n×d Vandermonde7 ma-
trix defined over GF (q). The matrix M , defined
in Table II, is multiplied by V to obtain the matrix

5If α − k ≤ z, i.e., d ≤ 2z + k, then D consists of the
transpose of the last α− k rows of R1.

6After the appearance of the original version of this
work on Arxiv [18], a connection between the family of
regenerating codes and CESS codes was explored in more
details in [23].

7We require all square sub-matrices formed by consecu-
tive columns of V to be invertible. Vandermonde and Cauchy
matrices satisfy this property.

C = VM . The n rows of C form the n different
shares.

Decoding: A user contacting t = k + z parties
downloads all the shares of the contacted parties.
A user contacting d parties, indexed by I ⊆ [n],
downloads the first k symbols from each con-
tacted party corresponding to vi

[
S R1

]T
, i ∈

I , where vi denotes the ith row of the Vander-
monde matrix V (the superscript T denotes the
transpose of a matrix). The decoding procedure
given in the proof of Theorem 1 guarantees that
the user will be able to decode the secret in both
cases.

Example 2 (Continued). We give the details of
the construction of the (n, k, z, d) = (4, 1, 1, 3)
CESS code of Example 2. We take α = d−z = 2,
thus the secret s is formed of kα = 2 symbols
s1, s2 uniformly distributed over GF (q), q =
5 > n = 4. The construction uses zα = 2 iid
random keys r1, r2 drawn uniformly at random
over GF (5) and independently of the secret. The
keys are partitioned into two matrices R1 and R2

of dimensions z × k = 1× 1 and z × (α− k) =
1×1, respectively. The matrix D is the transpose
of the last α−k = 1 row of R1. Hence, we have,

R1 = D = r1, R2 = r2, and S =

[
s1

s2

]
. The

secret and the keys are arranged in a d × α =
3 × 2 matrix M . Let V be an n × d = 4 × 3
Vandermonde matrix. M and V are given again
in (6).

M =

s1 r1

s2 r2

r1 0

 and V =


1 1 1
1 2 4
1 3 4
1 4 1

 . (6)

The shares are the rows of the matrix C = VM
as given in Table I. We want to check that this
code satisfies the following properties:

1) Minimum CO and RO for d = 3: We check that
a user contacting d = 3 parties can reconstruct
the secret with minimum CO and RO. For instance,
if a user contacts the first 3 parties and down-
loads the first symbol of each contacted share,
then the downloaded data is given by,1 1 1

1 2 4
1 3 4

s1

s2

r1

 . (7)
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The matrix on the left is a 3 × 3 square Van-
dermonde matrix, hence invertible. Therefore, the
user can decode the secret (and r1). This remains
true irrespective of which 3 parties are contacted.
The user reads and downloads 3 symbols of size
3/α = 3/2 units resulting in minimum overheads,
CO(3) = RO(3) = 3/2 − k = 1/2, as given
in (4) and (5).

2) MDS: We check that a user contacting t = k+
z = 2 parties can reconstruct the secret. Suppose
the user contacts parties 1 and 2 and downloads
all their shares given by[

1 1 1
1 2 4

]s1 r1

s2 r2

r1 0

 . (8)

The system in (8) is equivalent to the two follow-

ing systems
[
1 1 1
1 2 4

]s1

s2

r1

 and
[
1 1
1 2

] [
r1

r2

]
.

The decoder uses the latter system to decode
r1 and r2. This is possible because the matrix
on the left is a square Vandermonde matrix,
hence invertible. Then, the decoder subtracts the
obtained value of r1 from the former system
to obtain again the following invertible system[
1 1
1 2

] [
s1

s2

]
. The decoder then decodes s1 and

s2. Again, this procedure is possible for any 2
contacted parties.

3) Perfect secrecy: At a high level, perfect se-
crecy is achieved here because each symbol in a
share is “padded” with at least one distinct key
statistically independent of the secret, making the
shares of any party independent of the secret.

B. Universal Staircase code construction

We describe the (n, k, z) Universal Staircase
code construction that achieves optimal commu-
nication and read overheads CO(d) and RO(d)
simultaneously for all possible values of k+ z ≤
d ≤ n. Let d1 = n, d2 = n− 1, . . . , dh = k + z,
with h = n − k − z + 1, and αi = di − z, i =
1, . . . , h. Choose α = LCM(α1, α2, . . . , αh−1),
that is the least common multiple of all the αi’s
except for the last αh = k. The secret s consists
of kα symbols s1, . . . , skα, uniformly distributed

M =


D2

. . . Dh−1

D1 Rh
S R3

. . .

R2 0R1 0
. . .

