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Abstract—We consider the problem of synchronizing coded data
in distributed storage networks undergoing insertion and deletion
edits. We present modifications of distributed storage codes that
allow updates in the parity-check values to be performed with
one round of communication at low bit rates and with small
storage overhead. Our main contributions are novel protocols
for synchronizing frequently updated and semi-static data based
on functional intermediary coding involving permutation and
Vandermonde matrices.

Index Terms—Deduplication, deletions, distributed storage
codes, file synchronization, insertions.

I. INTRODUCTION

C ODING for distributed storage systems (DSSs)
has garnered significant attention in the past few

years [2], [3] due to the rapid development of information tech-
nologies and the emergence of Big Data formats that need to be
stored and disseminated across large-scale networks. As typical
DSSs such as Google's Bigtable, Microsoft Azure and the
Hadoop Distributed File System [4], [5] need to ensure low-la-
tency data access and store a large number of files over a set of
nodes connected through a communication network, it is imper-
ative to protect the systems from undesired component failures.
This is accomplished by implementing1 Reed-Solomon, re-
generating and local repair solutions [3], [6]–[9] that extend
coding paradigms used in CDs, DVDs, flash memories and
RAID systems [10].
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1While locally repairable codes [3] have been implemented in industrial
storage systems, regenerating codes are still in a developmental stage.

Two key functionalities of codes used in DSSs are (i) re-
construction of files via access to a subset of the nodes; and
(ii) content repair of failed nodes that does not compromise data
reconstruction capabilities. Both these functionalities need to be
retained when the files are accessed and processed by the users
or undergo edits, such as symbol/block insertions, deletions,
or substitutions. Deletions frequently arise due to system-level
data deduplication, referring to a family of protocols designed
to reduce storage costs by removing all except one or a few
copies of the same file within the system. When parts of files are
deduplicated or edited, the changes in the information content
need to be communicated to the redundant parity-check nodes
so that the DSS retains its reconstruction and repair capabili-
ties, and such that the communication and update costs are min-
imized. Current solutions for synchronizing data that underwent
edits assume that data is uncoded and they do not fully exploit
the distributed nature of information. They mostly ignore the
presence of deduplication protocols as these are believed to be
in an early stage of development as far as distributed systems are
concerned. Nevertheless, there are strong indications that dedu-
plication is used in Dropbox and Sugarsync as well as in many
other storage systems [11]–[13].
In Dropbox and related systems, deletion and insertion syn-

chronization problems are resolved in the uncoded domain via
the use of the rsync [14], dsync [15], or zsync [16] algorithms,
related to a number of file synchronization methods put forward
in the information theory literature [17]–[22]. There, uncoded
stored copies of a file are synchronized from an edited user's
copy. More specifically, the protocols involve a single user and
a single node storing a replica of the user's file. After the user
edits his/her file, assuming no knowledge of the edits, the user
and the storage node communicate interactively until their files
are matched or until one node matches the master copy in an-
other node.
Synchronization in the coded domain is a significantly more

complicated task as deletions and insertions cause issues that ap-
pear hard to resolve by standard substring pivoting and rolling
checksum and hashing methods [14]. This family of protocols
also requires fundamentally different techniques compared to
those implemented for update efficient coding [23], [24]. Up-
date efficient coding aims to minimize the number of nodes that
need to be updated when a user's file is changed by substitu-
tions. In this case, minimizing the communication cost reduces
to simplyminimizing the number of nodes a user needs to recruit
during update. On the other hand, the core problem in coded
synchronization is to efficiently update encoded data in storage
nodes while maintaining small internode communication rates.
In addition, instead of minimizing the number of storage nodes a
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Fig. 1. Users in the DSS described in Example 1.

user needs to communicate with, the objective of synchronizing
from deletions and insertions is to minimize the communication
cost between a user and a storage node even at the cost of intro-
ducing a small, controlled amount of storage overhead.
We describe the first known coding and accompanying dis-

tributed synchronization protocols that maintain repair prop-
erties under a number of edit and deduplication models. The
protocols rely on a simple new scheme termed intermediary
coding, which changes the structure of the code during each edit
or deduplication event and thereby reduces the communication
complexity between nodes needed for content update. The in-
termediary coding scheme also offers flexibility in terms of ac-
commodating a very broad family of coding schemes used in
DSSs, such as erasure codes, regenerating codes, and locally
repairable codes. In addition, we study extensions of the edit
models arising in deduplication applications that cater to dif-
ferent data types, such as frequently rewritten and semi-static
data. Our results also include worst and average case communi-
cation cost analyses for different edit models and synchroniza-
tion protocols as used in typical HYDRAstor architectures [25].
The analysis reveals that traditional schemes require a signifi-
cantly higher communication cost than schemes based on inter-
mediary coding, both in the worst case and average case sce-
nario and for all practical ranges of parameter values. This may
be attributed to the fact that traditional encoding requires each
node to communicate symbols in the span of all deletion posi-
tions in different nodes, while intermediary coding allows for
reducing the communication cost to the number of bits needed
to encode the particular edits.
The paper is organized as follows. Section II motivates the

