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Abstract—We study the communication efficient secret sharing
(CESS) problem. A classical threshold secret sharing scheme
randomly encodes a secret into n shares given to n parties,
such that any set of at least t, t < n, parties can reconstruct
the secret, and any set of at most z, z < t, colluding parties
cannot obtain any information about the secret. A CESS scheme
satisfies the previous properties of threshold secret sharing. In
addition, it has minimum communication and read costs when
the user contacts d, d ≥ t, shares. The intuition behind the
possible savings on these costs is that the user is only interested
in decoding the secret and does not have to decode the random
keys involved in the encoding process. In this paper, we introduce
two explicit constructions of CESS codes called Staircase Codes.
The first construction achieves optimal communication and read
costs for a fixed d, d ≥ t. The second construction achieves
optimal costs universally for all possible values of d, t ≤ d ≤ n.
Both constructions can be designed over a field GF (q), for any
prime power q > n.

I. INTRODUCTION

Consider the threshold secret sharing (SS) problem [1], [2]
in which a dealer randomly encodes a secret into n shares
and distribute them to n parties, such that any set of at least
t, t < n, parties can reconstruct the secret, and any set of at
most z, z < t, parties cannot obtain any information about the
secret. For instance, let n = 4, t = 2 and z = 1 and let s be a
secret uniformly distributed over GF (5). Then, the following
4 shares (s+k1, s+2k1, s+3k1, s+4k1) form an SS scheme,
with k1 being a random symbol, called key, chosen uniformly
at random from GF (5) and independently of s. A legitimate
user can decode the secret by contacting any t = 2 parties,
downloading their t shares and inverting the linear system.
Secrecy is ensured, in an information theoretic sense, because
the secret is padded with the key in each share.

Threshold secret sharing code constructions have been ex-
tensively studied in the literature, e.g., [1], [3]–[7]. The litera-
ture on secret sharing predominantly studies non-threshold se-
cret sharing schemes, with so-called general access structures,
e.g., [8]–[10] and references within. In this paper, we focus
on the problem of communication (and read) efficient secret
sharing (CESS). A CESS scheme satisfies the properties of
threshold secret sharing described in the previous paragraph. In
addition, it has minimum communication and read overheads
when the user contacts d, d ≥ t, shares. The communication
overhead (CO) (respectively read overhead, RO) is defined as
the extra amount of information (beyond the secret size) that

Party 1 Party 2 Party 3 Party 4
s1 + s2 + k1 s1 + 2s2 + 4k1 s1 + 3s2 + 4k1 s1 + 4s2 + k1
k1 + k2 k1 + 2k2 k1 + 3k2 k1 + 4k2

TABLE I
THE STAIRCASE SECRET SHARING CODE FOR n = 4, t = 2, z = 1 AND

d = 3 OVER GF (5).

needs to be downloaded (respectively read) for a legitimate
user contacting d parties to be able to decode the secret.

The CESS problem was introduced by Wang and Wong in
[11]. They focused on perfect CESS, where z = t − 1, and
showed that when d > t, the user can download an amount of
information that is less than t shares and still decode the secret.
Huang et al. [12] studied the CESS problem for all z < t.
Before going into more details, we illustrate in Example 1
how communication and read costs can be reduced. The CESS
code in this example belongs to the new family of Staircase
codes which we introduce in Section III.

Example 1: Consider again the SS problem with n = 4,
t = 2, z = 1. We assume now that the secret s is formed
of 2 symbols s1, s2 over GF (5) and use two keys k1, k2
drawn independently and uniformly at random from GF (5).
To construct the Staircase code, the secret symbols and keys
are arranged in a matrix M as shown in (1). The matrix M
is multiplied by a 4× 3 Vandermonde matrix V to obtain the
matrix C = VM . The 4 rows of C form the 4 different shares
and give the Staircase code in Table I.

s1 k1
s2 k2
k1 0

 .


1 1 1
1 2 4
1 3 4
1 4 1


V

M

C = VM =
(1)

The nomenclature of Staircase codes comes from the position
of the zero block matrices in the general structure of the matrix
M (see Table III).