0

 . staircase
structure

n× α

M1 M2 M3 . . . Mh

TABLE III: The structure of the matrix M that
contains the secret and keys in the universal
Staircase code construction.

over GF (q), q > n, arranged in an α1 × kα/α1

matrix S.
The construction uses zα iid random keys, drawn
uniformly at random from GF (q) and indepen-
dently of the secret. The keys are partitioned
into h matrices Ri, i = 1, . . . , h, of respective
dimensions z × kα/αiαi−1 (take α0 = 1). The
matrices R1, . . . ,Ri consist of the overhead of
keys decoded by a user contacting di parties. We
form h matrices Mi, i = 1, . . . , h, as follows,

M1 =

 S
R1

 , M2 =

D1

R2

0

 , . . . ,

Mj =

Dj−1

Rj
0

 , . . . , Mh =

Dh−1

Rh
0

 .

kα/α1 kα/α1α2

kα/αj−1αj

α/αh−1

n
z

α1

n z

α2

1

n z

αj

n− dj

n z

k

h− 1

(9)
Each matrix Dj is formed of the (n− j + 1)th

row of
[
M1 M2 . . .Mj

]
wrapped around to make

a matrix of dimensions αj+1 × kα/αjαj+1 for
j = 1, . . . , h−1. The 0’s are the all zero matrices
used to complete the Mi’s to n rows. The secret
and the keys are arranged in the matrix M =[
M1 . . .Mh

]
defined in Table III.

The matrix M is characterized by a special
structure resulting from carefully choosing the
entries of the Dj’s and placing the all zero sub-
blocks in a staircase shape, giving these codes
their name. This staircase shape allows to achieve
optimal communication and read overheads CO
and RO for all d.
Encoding: The encoding is similar to the Stair-
case code construction. Let V be an n × n
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Vandermonde matrix defined over GF (q). The
matrix M , defined in Table III, is multiplied by
V to obtain the matrix C = VM . The n rows of
C form the n different shares.

Decoding: To reconstruct the secret, a user con-
tacting dj parties indexed by I ⊆ [n] downloads
the first kα/αj symbols from each contacted
party corresponding to vi

[
M1 . . .Mj

]
, for all

i ∈ I . The decoding procedure given in the proof
of Theorem 2 guarantees that the user will be able
to decode the secret.

We postpone the example of a Universal Stair-
case code to Section V-A to have it next to the
proof of Theorem 2.

IV. STAIRCASE CODE FOR GIVEN d

Proof of Theorem 1. Consider the (n, k, z, d)
Staircase code defined in Section III-A. We
prove Theorem 1 by establishing the following
properties of the code:

1) Minimum CO(d) and RO(d): We prove that
a user contacting d parties can reconstruct the
secret while incurring minimum CO and RO. A
user contacting d parties downloads the first k
symbols of each party. Let I ⊂ [n], |I| = d, be
the set of indices of the contacted parties, then
the downloaded data is given by VI

[
S R1

]T
,

where VI is a d× d square Vandermonde matrix
formed of the rows of V indexed by I , hence
invertible. The user can always decode the secret
(and the keys in R1) by inverting VI . The code
is optimal on communication and read overheads
CO(d) and RO(d), because the user only reads and
downloads kd symbols of size kd/α = kd/(d−z)
units resulting in an overhead of kd/α − k =
kz/α = kz/(d− z) achieving the optimal CO(d)
and RO(d) given in (4) and (5).

2) MDS: We prove that a user contacting t =
k + z parties and downloading all their shares
can reconstruct the secret. Let I ⊂ [n], |I| = t,
be the set of indices of the contacted parties. The
information downloaded by the user is VIM and
is given by,

VI

 S D

R1
R2

0

 .

First, we show that the user can decode the entries
of D and R2. The decoder considers the system,

VI
[
D R2 0

]T
= V ′I

[
D R2

]T
. (10)

Recall that the dimensions of the all zero matrix
in (10) are (α − k) × (α − k), then V ′I is a
(k + z) × (k + z) square Vandermonde matrix
formed by the first (k + z) columns of VI .
Therefore, the user can always decode the entries
of D and R2 because V ′I is invertible. Second, we
prove that the user can always decode the entries
of S and R1 and hence reconstruct the secret.
Recall that D is the transpose of the last α − k
rows of M1 ,

[
S R1

]T . By subtracting the pre-
viously decoded entries of D from VI

[
S R1

]T
,

the user obtains V ′IM
′
1, where V ′I is defined above

and M ′1 is a (k+z)×k matrix formed by the first
k+z rows of M1. Therefore, the user can always
decode the entries of M ′1 because V ′I is invertible.
If k+z ≥ α, then S is directly obtained since it is
contained in M ′1. Otherwise, M ′1 consists of the
first k + z rows of S. The remaining rows of S
are contained in D and were previously decoded.
In both cases, the user can decode all the secret
symbols s1, . . . , skα.