synchronization question and provides the precise problem
formulation. Section III contains the description of simple up-
date protocols and their underlying communication costs when
traditional DSS encoding methods are used. Section IV con-
tains our main results, a collection of encoding algorithms
and protocols for data synchronization that have order-optimal
communication cost with respect to the fundamental limits.
Section V examines both storage and communication over-
heads and explains how to trade between these two system
parameters, while Section VI provides a short discussion on
how to handle unknown edit positions. Section VII presents
numerical results indicating the communication savings of the
proposed schemes.

II. MOTIVATION AND PROBLEM STATEMENT

We start with a straightforward example that motivates the
work and describes the difficulties encountered when synchro-
nizing coded data.

Fig. 2. Two synchronization schemes for coded data. The average communica-
tion cost is reduced from 4 bits with the traditional scheme (a) to bits
with our scheme (b). (a) A traditional synchronization scheme (see Example 1).
(b) Our synchronization scheme (see Example 4).

Example 1: Consider two users with data blocks
and

, each consisting of bits. Suppose
that these blocks are encoded in a DSS comprising three
nodes that store , , and , respectively.
The DSS coding scheme, illustrated in Fig. 1, satisfies the
reconstruction property for the data blocks , :
one may repair any one failed node by accessing the re-
maining two nodes. Suppose next that the last symbol in

and the first symbol in are deleted, resulting in
smaller data blocks and

. The question of interest may
be stated as follows: what communication protocol should
the users and the DSS nodes employ to minimize the data
transmission cost whilst retaining the reconstruction and repair
functionalities on the edited data?
One way to retain both functionalities would be for the three

DSS nodes to update their contents to , , and ,
respectively. For the uncoded DSS nodes, it is both necessary
and sufficient for the user to communicate his/her deletion po-
sition in data block , , 2, to the corresponding node .
In Example 1, this amounts to communicating bits. Re-
garding the parity-check node 3, a simple scenario involves both
users transmitting their data blocks , to node 3, which
consequently updates its content to . This solution
requires an average communication cost of four symbols. The
next proposition states that in general at least four symbols need
to be transmitted to the parity-check node 3.
Proposition 1: Let and be two user data blocks of

length over . Assume that exactly one deletion has occurred
in and one in . Let and denote the respective
edited blocks, and suppose that the information to be updated
at the three nodes of the corresponding encoded DSS is given
by , , and , respectively. Then, in the worst
case scenario over all possible edit locations, the total commu-
nication cost is at least symbols, or bits,
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independent of the network topology between the users and the
nodes.
The proof relies on concepts from communication com-

plexity (see [26]) and is deferred to Appendix A.
It appears that in Example 1, both users have to necessarily

transmit almost their whole information content to node 3. How-
ever, we show that by using methods akin to functional re-
pair in DSSs [6], one may significantly save in communica-
tion complexity by updating the content of node 3 via a flexible
change in the code structure. The key idea is to use the fact that
the users have full knowledge of the edits and “transfer” the
burden of updating the data from the DSS nodes to the users.
For clarity of exposition, we proceed to formally describe the
problem setup and provide our solution for maximum distance
separable (MDS) array codes only. The solution easily extends
to a general setup including erasure, regenerating and locally re-
pairable codes. The formal proofs of all assertions are deferred
to Appendix E.

A. Coding for Distributed Storage Systems

Our model assumes that there are users and that each user
is associated with a data block of symbols.2 We represent this
information as an array to
be stored in a distributed storage system. The system is equipped
with an encoding function, as well as a set of reconstruction and
repair algorithms. We focus on maximum distance separable
(MDS) array codes [27], where the encoding algorithm converts
the array into vectors of length and stores them in
storage nodes. The reconstruction algorithm recovers from
the contents of any out of nodes. Formally, we have the
following definitions:
1) An encoding function is a map .
2) Let . For any -subset of , a map

is termed a reconstruction function
if for ,

Here, refers to the entries in the array with co-
ordinates in , while refers to the nodes the users
have to contact in order to retrieve their information.