A legitimate user contacting any t = 2 parties can decode
the secret by downloading the two contacted shares, i.e., 4
symbols. However, a user contacting d = 3 parties can decode
the secret by downloading only 3 symbols, namely the first
symbol (in blue) of each contacted share. The key idea here
is that the user is only interested in decoding the secret and
not necessarily the keys. When d = 3, the user decodes the
secret and key k1, whereas when d = t = 2, the user has
to decode the secret and both of the keys. This code actually
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achieves the minimum CO and RO equal to 1 symbol for
d = 3 (and 2 symbols for d = t = 2) given later in (4)
and (5). Secrecy is achieved because each z = 1 party cannot
obtain any information about s1 and s2.
Related work: Wang and Wong derived in [11] a lower bound
on CO for perfect CESS, where z = t− 1. They constructed
codes, using polynomial evaluation over GF (q), where q >
n+v and v = LCM{t+1, . . . , n}1, which achieve minimum
CO and RO universally for all d, t ≤ d ≤ n. Zhang et al.
[13] constructed CESS codes for the same parameters over
GF (q), where q > n. Recently, Huang et al. [12] generalized
the lower bound on CO for any z, z < t. They constructed
explicit CESS codes for any z, z < t, achieving the minimum
CO and RO for d = n over GF (q), q > n(n−z). Moreover,
they proved the achievability of the lower bound on CO and
RO universally for all possible values of d, t ≤ d ≤ n using
random linear code constructions.
Contribution: In this paper, we introduce a new class of de-
terministic linear CESS codes, called Staircase Codes, which
generalizes the construction in Example 1. We describe two
explicit constructions of Staircase codes. The first construction
achieves minimum CO and RO for any given d. The second
is a universal construction that achieves minimum CO and
RO simultaneously for all possible values of d, t ≤ d ≤ n.
Staircase codes require a small finite field GF (q) of size
q > n, which is the same requirement for Reed Solomon
based SS codes2 [3].
Organization: The paper is organized as follows. In section II,
we formulate the problem and introduce the notation. In
section III, we describe the Staircase code construction for
fixed d. Moreover, we give an example and prove that this
construction achieves minimum CO and RO (Theorem 1). In
section IV, we give the construction for universal Staircase
codes (Theorem 2). We conclude in section V.

II. SYSTEM MODEL

We consider the CESS problem and follow the majority of
the notations in [12]. A secret s of size k units is formed of
kα symbols (1 unit = α symbols). The secret symbols are
drawn independently and uniformly at random from a finite
alphabet, typically a finite field. A CESS code is a scheme that
randomly encodes the secret into n shares w1, . . . , wn of unit
size each, and distribute them to n distinct parties. A CESS
code must satisfy the following properties:

1) Perfect secrecy: Any subset of z or less parties should
not be able to obtain any information about the secret.
Let [n] = {1, . . . , n}, and for any subset B ⊆ [n] denote
by WB the set of shares indexed by B, i.e., WB =
{wi; i ∈ B}. Then, the perfect secrecy condition can be
expressed as

H(s | WZ) = H(s), ∀Z ⊂ [n] s.t. |Z| = z. (2)

1Least common multiple.
2However, the proposed constructions require to divide the secret into a

certain number of symbols α, which may not be necessary for SS codes.

2) MDS: A user downloading any t shares is able to recover
the secret, i.e.,

H(s | WA) = 0, ∀A ⊆ [n] s.t. |A| = t. (3)

Equations (2) and (3) imply that the secret can be of at
most t− z units (see [12, Proposition 1]). We will take
the secret to be of maximum size, i.e., k = t− z units.

3) Minimum CO and RO: a user contacting any d parties,
t ≤ d ≤ n, is able to decode the secret by reading and
downloading exactly k+CO(d) units of information in
total from all the contacted shares, where

CO(d) =
kz

d− z
. (4)

Here, H(.) denotes the entropy function. Equation (4) repre-
sents the achievable information theoretic lower bound [12,
Theorem 1] on the communication overhead, CO(d), needed
to satisfy the constraints in (2) and (3), when the user contacts
d shares. Since the amount of information read cannot be less
than the downloaded amount, the following lower bound on
RO holds,

RO(d) ≥ CO(d). (5)

We will refer to a CESS code described above as an (n, k, z, d)
CESS code, where the threshold is t = k+z. For instance, the
code in Example 1 is an (4, 1, 1, 3) CESS code. We will also
be interested in universal (n, k, z) CESS code that achieves
minimum CO(d) and RO(d) simultaneously for all possible
values of d. Note that the MDS constraint is subsumed by the
minimum CO and RO constraint since it corresponds to the
case of d = t and CO(t) = z. However, we will make this
distinction for clarity of exposition.