3) Perfect secrecy: We prove that for any subset
Z ⊂ [n], |Z| = z, the collection of shares indexed
by z, denoted by WZ = {wi, i ∈ Z}, does not
reveal any information about the secret as given
in equation (2), i.e., H(S | WZ) = H(S). Let
R denote the random variable representing all
the random keys, then it suffices to prove that
H(R | WZ ,S) = 0 as detailed in the Appendix.
Therefore, we need to show that given the secret
s as side information, any collection of z shares
can decode all the random keys. A collection of
WZ shares can be written as

VZ

 S D

R1
R2

0

 , (11)

where VZ is a z × d matrix corresponding to
the rows of VZ indexed by Z. The linear sys-
tem in (11) can be divided into two systems as
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follows,

VZ
[
S R1

]T
, (12)

VZ
[
D R2 0

]T
. (13)

Given the secret as side information, it can be
subtracted from (12), which becomes

VZ
[
0 R1

]T
= V ′′ZR1,

where, V ′′Z is a z×z square Vandermonde matrix
consisting of the last z columns of VZ . The
entries of R1 can always be decoded because
V ′′Z is invertible. Now that R1 is decoded and
we have S as side information, we can obtain
D as the last α − k rows of

[
S R1

]T . Then,
the entries of D are subtracted from the second
system to obtain V ∗ZR2, where V ∗Z is a z × z
square Vandermonde matrix consisting of the
(k+ 1)th to the (k+ z)th columns of VZ . Hence,
the entries of R2 can always be decoded because
V ∗Z is invertible. Therefore, H(R | WZ ,S) = 0,
∀ Z, Z ⊂ [n], |Z| = z and perfect secrecy is
achieved.

V. UNIVERSAL STAIRCASE CODES

A. Example
We describe here the construction of an

(n, k, z) = (4, 1, 1) Universal Staircase code over
GF (q), q = 5 > n = 4, by following the
construction in Section III-B. We have d1 =
4, d2 = 3, d3 = 2 and α1 = 3, α2 = 2, α3 = 1
and α = LCM(α1, α2) = LCM(3, 2) = 6. The
secret s is formed of kα = 6 symbols uniformly
distributed over GF (5). The construction uses
zα = 6 iid random keys drawn uniformly at
random from GF (5) and independently of the
secret. The secret symbols and the random keys
are arranged in the following matrices,

S =

s1 s4

s2 s5

s3 s6

 , R1 =
[
r1 r2

]
,

R2 =
[
r3

]
and R3 =

[
r4 r5 r6

]
.

To build the matrix M which will be used for
encoding the secret, we start with

M1 =

 S
R1

 =


s1 s4

s2 s5

s3 s6

r1 r2

 .

Then, D1 is the α2 × kα/α1α2 = 2 × 1 matrix
that contains the symbols of the nth row of
M1, i.e., D1 =

[
r1 r2

]T . Therefore, M2 =[
D1 R2 0

]T
=
[
r1 r2 r3 0

]T . Similarly,
we have D2 =

[
s3 s6 r3

]
and

M3 =


s3 s6 r3

r4 r5 r6

0 0 0
0 0 0

 .
We obtain M by concatenating M1, M2 and M3,

M =


s1 s4 r1 s3 s6 r3

s2 s5 r2 r4 r5 r6

s3 s6 r3 0 0 0
r1 r2 0 0 0 0

 .
M1 M2 M3

(14)

Here, V is the n×n = 4×4 Vandermonde matrix
over GF (5) given in (15). The shares are given
by the rows of the matrix C = VM and shown
in Table IV.

V =


1 1 1 1
1 2 4 3
1 3 4 2
1 4 1 4

 . (15)

The constructed Universal Staircase code satisfies
the following properties:

1) MDS: We check that a user contacting d3 =
k+ z = 2 parties can decode the secret. Suppose
that the user contacts parties 1 and 2. The data
downloaded by the user is V{1,2}M and is given
by,

[
1 1 1 1
1 2 4 3

] 
s1 s4 r1 s3 s6 r3

s2 s5 r2 r4 r5 r6

s3 s6 r3 0 0 0
r1 r2 0 0 0 0

 .
M1 M2 M3

V{1,2}

(16)
We will show that the user can decode the se-
cret by successively solving the linear systems
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Party 1 Party 2 Party 3 Party 4
s1 + s2 + s3 + r1 s1 + 2s2 + 4s3 + 3r1 s1 + 3s2 + 4s3 + 2r1 s1 + 4s2 + s3 + 4r1

s4 + s5 + s6 + r2 s4 + 2s5 + 4s6 + 3r2 s4 + 3s5 + 4s6 + 2r2 s4 + 4s5 + s6 + 4r2

r1 + r2 + r3 r1 + 2r2 + 4r3 r1 + 3r2 + 4r3 r1 + 4r2 + r3

s3 + r4 s3 + 2r4 s3 + 3r4 s3 + 4r4

s6 + r5 s6 + 2r5 s6 + 3r5 s6 + 4r5

r3 + r6 r3 + 2r6 r3 + 3r6 r3 + 4r6

TABLE IV: An example of a universal Staircase code for (n, k, z) = (4, 1, 1) over GF (5).

V{1,2}M3, V{1,2}M2 and V{1,2}M1. The decoder
starts by considering V{1,2}M3 which gives,[

1 1
1 2

] [
s3 s6 r3

r4 r5 r6

]
. (17)

The matrix on the left is invertible, and the user
can decode the secret symbols and keys in (17).
Then, the decoder considers the system V{1,2}M2

after subtracting from it the value of r3 decoded
in the previous step. The obtained system is again
invertible and the decoder can decode r1 and
r2. The decoder then considers V{1,2}M1, after
canceling out r1, r2, s3, s6 decoded so far, to
obtain the following system,[

1 1
1 2

] [
s1 s4

s2 s5

]
.