We restrict our attention to linear code maps and refer to the
above coding scheme as an MDS array code. When

, we recover the usual notion of an MDS code [28].
On the other hand, given an MDS code and any integer
, we may extend the code to obtain an MDS array
code. This extension is akin to data-striping in RAID systems,
amounting to a simple conversion of a symbol to a string of
symbols. One may also view this construction as a means of di-
viding symbols into groups of symbols each, and then
encoding each group of symbols by an MDS code.

2The choice of is dictated by the storage system at hand, and in particular,
by the size of the block (which is a system parameter) and the expected size
of an edit. Consequently, we assume for our algorithmic approaches that is a
fixed system parameter. Nevertheless, for the asymptotic analysis performed in
later sections, we use a standard modeling assumption in which is allowed to
grow arbitrarily large.

In addition, we denote the set of nodes that need to be updated
when user edits his/her data block by , and say that the
nodes in are connected to user .
Example 2 (Example 1 Continued): In Example 1, we implic-

itly considered a single parity MDS code, with codewords
of the form , and belonging to
a finite field. Assume that there are two users with data blocks

and of length . Then by having nodes 1, 2 and 3 store
, we obtain a MDS array code.

Nodes 1 and 3 are connected to user 1, and nodes 2 and 3 are
connected to user 2.
B. Problem Formulation

Consider a string . A deletion at
position results in ,
while an insertion of symbol at position results in

. Suppose next that the data
blocks in a DSS are updated via deletions or insertions.
Furthermore, assume that the data blocks are subjected to edits
performed in an independent fashion by different users.3
More precisely, the edit models studied include:
1) The uniform edits model, in which each data block has the

same number of deletions and thus the resulting data blocks
all have the same length. Here the number of deletions is
assumed to be . This model is used to describe
the main ideas behind the work in a succinct and notation-
ally simple manner, but may not be of practical importance.

2) The nonuniform edits model, in which each data block has
a possibly different number of edits.We analyze this model
in a probabilistic setting by assuming that one is given the
probability of deleting any particular symbol in a data
block, resulting in an average number of edits per data
block. Note that may depend on .

The problem of interest may be stated as follows:
Find the smallest “communication cost” protocol for the

users to send information about their edits to connected storage
nodes so that the nodes can update their information while
maintaining reconstruction and repair functionalities.
For concreteness, the “ ” is simply defined as the number

of bits transmitted from a user to a storage node connected to
it, averaged over all users. We are typically concerned with the
worst case average , that is the maximized over all edit
scenarios (say, all single deletion scenarios). For example, in
the worst case, one may need to communicate

bits for a deletion, and
bits for an insertion. A scheme that achieves these bounds is for
each user to send the entire edited data file to each node. The
lower bound follows by noting that at least one user needs to
communicate the edit position, and the inserted symbol in the
case of an insertion, to at least one node.
In what follows, we introduce what we term a traditional

synchronization scheme and describe its shortcomings. We
then propose two schemes that achieve a communication cost
of bits, i.e., of the order of the intuitive
lower bound. To facilitate such a low communication cost, we
introduce a storage overhead needed to describe an interme-
diary encoding function. The gist of the encoding method is

3In practice, it may be possible for a single user to edit a number of different
data blocks. However, for simplicity, we assume that each data block is edited
by one user.
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to transform the information, and hence the codes applied to
data blocks, via permutation and Vandermonde matrix mul-
tiplication. The resulting schemes are subsequently referred
to as Schemes P and V, respectively. A key property of the
transforms is that they reduce the update and synchronization
communication cost by changing the code structure. The storage
overhead induced by the change in code structure is carefully
controlled by choosing the parameters of the corresponding
matrices as described in Section V-B. We also demonstrate that
our schemes are optimal in terms of storage allocation when
the number of edits is . Under the same condition
of edits, we demonstrate in Appendix D that on
average our schemes outperform schemes that do not utilize
intermediary encoding functions. Furthermore, we point out
that our methods do not rely on specific assumptions regarding
the network topology: a user is allowed to communicate with
any other user or storage node and vice versa, i.e., the storage
network is a complete graph. Nevertheless, users are naturally
assumed to communicate only with a “minimal” set of storage
nodes which contain encodings or systematic repetitions of
their data blocks.