III. STAIRCASE CODE CONSTRUCTION FOR FIXED d

A. Code construction

Theorem 1: The (n, k, z, d) Staircase CESS code construc-
tion defined below over GF (q), q > n, satisfies the required
MDS and perfect secrecy constraints given in (2) and (3), and
achieves optimal communication and read overheads CO(d)
and RO(d) given in (4) and (5) for any given d, d ∈
{k + z, . . . , n}.
We describe the (n, k, z, d) Staircase code construction that
achieves optimal communication and read overheads CO(d)
and RO(d) for any given d, k+z ≤ d ≤ n. In this construction,
we take α = d − z. Hence, the secret s of size k units is
formed of k(d − z) symbols s1, . . . , skα, where si ∈ GF (q)
and q > n. The symbols si are arranged in an α×k matrix S.
The construction uses zα iid random keys drawn uniformly at
random from GF (q) and independently of the secret. The keys
are partitioned into two matrices K1 and K2 of dimensions
z × k and z × (α − k), respectively. Let D be the transpose

of the last (α− k) rows of the matrix
[
S
K1

]
3 and let 0 be the

all zero square matrix of dimensions (α− k)× (α− k). Note
that α − k ≥ 0 since d ≥ z + k. The key ingredient of the

3If α − k ≤ z, i.e., d ≤ 2z + k, then D consists of the transpose of the
last α− k rows of K1.
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construction is to arrange the secret and the keys in the d×α
matrix M defined in Table II. The inspiration here is from
the class of Product Matrix codes that minimizes the repair
bandwidth in distributed storage systems [14].

M =

 S
D

K2

K1 0


d×α

α−kk

α

z

k

z

α−k

TABLE II
THE STRUCTURE OF THE MATRIX M THAT CONTAINS THE SECRET AND

KEYS IN THE STAIRCASE CODE CONSTRUCTION FOR FIXED d.

Encoding: Let V be an n×d Vandermonde matrix over GF (q).
The matrix M is multiplied by V to obtain the matrix C =
VM . The n rows of C form the n different shares, i.e., wi =
viM, i = 1, . . . , n, where vi is the ith row of V .
Decoding: A user contacting any t = k+ z parties downloads
all the contacted shares. A user contacting d parties, indexed
by I ⊆ [n], downloads the first k symbols from each contacted
party corresponding to vi

[
S K1

]t
, i ∈ I (the superscript t

denotes the transpose of a matrix). Theorem 1 guaranties that
the user will be able to decode the secret in both cases.

B. Example

We give the details of the construction of the (n, k, z, d) =
(4, 1, 1, 3) CESS code of Example 1. We take α = d− z = 2,
thus the secret s is formed of kα = 2 symbols s1, s2 over
GF (q), q = 5 > n = 4. The construction uses zα = 2 iid
random keys k1, k2 drawn uniformly at random over GF (5)
and independently of the secret. The keys are partitioned into
two matrices K1 and K2 of dimensions z × k = 1 × 1 and
z×(α−k) = 1×1, respectively. The matrix D is the transpose
of the last α − k = 1 row of K1. Hence, we have, K1 =

D = k1,K2 = k2, and S =

[
s1
s2

]
. The secret and the keys

are arranged in an d × α = 4 × 2 matrix M . Let V be an
n×d = 4×3 Vandermonde matrix. M and V are given again
in (6).

M =

s1 k1
s2 k2
k1 0

 and V =


1 1 1
1 2 4
1 3 4
1 4 1

 . (6)

The shares are the rows of the matrix C = VM as given in
Table I. We want to check that this code satisfies the following
properties.
1) Minimum CO and RO for d = 3: We check that a
user contacting d = 3 parties can reconstruct the secret
with minimum CO and RO. For instance, if a user con-
tacts the first 3 parties and downloads the first symbol of
each contacted share, then the downloaded data is given by,1 1 1
1 2 4
1 3 4

s1s2
k1

 . The matrix on the left is a 3 × 3 square

Vandermonde matrix, hence invertible. Therefore, the user can
decode the secret (and k1). This remains true irrespective of
which 3 parties are contacted. The user reads and downloads
3 symbols of size 3/α = 3/2 units resulting in minimum

overheads, CO(3) = RO(3) = 3/2 − k = 1/2, as given
in (4) and (5).