The matrix on the left is again invertible and the
decoder can reconstruct the secret. This remains
true irrespective of which 2 parties are contacted.

2) Minimum CO and RO for d2 = 3 and
d1 = 4: We check that a user contacting d
parties, d = 3, 4, can decode the secret while
achieving the minimum communication and read
overheads given in (4) and (5). Suppose a user
contacts d2 = 3 parties indexed by I ⊂ [n]. The
user reads and downloads the first kα/α2 = 3
symbols of each contacted share corresponding
to VI

[
M1 M2

]
(in black and red), where VI is

the matrix formed by the rows of V indexed by
I . The user will be able to reconstruct the secret
by implementing a decoding procedure similar to
the one above. The resulting CO and RO are equal
to 3/2 − k = 1/2 units achieving the optimal
CO(d2) and RO(d2) given in (4) and (5). In the
case when a user contacts d1 = 4 parties, the user
reads and downloads the first kα/α1 = 2 symbols

of each contacted share corresponding to VIM1

(in black). The user can always decode the secret
because VI here is a 4 × 4 square Vandermonde
matrix, hence invertible. The resulting CO and RO
are equal to 1/3 achieving the optimal CO(d1)
and RO(d1) given in (4) and (5).

3) Perfect secrecy: At a high level, perfect se-
crecy is achieved here because each symbol in a
share is “padded” with at least one distinct key
statistically independent of the secret, making the
shares of any party independent of the secret.

B. Proof of Theorem 2

Consider the (n, k, z) Universal Staircase code
construction defined in Section III-B. We prove
Theorem 2 by establishing the following proper-
ties.

1) Encoding is well defined: We prove that the
(n − j + 1)th row of

[
M1 . . .Mj

]
has the same

number of entries as Dj , j = 1, . . . , h − 1.
Therefore, we can always construct the matrix
Dj . In fact, the number of entries of one row of[
M1 . . .Mj

]
is equal to the sum of the number

of columns of the Mi’s, i = 1, . . . , j. Notice that
αi−1 = αi + 1, then we can write,

kα

αiαi−1
= kα

(
1

αi
− 1

αi−1

)
.

Hence, the number of columns of
[
M1 . . .Mj

]
is

given by,

kα

α1
+ kα

(
1

α2
− 1

α1

)
+ · · ·+ kα

(
1

αj
− 1

αj−1

)
=
kα

αj
,

(18)

which is equal to the number of entries of Dj .

2) MDS and minimum CO(d) and RO(d) for all
k + z ≤ d ≤ n: We prove that for all k + z ≤
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d ≤ n, a user contacting d parties can decode
the secret while achieving the minimum commu-
nication and read overheads given in (4) and (5).
Notice that the MDS property follows directly
from the fact that a user contacting dh = k + z
parties can reconstruct the secret by reading and
downloading all the contacted shares.

A user contacting dj , j = 1, . . . , h, parties
downloads the first kα/αj symbols of each party.
Let I ⊆ [n], |I| = dj , be the set of indices of
the contacted parties and let VI be the matrix
formed of the rows of V indexed by I . The total
downloaded data is given by VI

[
M1 . . .Mj

]
and

can be divided into j linear systems given as
follows,

VIM1 = VI
[
S R1

]T (19)

VIM2 = VI
[
D1 R2 0

]T (20)
...

VIMj−1 = VI
[
Dj−2 Rj−1 0

]T (21)

VIMj = VI
[
Dj−1 Rj 0

]T
. (22)

We prove by induction that the user can always
reconstruct the secret by iteratively decoding Mi,
i = j, . . . , 1, in each linear system VIMi. To
that end, we verify the induction hypothesis for
i = j. Given the system in (22), we show
that the user can always decode Mj . The zero
block matrix in (22) is of dimensions (n− dj)×
(kα/αjαj−1). Therefore, (22) can be rewritten as
V ′I
[
Dj−1 Rj

]T , where V ′I is the square Vander-
monde matrix of dimensions dj × dj formed by
the first dj columns of VI . Hence, the user can
always decode the entries of Mj by inverting V ′I .

Next, suppose that the user can decode all the
Mi’s, i = j, . . . , l+ 1, we prove that the user can
always decode Ml. The lth system is given by
VIMl. By construction Ml contains dl non-zero
rows, because the 0 block matrix is of dimensions
(n−dl)×(kα/αlαl−1). In addition, the entries of
the last l− 1 non-zero rows of Mj are present in
Df for f = j−1, . . . , l−1, which were previously
decoded. It can be checked that dj = dl− (l− 1)
for all l < j. Therefore, after subtracting the last
l − 1 rows of Ml, the system becomes V ′IM

′
l ,

where V ′I is again the dj×dj square Vandermonde
matrix defined above and M ′l is the matrix formed

of the first dj = dl − (l − 1) rows of Ml.
Henceforth, the user can always decode M ′l by
inverting V ′I . Finally, the user can decode all the
entires of Ml that consist of the entries of M ′l and
the entries of the last l − 1 rows of Ml, which
were previously decoded.