III. COMMUNICATION COST WITH TRADITIONAL ENCODING
We call a scheme traditional (or Scheme T) if for a given

length of the data blocks, the corresponding MDS
array code is a vectorized version of an MDS code as
described in Section II-B. In other words, for a fixed , we en-
code data blocks of units each by encoding the th unit of
each block using the same MDS code. Formally, define
an MDS code via its corresponding and functions.
The traditional encoding function4 , satis-
fies the following condition for any

(1)

The corresponding reconstruction function
satisfies the following condition for any -subset of

and for any

(2)

where is used to succinctly denote the encoded data
stored at the nodes. In words, given access

to nodes, we regard their information as a array and apply
the classical reconstruction algorithm to the th column for all

. Since the th column is in fact ,

we retrieve the data units , which correspond
to the th coordinates of the data blocks . Hence,
the function in (2) allows for retrieving the data blocks of all
the users.
Example 3 (Example 1 Continued): Consider the systematic

single parity MDS code of Example 1 and let the data
blocks of users 1 and 2 be , , respectively. For
this code, we may use (1) and rewrite the information at the
storage nodes as

(3)

4For compactness, we write instead of its transpose.

Suppose that following one edit per block, the data blocks are
updated to , each of length . Then, synchro-
nization scheme T requires that the information stored at the
nodes be given by . The next proposition
characterizes the worst-case of scheme T.
Proposition 2 (Scheme T): Consider an MDS array

code and assume single deletions in the user data blocks.
Scheme T updates the content of the storage nodes to an

MDS array code, with each user sending out
bits to a connected storage node. Here,

, where denotes the
deletion position for data block ,
and . In the worst case, the protocol has a
communication cost of bits. Furthermore,
no scheme performs better than this protocol up to a constant
multiplicative factor.

Proof: Proposition 1 proves the converse for the case of an
, . For the general case involving more than

two users and more than three storage nodes, one can focus on
the worst case scenario in which two users each have a single
deletion and need to update a parity-check value in a common,
connected node. The proof of Proposition 1 can be easily mod-
ified to show that in this case, the worst case remains

symbols, or bits. The achievability scheme
(Scheme T) is just an extension of the intuitive protocol one
would apply in the worst case scenario (such as in Example 1),
and is detailed below.
Suppose that all users send their deleted coordinates to a des-

ignated central storage node, and that the designated central
node computes and .
Define . Since we have

for and and for
and , we have

if ,
if .

(4)

In other words, the information stored at coordinates in
need not be updated. Therefore, it suffices to compute

as given by

(5)
where is the updated string restricted to the coordinates in
. In other words,

Consequently, equipped with for and (4) and (5),
the nodes are able to compute .

IV. SYNCHRONIZATION SCHEMES WITH ORDER-OPTIMAL
COMMUNICATION COST

To avoid repeated transmissions of all data blocks of users,
one needs to develop encoding methods that work around the
problems associated with Scheme T. Synchronization schemes
based on intermediary coding, which are the focus of this sec-
tion, allow for reducing the communication cost from
(Scheme T) to bits.
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Example 4 (Example 1 Continued): Suppose that each
user sends the following information: (deletion position,
deleted symbol) to node 3; i.e., user 1 transmits

and user 2 transmits . Now, node 3 which has

and receives , can update its content to
. The new

storage code over the three nodes continues to be a
MDS array code. We emphasize that in this array code, the third
node does not store the sum of the content of the first two nodes.
Nevertheless, the reconstruction capability is maintained.
The communication cost is reduced from 8 bits, assuming
Scheme T, to (see Fig. 2). The savings
are more dramatic as block lengths increase: for , the
communication cost may be reduced from 2048 bits to only

.
In what follows, we formally introduce the notion of interme-

diary encoding, illustrated in Fig. 3.
Let and let

be invertible matrices over . We
define a new encoding function , which
uses the traditional encoding function as a building block,

(1a)
We prove that this encoding function preserves reconstruction

capabilities by exhibiting a reconstruction algorithm. To this
end, for any -subset of , we define ,
so that for all ,

(2a)
Proposition 3: Consider an MDS code with functions
and . For any integer and invertible matrices

, the functions and given by (1a) and
(2a) define an MDS array code.
Note that , corresponds to Scheme T.
Example 5 (Example 1 Continued): Suppose node 3 stores

the value .
Then, we may rewrite the information stored at all three nodes
as

where and . Since both

and are invertible, the resulting code is indeed an
MDS array code.
In the next subsection, we describe how to choose the ma-

trices and accompanying update protocols for a general
setting, so as to ensure significantly lower communication cost
between a user and connected storage node as compared to
Scheme T. Furthermore, In Appendix B, we describe simple
modifications of (1a) that enable the use of systematic MDS
codes and that apply to variable data block lengths.