2) MDS: We check that a user contacting t = k + z = 2
parties can reconstruct the secret. Suppose the user con-
tacts parties 1 and 2 and downloads all their shares given

by
[
1 1 1
1 2 4

]s1 k1
s2 k2
k1 0

 . This system is equivalent to the

two following systems
[
1 1 1
1 2 4

]s1s2
k1

 and
[
1 1
1 2

] [
k1
k2

]
.

The decoder uses the latter system to decode k1 and k2.
This is possible because the matrix on the left is a square
Vandermonde matrix, hence invertible. Then, the decoder
subtracts the obtained value of k1 from the former system

to obtain again the following invertible system
[
1 1
1 2

] [
s1
s2

]
.

The decoder then decodes s1 and s2. Again, this procedure is
possible for any 2 contacted parties .
3) Perfect secrecy: At a high level, perfect secrecy is achieved
here because each symbol in a share is “padded” with at least
one distinct key statistically independent of the secret, making
the shares of any party independent of the secret.

C. Proof of Theorem 1
Consider the (n, k, z, d) Staircase code defined above. We

prove Theorem 1 by establishing the following properties:
1) Minimum CO(d) and RO(d): We prove that a user con-
tacting any d parties can reconstruct the secret while incurring
minimum CO and RO. A user contacting any d parties down-
loads the first k symbols of each party. Let I ⊂ [n], |I| = d, be
the set of indices of the contacted parties, then the downloaded
data is given by VI

[
S K1

]t
, where VI is a d × d square

Vandermonde matrix formed of the rows of V indexed by
I , hence invertible. The user can always decode the secret
(and the keys in K1) by inverting VI . The code is optimal
on communication and read overheads CO(d) and RO(d),
because the user only reads and downloads kd symbols of
size kd/α = kd/(d − z) units resulting in an overhead of
kd/α−k = kz/α = kz/(d−z) achieving the optimal CO(d)
and RO(d) given in (4) and (5).

2) MDS property: We prove that a user contacting any t =
k+ z parties and downloading all their shares can reconstruct
the secret. Let I ⊂ [n], |I| = t, be the set of indices of the
contacted parties. The information downloaded by the user is

VIM and is given by VI

 S D

K1
K2

0

 . First, we show that the

user can decode the entries of D and K2. The decoder consid-
ers the system VI

[
D K2 0

]t
= V ′I

[
D K2

]t
. Recall that

the dimensions of the all zero sub-matrix in
[
D K2 0

]t
are

(α − k) × (α − k). Then, V ′I is a (k + z) × (k + z) square
Vandermonde matrix formed by the first (k + z) columns of
VI . Therefore, the user can always decode the entries of D and
K2 because V ′I is invertible. Second, we prove that the user
can always decode the entries of S and hence reconstruct the
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secret. Recall that D is the transpose of the last α − k rows
of M1 ,

[
S K1

]t
. By subtracting the previously decoded

entries of D from VI
[
S K1

]t
, the user obtains V ′IM

′
1,

where V ′I is defined above and M ′1 is a (k + z) × k matrix
formed by the first k+ z rows of M1. Therefore, the user can
always decode the entries of M ′1 because V ′I is invertible. If
k+ z ≥ α, then S is directly obtained since it is contained in
M ′1. Otherwise, M ′1 consists of the first k+ z rows of S. The
remaining rows of S are contained in D and were previously
decoded. In both cases, the user can decode all the secret
symbols s1, . . . , skα.
3) Perfect secrecy: We prove that for any subset Z ⊂ [n],
|Z| = z, the collection of shares WZ indexed by Z does
not reveal any information about the secret as given in equa-
tion (2), i.e., H(s | Wz) = H(s). To that end, it suffices to
prove that H(K1,K2 | WZ , s) = 0 [15]. Therefore, we need to
show that given the secret s as side information, any collection
WZ of z shares can decode all the random keys. A collection

of WZ shares can be written as VZ

 S D

K1
K2

0

 , where VZ is

a z× d matrix corresponding to the rows of V indexed by Z.
This linear system can be divided into two systems as follows,

VZ
[
S K1

]t
, (7)

VZ
[
D K2 0

]t
. (8)

Given the secret as side information, it can be subtracted from
(7), which becomes VZ