Next, we show that minimum CO and RO
are achieved. The number of symbols read and
downloaded by a user contacting dj parties is
equal to dj(kα/αj) symbols which corresponds
to djk/αj units. Then, the communication and
read overheads are given by djk/αj − k =
kz/αj = kz/(dj−z), which matches the optimal
CO(dj) and RO(dj) for all dj = k + z, . . . , n,
given in (4) and (5).

3) Perfect secrecy: Similarly to the proof of
perfect secrecy in Theorem 1, we need to show
that H(R |WZ , S) = 0 for all Z ⊂ [n], |Z| = z
(see Appendix). This is equivalent to showing
that given the secret s as side information, any
collection WZ of z shares can decode all the
random keys. A collection of WZ of z shares
can be written as VZ

[
M1 . . .Mh

]
, which can be

divided into h = n− k− z + 1 linear systems as
follows,

VZM1 = VZ
[
S R1

]T (23)

VZM2 = VZ
[
D1 R2 0

]T (24)
...

VZMh = VZ
[
Dh−1 Rh 0

]T
. (25)

We will prove by induction that given the
secret s as side information, any collection WZ

of z shares can always iteratively decode Ri,
i = 1, . . . , h, in each linear system VZMi. To
that end, we verify the induction hypothesis for
i = 1 by showing that a collection of WZ shares
can always decode R1 in (23). Recall that the
dimensions ofR1 are z×kα/α1. Given the secret
s, (23) becomes,

VZ
[
0 R1

]T
= V ′′ZR1,

where V ′′Z is a z× z square Vandermonde matrix
formed by the last z columns of VZ . Therefore,
R1 can be decoded by inverting V ′′Z .

Next, we suppose that any collection of WZ

shares can decode all theRi’s for i = 1, . . . , l−1,
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and show that any collection of WZ can de-
code Rl. The lth system is given by VIMl =

VI
[
Dl−1 Rl 0

]T . By construction, Dl−1 con-
sists of the entries of the last row of Ml−1

which were previously decoded. Given the pre-
viously decoded information, any collection of
WZ shares can cancel out the entries of Dl−1

to obtain V ∗ZRl. Since the dimensions of Rl are
z × kα/αlαl−1, the matrix V ∗Z is a z × z square
Vandermonde matrix formed by the (αl + 1)th

to (αl + z)th rows of VZ . Thus, Rl can be
always decoded because V ∗Z is invertible. There-
fore, all the keys can always be decoded. Hence,
H(R | WZ ,S) = 0. This concludes the proof of
Theorem 2.

VI. ∆-UNIVERSAL STAIRCASE CODES

We explain how to modify the Universal Stair-
case codes to construct Staircase codes that
achieve minimum CO and RO only for a desired
subset ∆ of all possible d’s, i.e., ∆ ⊆ {k +
z, . . . , n}. We refer to these codes as (n, k, z,∆)
∆-universal Staircase codes. The advantage of
these codes over universal codes is that they may
require smaller number of symbols per share α.
Encoding: Let ∆′ , ∆ \ {k + z} and order
the d’s in ∆′ in decreasing order. We write
∆′ = {di1 , . . . , di|∆′|} ⊆ {d1, . . . , dh−1}, where
di1 > di2 > · · · > di|∆′| . Let αij = dij − z for
all dij ∈ ∆′ and let α = LCM(α1, . . . , α|∆′|).
Define di|∆′|+1

, k + z and αi|∆′|+1
, k. The

secret symbols are arranged in a matrix S of di-
mensions αdi1×kα/αdi1 and the random keys are
partitioned into the matrices Ri1 , . . . ,Ri|∆′|+1

,
of dimensions z × kα/αi1 for Ri1 and z ×
kα(αij −αij−1

)/(αijαij−1
) for all other Rij , j =

2, . . . , |∆′|+1. Construct Mi1 as the di1×kα/αi1
matrix structured as M1 in (9). And, for each
dij , j = 2, . . . , |∆′| + 1, construct Mij as the
di1 × kα(αij − αij−1

)/(αijαij−1) structured as
Mij in (9). The matrix Dij , j = 1, . . . , |∆′|,
is the matrix of dimensions αij+1

× kα(αij+1
−

αij )/(αij+1
αij ) containing the last dij − dij+1

rows of
[
Mi1 . . .Mij

]
, from row dij to row

dij+1
+ 1. Then, concatenate the constructed ma-

trices, Mi1 , . . . ,Mi|∆′|+1
, to obtain the matrix M

of dimensions di1×α. The matrix M is multiplied

by a Vandermonde matrix of dimensions n× di1
to obtain the shares.