A. Synchronization Schemes Using Intermediary Coding
Suppose that the data blocks are edited to length .

The idea behind intermediary coding is to request the users to
modify their respective matrices to invertible ma-
trices according to the edits made. Then, users may only
transmit the locations and values of their edits rather than a
whole span of values, with the storage nodes being able to up-
date their respective information so that (1a) holds. Since the
matrices are designed to be invertible, the resulting system
remains an MDS array code. We propose two different
update schemes and choices for the matrices based on the
frequency and extent to which edits are made. These matrices
cater to the need of:
(a) Semi-static Data. For this scenario, we assume that only

a constant fraction of the data blocks is edited by users
so that most data blocks retain their original length . In
this case, the matrices , albeit modified, remain of
dimension . The most appropriate choice for the ma-
trices are permutation matrices, i.e., binary matrices with
exactly one 1 per row and per column.

(b) Frequently Updated Data. In contrast to the semi-static
case, one may also assume that a significant proportion
of the data blocks are edited by users.5 In this case, the
resulting stored data blocks are of length ; the
matrices have dimension and appropriate
choices for them are Vandermonde and Cauchy matrices
(see [28]).

Scheme Based on Permutation Matrices: Although this
scheme applies to general nonuniform edit models, and conse-
quently to data blocks of variables lengths, for simplicity we
assume edits of the form of a single deletion or insertion. In
the nonuniform setting we pad the shorter data blocks by an
appropriate number of zeros. As an illustration, after a deletion
in at position 2, we store .
Let the data block be edited at coordinate . Recall that

we associate with an matrix . The matrix is
initialized to the identity matrix and it remains a permutation
matrix after each update. Roughly speaking, the storage nodes
maintain the coded information in the original order. Since with
each edit this order changes, the permutationmatrix is used
to keep track of the order in the data blocks relative to that in
the storage nodes. Hence, indicates that instead of editing
“position ” of the check nodes, one has to edit “position ”
in the original order. These assertions are stated and formally
proved in Proposition 4.
Since permutation matrices are invertible, the approach re-

sults in an MDS code by Proposition 3. We refer to the
intermediary encoding scheme that uses permutation matrices
as Scheme P.

Scheme P: Assumption: is edited at coordinate .

1 if edit is a deletion then
2 coordinate where the th row is one

(note: is a permutation matrix)

5In many application, both hot data (i.e., frequently accessed data) and fre-
quently updated data is left uncoded in order to facilitate quick access to in-
formation and eliminate the need for reencoding. Our scheme may be seen as
a means to mitigate both the issues of access and reencoding, while allowing
higher level of data integrity through distributed coding. This is achieved at the
price of storing an intermediary code and additional computations.
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Fig. 3. Intermediary encoding that retains both reconstruction and repair functionalities.

3 th row of is moved to the position of the last row
4 else
5 coordinate where the last row is one
6 last row of is moved to the position of the th row
7 end
8 User sends to the connected storage nodes : the

value affected, using ( bits), the type of edit –
insertion or deletion (one bit), and the coordinate (
bits)

9 for do
10 One computes

11 where for , denotes the th standard basis
vector.

12 if edit is a deletion then
13 subtract
14 else
15 add
16 end
17 end

Proposition 4 (Scheme P): Consider an MDS array
code and assume a single edit for a single user. The updates in
accordance to Scheme P result in an MDS array code
and the user needs to communicate bits to a con-
nected storage node to update his/her information.

Proof of Proposition 4: We prove the correctness of
Scheme P for the case of a single deletion. Insertions are
handled similarly.
We first show that the updates performed as part of Scheme P

result in an MDS code. It suffices to show that the nodes
store

where is the matrix resulting from the instruction per-
formed from line 1 to line 7 in the protocol. Note that prior to
the edit, the nodes stored

Define

and suppose that the following claim were true

(6)

Then, the updates in lines 9 to 16 have the net effect of sub-
tracting from the information stored at the nodes, which
proves the claim. Hence, it only remains to show that (6) holds.

Without loss of generality, let . Then
and .

Since for , we have
. Similarly,

for . Hence, the left hand
side yields .
Example 6: Consider a simple example involving two data

blocks and with , shown in Table I, that represent
part of an MDS array code over . Let denote the
matrix given by in line 10 of the
protocol. One can reconstruct the user data by contacting any
two nodes. Upon obtaining the data stored in nodes 1 and 2,
and multiplying it with the corresponding matrix inverses, one
arrives at , and

.
One shortcoming of Scheme P is that it requires storing the

most updated “data order” and the deletion positions. To miti-
gate this undesirable feature, we propose the following scheme
which changes the order automatically, and once data is deleted,
all information about it is removed from the system.
Scheme Based on Vandermonde Matrices: As for the case of

Scheme P, the scheme using Vandermonde matrices applies to
nonuniform edit models as well,6 but for simplicity we assume
a single deletion at coordinate in data block , .
Note that when one deletion is present, the updated data block
length equals .
As before, we associate with an matrix . After

synchronization, we want the updated matrix to be of di-
mension and invertible, and the information
in the storage nodes reduced to appropriate vectors of length

. The deleted values are stored in the
storage nodes as

(7)

Hence, when given the values and positions , each node
may subtract the vector from its content. To reduce
the size of the storage node arrays, we simply remove the coor-
dinates in the set .
Suppose that is the matrix obtained

from by removing the th row and the last column. It is
easy to check that after the edit, the storage nodes contain

(8)

For the system to be an MDS array code, we require
to remain invertible. This is clearly true if the matrix

is Vandermonde. We refer to this method as Scheme V.