[
0 K1

]t
= V ′′ZK1, where V ′′Z is a

z × z square Vandermonde matrix consisting of the last z
columns of VZ . The entries of K1 can always be decoded
because V ′′Z is invertible. Now that K1 is decoded and we
have S as side information, we can obtain D as the last α−
k rows of

[
S K1

]t
. Then, the entries of D are subtracted

from the second system to obtain V ∗ZK2, where V ∗Z is a z× z
square Vandermonde matrix consisting of the (k+1)th to the
(k+z)th columns of VZ . Hence, the entries of K2 can always
be decoded because V ∗Z is invertible. Therefore, H(K1,K2 |
WZ , s) = 0, ∀ Z, Z ⊂ [n], |Z| = z and perfect secrecy is
achieved.

IV. UNIVERSAL STAIRCASE CODE CONSTRUCTION

A. Universal Code construction

Theorem 2: The (n, k, z) Staircase CESS code construction
defined below over GF (q), q > n, satisfies the required
MDS and perfect secrecy constraints given in (2) and (3), and
achieves optimal communication and read overheads CO(d)
and RO(d) given in (4) and (5) simultaneously for all d,
k + z ≤ d ≤ n.
The proof of Theorem 2 is omitted and can be found in [15].

We describe the (n, k, z) Staircase code construction men-
tioned in Theorem 2, which achieves optimal communication
and read overheads CO(d) and RO(d) simultaneously for all
possible values of d, i.e., k + z ≤ d ≤ n. Let d1 = n, d2 =
n − 1, . . . , dh = k + z, with h = n − k − z + 1, and αi =
di − z, i = 1, . . . , h. Choose α = LCM(α1, α2, . . . , αh−1),

that is the least common multiple of all the αi’s except for the
last αh = k. The secret s consists of kα symbols s1, . . . , skα
over GF (q), q > n, arranged in an α1 × kα/α1 matrix S.
The construction uses zα iid random keys, drawn uniformly
at random from GF (q) and independently of the secret. The
keys are partitioned into h matrices Ki, i = 1, . . . , h, of
respective dimensions z × kα/αiαi−1 (take α0 = 1). The
matrix

[
K1 · · · Ki

]
consists of the overhead of keys decoded

by a user contacting di parties. We form h matrices Mi,
i = 1, . . . , h, as follows,

M1 =

 S
K1

 and Mi =

Di−1Ki
0

 i 6= 1,n

z

α1

kα/α1

n z

αi

n − di

kα/αi−1αi

(9)

where, Dj is formed of the (n− j + 1)
th row of[

M1 M2 · · · Mj

]
wrapped around to make a matrix of di-

mensions αj+1 × kα/αjαj+1 for j = 1, . . . , h − 1. The
0’s are the all zero matrices used to complete the Mi’s to
n rows. The secret and the keys are arranged in the matrix
M =

[
M1 · · · Mt

]
defined in Table III.

M =


D2

. . . Dh−1

D1 Kh

S K3
. . .

K2 0K1 0
. . .

0

 . staircase
structure

n× α

M1 M2 M3 . . . Mh

TABLE III
THE STRUCTURE OF THE MATRIX M THAT CONTAINS THE SECRET AND

KEYS IN THE UNIVERSAL STAIRCASE CODE CONSTRUCTION.

The matrix M is characterized by a special structure re-
sulting from carefully choosing the entries of the Dj’s and
placing the all zero sub-blocks in a staircase shape, giving
these codes their name. This staircase shape allows to achieve
optimal communication and read overheads CO and RO for
all possible d.
Encoding: The encoding is similar to the first Staircase code
construction. The matrix M is multiplied by an n × n Van-
dermonde matrix over GF (q) to obtain the matrix C = VM .
The n rows of C form the n different shares.
Decoding: To reconstruct the secret, a user contacting any dj
parties indexed by I ⊆ [n] downloads the first kα/αj symbols
from each contacted party corresponding to vi

[
M1 · · · Mj

]
,

for all i ∈ I .