Decoding: To reconstruct the secret, a user con-
tacting dij parties, indexed by I ⊆ [n], downloads
the first kα/αij symbols from each contacted
party corresponding to vi

[
Mi1 . . .Mij

]
, for all

i ∈ I . The decoding procedure follows the same
steps of the decoding procedure presented in the
proof of Theorem 2 and the user will be able to
decode the secret.
We omit the proof of Theorem 3 since it follows
the same steps of the proof of Theorem 2.

VII. THRESHOLD CHANGEABLE SECRET

SHARING

An (n, k, z; t′) threshold changeable secret
sharing (TCSS) code, defined in [22], is an
(n, k, z) secret sharing scheme (satisfying (2) and
(3)), where the threshold t = k + z can be
increased to t′ > t in a decentralized way without
the intervention of the dealer. After the threshold
increase, the security parameter z remains the
same and k is increased to k′ = t′ − z. The
parties are allowed to communicate as long as the
security constraint is not violated. The efficiency
of a TCSS is measured by the new share size
for the new threshold t′, which we refer to as
the storage cost (SC) of the scheme8. Different
variants of threshold changeable secret sharing
schemes have been studied in the literature, see
e.g., [25]–[27]. A connection between TCSS and
CESS is shown in [15]. Code constructions are
provided in [15], [16], [22] for the case when
z = t− 1 and the threshold t′ is given a priori.

In this section, we show how to construct an
(n, k, z; t′) TCSS code for a given t′ > t using
an (n, k, z, d = t′) Staircase code. However,
different values of t′ for the same (n, k, z) may
require different Staircase codes. We show that
this can be avoided by constructing what we call
an (n, k, z; [t + 1 : n]) Universal TCSS code
using an (n, k, z) Universal Staircase code. Both
constructions involve the parties deleting parts of
their shares and do not require communication

8Any secret sharing scheme is trivially threshold change-
able, because a user contacting t′ > t parties can decode
the secret by downloading any t shares. However, it does
not achieve minimum storage cost for the new threshold.
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Party 1 Party 2 Party 3 Party 4
s1 + s2 + s3 + r1 s1 + 2s2 + 4s3 + 3r1 s1 + 3s2 + 4s3 + 2r1 s1 + 4s2 + s3 + 4r1

s4 + s5 + s6 + r2 s4 + 2s5 + 4s6 + 3r2 s4 + 3s5 + 4s6 + 2r2 s4 + 4s5 + s6 + 4r2

r1 + r2 + r3 r1 + 2r2 + 4r3 r1 + 3r2 + 4r3 r1 + 4r2 + r3

s3 + r4 s3 + 2r4 s3 + 3r4 s3 + 4r4

s6 + r5 s6 + 2r5 s6 + 3r5 s6 + 4r5

r3 + r6 r3 + 2r6 r3 + 3r6 r3 + 4r6

N
ew

sh
ar

e
fo

r
t′
=

3
D

el
et

ed

TABLE V: A (4, 1, 1; [3 : 4]) Universal TCSS code obtained from an (4, 1, 1) Universal Staircase
code over GF (5). The original code has threshold t = k+z = 2 and can be changed to either t′ = 3
or 4. The threshold change from t = 2 to t′ = 3 is depicted. Each party deletes the last 3 symbols
of its share. Similarly, the threshold can be changed to t′ = 4 by keeping the first two symbols of
each share. In both cases, the obtained code achieves minimum storage cost (SC) (share size) given
by (26).

among the parties. Moreover, this construction
achieves the optimal storage cost (SC)

SC =
k

t′ − z
, (26)

which is the minimum share size required if the
dealer were present. The next example shows how
to construct an (n, k, z; [t + 1 : n]) Universal
TCSS code with optimal SC from an (n, k, z)
Universal Staircase code by deleting parts of each
share.

Example 3. Consider the problem of construct-
ing an (n, k, z; [t + 1 : n]) = (4, 1, 1; [3 : 4])
Universal TCSS code for all possible t′, i.e.,
t′ = 3 and 4. To this end, we use an (n, k, z) =
(4, 1, 1) Universal Staircase code constructed in
Section V-A. The shares given to each party are
depicted in Table V.

In our construction, to change the threshold
from t = k + z to any t + 1 ≤ t′ ≤ n, each

party deletes the last
t′ − z − k
t′ − z

α symbols of its
share. Recall that in CESS, each share is of unit
size and consists of α symbols (α symbols = 1
unit). In this example, to change the threshold
from t = 2 to t′ = 3, each party deletes the
last 3 symbols (in shaded blue) of its share.
The obtained code achieves the minimum Storage
Cost (SC) given in (26), because each new share
is of size 3 symbols equal to 1/2 unit. One can
verify that a user contacting any t′ = 3 parties
and downloading their new shares can decode the
secret.

Similarly, the same code can be used to change
the threshold from t = 2 to t′ = 4. Each party
deletes the last 4 symbols (in red and shaded
blue) of its original share (or deletes the last sym-
bol, in red, if the threshold was already changed
to 3). Each new share consists of 2 symbols equal
to 1/3 unit. Hence, the obtained code achieves
minimum Storage Cost (SC) given in (26). One
can verify that a user downloading all the shares
can decode the secret. In both cases, secrecy is
inherited from the Staircase code, because the
parties do not exchange any information when
changing the threshold.