6Minor algorithmic changes that need to be performed in order to accommo-
date the nonuniform deletion model are outlined at the end of the section.
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TABLE I
EXAMPLE ILLUSTRATING SCHEME P WITH AN MDS CODE OVER (EXAMPLE 6).

TABLE II
EXAMPLE ILLUSTRATING SCHEME V WITH AN MDS CODE OVER (EXAMPLE 7).

Scheme V: Assumption: Symbol is deleted at position
, .

1 for do
2 User sends to all connected storage nodes its deleted

value – – using bits, as well as the position
of the deletion, using bits

3 via removal of the th row and last
column

4 end
5 for do
6 Using (7), one computes and subtracts
7 and removes the th coordinate.
8 end

Proposition 5 (Scheme V): Consider an MDS array
code and assume a single deletion in each user data block. The
updates in accordance to Scheme V result in an MDS
array code and each user needs to communicate
bits to connected nodes.

Proof of Proposition 5: As before, it suffices to show that
the information stored at the nodes is given by (8). Proceeding
in a similar fashion as was done for the proof of Proposition 4,

and by referring to the linearity of the encoding maps, the proof
reduces to showing that for ,

(9)

We check that
for and
for . Hence, the remaining term on the left hand

side of the previous expression equals , which
establishes (9).
Example 7: Assume that and consider an

MDS array code over . Choose two data blocks and
and edits as shown in Table II. As in Example 6, one can re-
construct the user data blocks from the data stored in nodes 1
and 2 according to: , and

.
Remark 8:
(i) The size of . Recall that Vandermonde matrices exist

whenever , hence this inequality has to hold true
for the scheme to be implementable.

(ii) Intermediary coding based on Cauchy matrices as
a means of reducing communication complexity.
In Scheme V, all users were required to transmit

bits to describe their edits. We may save
bits in the communication protocol by having one
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of the users, say user 1, transmit only its location, without
transmitting the deleted value.
We achieve this by fixing . Suppose that
had a deletion at position . To ensure that remains
invertible, we remove the th row and th column (line
3). This in turn forces us to delete the th column in all
matrices . Hence, one needs to ensure that all square
submatrices of are invertible for . It is known
that Cauchy matrices, taking the form

...
...

. . .
...

for distinct values , satisfy this
requirement. Cauchy matrices of the form needed exist
whenever .

(iii) Application to data deduplication. As already pointed
out, deduplication is inherently a deletion process which
requires synchronizing all affected user information.
Scheme V may easily be integrated into a data deduplica-
tion process for a DSS so as to remove duplicate blocks
not only amongst the users, but also their redundantly
encoded information at the storage nodes.
We describe how to accomplish this task for post-process
deduplication, i.e., deduplication after users have al-
ready recorded on their disks certain data blocks, say

. Deduplication proceeds as follows:
(I) A central node identifies all users and their cor-

responding storage nodes for which the data
is to be removed.

(II) For , the central node scans the string
of user node for and

identifies positions where the
blocks are stored.

(III) The central node transmits to
all storage nodes connected to .

(IV) Each storage node and user node update their
information as dictated by Scheme V in
iterations.

(iv) RESET synchronization. For many deduplication sce-
narios, one is faced with a potentially large number of
deletions of symbols. In this setting, it may be more
efficient to communicate information about symbols that
remained unedited, rather than information about deleted
symbol. A simple counterpart of Scheme T for the large
deletion regime is a synchronization scheme during
which all the users send their undeleted data blocks to
the parity nodes to recompute their values. We term this
scheme RESET, and in the high deletion regime, this
scheme may be expected to outperform its counterparts
that communicate information about the deleted symbols.

Nonuniform Deletion Model: We briefly comment on how
to modify Scheme V so as to adapt it to the general scenario
where user has deletions. Define as ,
or equivalently, . Our goal is to update the matrix

so that it has dimension , and reduce the content
of the storage nodes to arrays.