B. Example of Universal Staircase code

We describe here the construction of an (n, k, z) = (4, 1, 1)
universal Staircase code over GF (q), q = 5 > n = 4, by
following the construction in Section IV. This example is
explained in more details in [15]. We have d1 = 4, d2 = 3,
d3 = 2 and α1 = 3, α2 = 2, α3 = 1 and α =
LCM(α1, α2) = LCM(3, 2) = 6. The secret s is formed
of kα = 6 symbols over GF (5). The construction uses
zα = 6 iid random keys drawn uniformly at random from
GF (5) and independently of the secret. The secret symbols
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and the random keys are arranged in the following matrices,

S =

s1 s4
s2 s5
s3 s6

 , K1 =
[
k1 k2

]
, K2 =

[
k3
]
, and K3 =[

k4 k5 k6
]
. To build the matrix M which will be used for

encoding the secret, we start with M1 =

[
s1 s2 s3 k1
s4 s5 s6 k2

]t
.

Then, D1 is the α2×kα/α1α2 = 2×1 matrix that contains the
symbols of the nth row of M1, i.e., D1 =

[
k1 k2

]t
. There-

fore, M2 =
[
D1 K2 0

]t
=
[
k1 k2 k3 0

]t
. Similarly,

we have D2 =
[
s3 s6 k3

]
and M3 =


s3 s6 k3
k4 k5 k6
0 0 0
0 0 0

. We

obtain M by concatenating M1, M2 and M3,

M =


s1 s4 k1 s3 s6 k3
s2 s5 k2 k4 k5 k6
s3 s6 k3 0 0 0
k1 k2 0 0 0 0

 .
M1 M2 M3

(10)

Here, V is the n×n = 4×4 Vandermonde matrix over GF (5)
given in (11). The shares are given by the rows of the matrix
C = VM and shown in Table IV.

V =


1 1 1 1
1 2 4 3
1 3 4 2
1 4 1 4

 . (11)

Party 1 Party 2
s1 + s2 + s3 + k1 s1 + 2s2 + 4s3 + 3k1
s4 + s5 + s6 + k2 s4 + 2s5 + 4s6 + 3k2
k1 + k2 + k3 k1 + 2k2 + 4k3
s3 + k4 s3 + 2k4
s6 + k5 s6 + 2k5
k3 + k6 k3 + 2k6

Party 3 Party 4
s1 + 3s2 + 4s3 + 2k1 s1 + 4s2 + s3 + 4k1
s4 + 3s5 + 4s6 + 2k2 s4 + 4s5 + s6 + 4k2
k1 + 3k2 + 4k3 k1 + 4k2 + k3

s3 + 3k4 s3 + 4k4
s6 + 3k5 s6 + 4k5
k3 + 3k6 k3 + 4k6

TABLE IV
AN EXAMPLE OF A UNIVERSAL STAIRCASE CODE FOR (n, k, z) = (4, 1, 1)

OVER GF (5).

The decoding rules for each d follow the general rules
described in the previous section. We check that this code
achieves minimum CO and RO simultaneously for d2 = 3
and d1 = 4. Suppose a user contacts d2 = 3 parties
indexed by I ⊂ [n]. The user reads and downloads the first
kα/α2 = 3 symbols of each contacted share corresponding
to VI

[
M1 M2

]
(in black and red), where VI is the matrix

formed by the rows of V indexed by I . The user will be
able to reconstruct the secret. The resulting CO and RO are
equal to 3/2 − k = 1/2 units achieving the optimal CO(d2)
and RO(d2) given in (4) and (5). In the case when a user

contacts d1 = 4 parties, the user reads and downloads the first
kα/α1 = 2 symbols of each contacted share corresponding
to VIM1 (in black). The user can always decode the secret
because VI here is a 4×4 square Vandermonde matrix, hence
invertible. The resulting CO and RO are equal to 1/3 achiev-
ing the optimal CO(d1) and RO(d1) given in (4) and (5).

V. CONCLUSION

We considered the communication efficient secret sharing
(CESS) problem. The goal is to minimize the communication
and read overheads for a user interested in decoding the
secret. To that end, we introduced a new class of deterministic
linear CESS codes, called Staircase Codes. We described two
explicit constructions of Staircase codes. The first construction
achieves minimum overheads for any given number d of
parties contacted by the user. The second is a universal
construction that achieves minimum overheads simultaneously
for all possible values of d. The introduced codes require a
small finite field GF (q) of size q > n, which is the same
requirement for Reed Solomon based SS codes.
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[8] C. Padró, “Lecture notes in secret sharing,” IACR Cryptology ePrint
Archive, vol. 2012, p. 674, 2012.

[9] E. F. Brickell, “Some ideal secret sharing schemes,” in Advances in
Cryptology–EUROCRYPT’89, pp. 468–475, 1990.
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