Corollary 1. An (n, k, z; t′) TCSS code, respec-
tively an (n, k, z; [t+1 : n]) Universal TCSS code,
can be constructed using an (n, k, z, d) Staircase
code defined in Section III-A, respectively an
(n, k, z) Universal Staircase code defined in Sec-
tion III-B. To change the threshold from t = k+z

to t′, each party deletes the last
t′ − k − z
t′ − z

α

symbols of its share. Both constructions achieve
optimal storage cost (SC) given in (26).

Proof. We prove that an (n, k, z; [t + 1 : n])
Universal TCSS code can be constructed using
an (n, k, z) Universal Staircase code and omit the
proof for (n, k, z; t′) TCSS code, since it follows
the same steps.

Starting with an (n, k, z) Universal Staircase
code, the threshold is t = k + z. Assume that
the threshold is to be changed to t′ for any
t + 1 ≤ t′ ≤ n. Each party deletes the last
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t′ − z − k
t′ − z

α symbols of its share (original share
size is α symbols).

We establish the following properties.
1) Minimum Storage Cost (SC): By construc-

tion, the new share size is α − (t′ − z −
k)α/(t′ − z) = kα/(t′ − z) symbols. Recall
that each α symbols are equal to 1 unit,
hence each share is of size k/(t′ − z) units
and (26) is achieved.

2) Perfect secrecy: Since the parties do not ex-
change any information when changing the
threshold, perfect secrecy follows from the
properties of the original Universal Staircase
code.

3) MDS: By construction, after changing the
threshold to t′, each party keeps exactly the
symbols that are sent to a user contacting
any t′ parties in the original CESS code.
Therefore, the user can decode the secret
by downloading any t′ shares. Moreover, the
secret is of maximal k = t′ − z shares.
In fact, from (26) we know that the new
share size α′ is given by α′ = kα/(t′ − z).
Hence, the secret of size kα symbols is of
size (t′−z)α′ symbols equal to t′−z shares
and is of maximal size.

Remark 1. Note that the Universal TCSS code
obtained from our construction also minimizes
the communication and read overheads (CO and
RO) in addition to minimizing the storage cost
(SC). In other words, the new n shares stored af-
ter the threshold update, allow a user contacting
d parties, for all k+z ≤ d ≤ n, to decode the se-
cret while achieving the minimum communication
and read overheads given in (4) and (5).

For instance, in Example 3 for the new thresh-
old t′ = 3, a user contacting any d = 4
parties and downloading the first two symbols
(in black) of each new share can decode the
secret. The incurred CO (and RO) is equal to 2
symbols equal to 1/3 unit and is minimum, i.e.,
achieves (4) and (5).

VIII. CONCLUSION

We considered the communication efficient se-
cret sharing (CESS) problem. The goal is to

minimize the read and download overheads for
a user interested in decoding the secret. To that
end, we introduced a new class of deterministic
linear CESS codes, called Staircase Codes. We
described three explicit constructions of Staircase
codes. The first construction achieves minimum
overhead for any given number of parties d
contacted by the user. The second is a universal
construction that achieves minimum overheads
simultaneously for all possible values of d. The
third construction achieves optimal costs univer-
sally for all values of d in a given set ∆ ⊆
{t, . . . , n}. All Staircase code constructions can
store a secret of maximal size and require a
small finite field GF (q) of size q > n. How-
ever, these code constructions require dividing the
shares into α symbols. Finally, we described how
Staircase codes can be used to construct threshold
changeable secret sharing (TCSS) codes.

In conclusion, we point out some problems
that remain open. The model we considered here
and the proposed Staircase codes can provide
security against parties corrupted by a passive
Eavesdropper. However, the problem of con-
structing communication and read efficient codes
that provide security against an active (malicious)
adversary remains open. Moreover, constructing
threshold changeable secret sharing codes where
the security level can be increased by increasing
the number of possibly colluding parties remains
open in general (only special cases were solved
in [26]).

APPENDIX

Let Wi denote the random variable represent-
ing share wi, and for any subset B ⊆ {1, . . . , n}
denote by WB the set of shares indexed by B,
i.e., WB = {Wi; i ∈ B}. We prove that, for all
Z ⊂ {1, . . . , n}, |Z| = z, the perfect secrecy
constraint H(S | WZ) = H(S), given in (2), is
equivalent to H(R | WZ , S) = 0. The proof is
standard [28], [29] but we reproduce it here for
completeness. In what follows, the logarithms in
the entropy function are taken base q. We can
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write,

H(S |WZ) = H(S)−H(WZ) +H(WZ | S)

= H(S)−H(WZ) +H(WZ | S)

−H(WZ | S,R) (27)

= H(S)−H(WZ) + I(WZ ; R | S)

= H(S)−H(WZ) +H(R | S)

−H(R |WZ , S) (28)

= H(S)−H(WZ) +H(R | S)
(29)

= H(S)−H(WZ) +H(R)

= H(S)− zα+ zα (30)

= H(S). (31)

Equation (27) follows from the fact that given the
secret s and the keysR any share can be decoded,
equation (29) follows because H(R | S,WZ) = 0
and equation (30) follows because the Staircase
code constructions use zα independent random
keys.
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[14] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure
Multiparty Computation and Secret Sharing. Cam-
bridge, England: Cambridge University Press, 2015.