Suppose that has deleted values .
Define and modify (7) as

(8a)

As before, when given the deleted values and their coordinates,
each node subtracts the vector . To reduce the size of
the storage nodes, we simply remove the coordinates belonging
to for . Suppose that is the
matrix with rows corresponding to the deletions and last
columns removed from . Then it is not difficult to check

that the matrix is Vandermonde if was Vandermonde
in the first place.

V. FUNDAMENTAL LIMITS AND A TRADEOFF BETWEEN
COMMUNICATION COST AND STORAGE OVERHEAD

Suppose that a data block of a user is subjected to a single
edit. Then, the communication cost of both Schemes P and V
is approximately , for each pair of user and his/her
connected storage node. Hence, for a single edit, the communi-
cation cost of both schemes is near-optimal.
However, when a data block has an arbitrary number of

edits, say , then the schemes require bits to
be communicated and it is unclear if this number is optimal,
order-optimal (i.e., of the same order as the optimal solution)
or order-suboptimal. In the next Section V-A, we establish a
simple lower bound on the communication cost using results of
Levenshtein [29] and show that Schemes P and V are within a
constant factor away from the lower bound when ,
for a constant .
We point out that Schemes P and V outperform Scheme T

for any number of edits. To achieve the communication cost
of bits, Schemes P and V have to store cer-
tain structural information regarding the matrices . As
Scheme T does not require this storage overhead, we also
analyze the tradeoff between communication cost and storage
overhead in Section V-B. Our findings suggest that the use of
Schemes P and V is preferred to the use of scheme T whenever
the number of edits satisfies .

A. Fundamental Limits
We derive a lower bound on the communication cost between

a user and a connected node and show that Schemes P and V are
within a constant factor away from this lower bound under cer-
tain constraints on the number of edits. For this purpose, recall
that a subsequence of a sequence is itself a sequence that can be
obtained from the original sequence by deleting some elements
without changing the order of the nonedited elements. Similarly,
a supersequence of a sequence is itself a sequence that can be
obtained from the original sequence by inserting some elements
without changing the order of the nonedited elements.
Consider the following quantity that counts the number of

possible subsequences or supersequences resulting from edits
on a data block of length , respectively, defined via

We require bits to describe deletions (or in-
sertions/deletions) to a node that contains the original sequence.
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TABLE III
TRADE-OFF BETWEEN STORAGE OVERHEAD AND COMMUNICATION COMPLEXITY OF VARIOUS SYNCHRONIZATION PROTOCOLS.

This shows that each user needs to communicate to a connected
storage node at least bits, given that the storage
nodes contain only coded information about the original se-
quence and that the user knows the positions of the edits. A
similar argument for establishing a lower bound for the two-way
communication protocol was used in [30].
The fundamental combinatorial entity was introduced

by Levenshtein [31] and it is known (see [29, Eq. (11) and (24)])
that

for deletions only,
for deletions/insertions.

When for a constant , in the asymp-
totic parameter regime we have and

. Therefore, Schemes P
and V are within a constant factor away from this lower bound.

B. Communication Cost Versus Storage Overhead

Suppose that during each round of synchronization, a data
block has a single edit. In this case, the communication cost
between each user and each connected storage node for both
Schemes P and V is approximately . However, to
achieve this cost, a user needs to store the matrix , which
requires bits. However, this storage requirement may
be easily reduced. For any synchronization scheme, we can first
store the description of the initial matrices.7 Subsequently, to
generate the matrices , it suffices for the users to store the
modifications to the initial matrices and we term this informa-
tion the storage overhead per edit. For Schemes P and V, this
overhead amounts to the space allocated for storing the loca-
tions of edits; hence, the storage overhead per edit is bits.
In contrast, for Scheme T, the storage overhead per edit is zero
as the matrices are equal to the identity matrix.
We summarize the communication cost and storage overhead

features of the various schemes in Table III.
Storage Overhead Versus Information Storage: Consider a

single data block that has undergone edits. Both Schemes P
and V incur a total storage overhead of bits for the user,
with the data block itself being of size bits. Therefore,
for desirable storage allocation properties, one would require

or, equivalently, the number of edits to be
. This calculation implies that Schemes P and V

should only be used in the small/moderate edit regime. It is
also preferable to use Schemes P and V for semi-static and
frequently updated data, respectively, since the former effec-
tively maintains the length of the original data file, while the
latter scales storage requirements according to the number of
unedited symbols.

7The initial matrix is the identity matrix for Scheme P and Scheme T, and a
single Vandermonde matrix for Scheme V.