[15] H. Wang and D. S. Wong, “On secret reconstruction
in secret sharing schemes,” IEEE Transactions on
Information Theory, vol. 54, pp. 473–480, Jan 2008.

[16] Z. Zhang, Y. M. Chee, S. Ling, M. Liu, and H. Wang,
“Threshold changeable secret sharing schemes revis-
ited,” Theoretical Computer Science, vol. 418, pp. 106–
115, 2012.

[17] W. Huang, M. Langberg, J. Kliewer, and J. Bruck,
“Communication efficient secret sharing,” arXiv
preprint arXiv:1505.07515, May 2015.

[18] R. Bitar and S. E. Rouayheb, “Staircase codes for
secret sharing with optimal communication and read
overheads,” arXiv preprint arXiv:1512.02990, Dec
2015.

[19] W. Huang, M. Langberg, J. Kliewer, and J. Bruck,
“Communication efficient secret sharing,” arXiv
preprint arXiv:1505.07515v2, April 2016.

[20] W. Huang, M. Langberg, J. Kliewer, and J. Bruck,
“Communication efficient secret sharing,” IEEE Trans-
actions on Information Theory, vol. 62, pp. 7195–7206,
Dec 2016.

[21] N. B. Shah, K. V. Rashmi, and K. Ramchandran,
“Distributed secret dissemination across a network,”
IEEE Journal of Selected Topics in Signal Processing,
vol. 9, pp. 1206–1216, Oct 2015.

[22] K. M. Martin, J. Pieprzyk, R. Safavi-Naini, and
H. Wang, “Changing thresholds in the absence of
secure channels,” in Information Security and Privacy,
pp. 177–191, Springer, 1999.

[23] A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath,
“Centralized repair of multiple node failures with ap-
plications to communication efficient secret sharing,”
arXiv preprint arXiv:1603.04822, 2016.

[24] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal
exact-regenerating codes for distributed storage at the
MSR and MBR points via a product-matrix con-
struction,” IEEE Transactions on Information Theory,
vol. 57, no. 8, pp. 5227–5239, 2011.

[25] F. Wang, Y.-s. Zhou, and D.-f. Li, “Dynamic threshold
changeable multi-policy secret sharing scheme,” Se-
curity and Communication Networks, vol. 8, no. 18,
pp. 3653–3658, 2015.



0018-9448 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2017.2723019, IEEE
Transactions on Information Theory

15

[26] M. Nojoumian and D. R. Stinson, “On dealer-free
dynamic threshold schemes.,” Adv. in Math. of Comm.,
vol. 7, no. 1, pp. 39–56, 2013.

[27] R. Shi and H. Zhong, “A secret sharing scheme with
the changeable threshold value,” in Information En-
gineering and Electronic Commerce, 2009. IEEC’09.
International Symposium on, pp. 233–236, IEEE, 2009.

[28] N. B. Shah, K. V. Rashmi, and P. V. Kumar,
“Information-theoretically secure regenerating codes
for distributed storage,” in Proc. IEEE Global Com-
munications Conference, 2011.

[29] S. E. Rouayheb, E. Soljanin, and A. Sprintson, “Secure
network coding for wiretap networks of type II,” IEEE
Transactions on Information Theory, vol. 58, pp. 1361–
1371, March 2012.

Rawad Bitar (S’10) is currently a Ph.D. student in the
ECE department at the Illinois Institute of Technology,
Chicago. He received the Diploma degree in computer and
communication engineering from the Lebanese University,
Faculty of Engineering, Roumieh, Lebanon in 2013 and the
M.S. degree from the Lebanese University, Doctoral school,
Tripoli, Lebanon in 2014. His research interests are in the
broad area of information theory and coding theory with
a focus on coding for distributed storage and information
theoretic security.

Salim El Rouayheb (S?07-M?09) is currently an assistant
professor in the ECE department at the Illinois Institute
of Technology, Chicago. He is the recipient of the NSF
career award. He received the Diploma degree in electrical
engineering from the Lebanese University, Faculty of Engi-
neering, Roumieh, Lebanon, in 2002, and the M.S. degree
from the American University of Beirut, Lebanon, in 2004.
He received the Ph.D. degree in electrical engineering from
Texas A&M University, College Station, in 2009. He was
a postdoctoral research fellow at UC Berkeley (2010-2011)
and a research scholar at Princeton University (2012-2013).
His research interests are in the broad area of information
theory and coding theory with a focus on network coding,
coding for distributed storage and information theoretic
security.