Hybrid Schemes: Suppose that one is given a constraint
on the storage overhead per edit, say . By com-
bining Scheme V and Scheme T, we demonstrate a scheme that
achieves a lower (worst case) communication cost while satis-
fying the aforementioned storage constraint.
Pick so that . Next, divide each data block into

two parts of lengths approximately and . If the edit
belongs to the first part, use intermediary coding via Scheme V
and send out bits. The storage overhead of this
protocol is bits. On the other hand, if the edit belongs to
the second part, then send all bits and the deleted
position of bits. This protocol does not require any storage
overhead. Hence, in the worst case, the hybrid scheme incurs a
storage overhead of bits and a communication cost of

bits. The choice of that
minimizes the communication cost is given by the next lemma.
Lemma 6: The hybrid scheme has smallest communication

cost for

(10)

where denotes the Lambert function, defined via
.

Proof: The result easily follows by observing that
is minimized when

. By rearranging terms, we
arrive at the expression , where
and . This yields a constraint satisfied by the
Lambert function. The proof follows by observing that is also
required to satisfy .
The hybrid scheme is described in more detail in Appendix C;

Fig. 4 illustrates the communication cost and storage overhead
trade-offs achievable by the hybrid scheme. Observe that both
Schemes P and V approach the lower bound when one is al-
lowed a storage overhead of bits, assuming single edits
per data block. Note that the lower bound on the communica-
tion cost is independent on the storage overhead. It would hence
be of interest to derive a lower bound that actually captures the
dependency on the storage overhead.
We conclude this section by considering a system cost that

takes into account both the communication complexity and
storage overhead. Similar to the hybrid method, we request
certain users to communicate via Scheme P/V and others via
Scheme T. Specifically, we consider a probabilistic edit model,
where one edit occurs in each round of communication and
where the probability of data block being edited equals .
Let denote the set of users that synchronize via Scheme P/V,
and define . Then, the expected storage over-
head is , while the expected communication cost equals

. For some predefined , the
aggregate cost is defined as

(11)
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Fig. 4. Communication cost and storage overhead tradeoff.

Proposition 7: Let be given by (11). If
, then is minimized for . Oth-

erwise, if , then is minimized for
.

Proof: Consider . Suppose that
and pick . Let . Then

Hence, augmenting with lowers the aggregate cost and so
is minimized for . The argument for the other case

proceeds along similar lines.

VI. UNKNOWN DELETION LOCATIONS
In the previous sections, we focused on synchronization

protocols for user-induced edits. In this case, the positions
of deletions and the values of the corresponding symbols are
known and available to the users of the DSS. Many applica-
tions, including Dropbox-like file synchronization, call for file
updates where changes are made by secondary users, in which
case the edits are unknown to primary or other file users. As
will be shown next, it is straightforward to accommodate the
update scenarios to this model, provided that an additional
small storage overhead is allowed. Again, we focus on the
single edit or low update frequency scenario, for which we
show that one only needs to store the Varshamov-Tenengolts
(VT) Syndrome [32] of the data, in addition to a properly
encoded original file. When frequent checks or updates are
performed, one may apply multiple-deletion correcting codes
akin to those described in [33].
Consider the data string . Its VT syndrome is given by

and , where is the
indicator for the event , .
Case I: All Data Blocks Experience a Single Deletion: In

addition to the matrices , each user stores its VT syndrome
of size bits. Prior to an update, each

user retrieves its VT syndrome to compute the deleted position
and its value. With this information, the user proceeds with any
of the previously outlined update schemes.
Case II: A Subset of Data Blocks Experience a Single Dele-

tion: Observe that in the previous scheme, an additional over-
head of bits was required to store all VT syn-
dromes of all users. We show next that by using the structure
of the MDS code, we can achieve storage savings by recording
the VT syndromes of the check nodes only. For this
purpose, assume that at most data blocks have a deletion

and that . Also, for simplicity, let ; is a prime,
and the syndrome is computed modulo .
For the syndromes , each check node

stores an additional check value that represents a linear com-
bination of these syndromes, so that from any collection of

nodes all syndromes can be recovered. Similarly, each
check node stores another check value from the syndromes

. Therefore, with this scheme, we store an
additional bits. Suppose
now that affected data blocks have a deletion. Each
affected user requests the VT syndromes from the unaffected

users and also the coded VT syndromes from
the check nodes. With the values, the affected user
computes its own VT syndrome and consequently uses it to
determine the position of its deletion and its value.

VII. PERFORMANCE ANALYSIS AND SIMULATIONS

The analysis of Schemes P, V and RESET is performed for
two already mentioned edit models that capture the combinato-
rial and probabilistic nature of edits:
1) PND: The probabilistic nonuniform deletion model. Here,

we assume that each of the symbols of the users is inde-
pendently edited with probability . This probability takes
different values based on the application at hand. When
deletions arise from deduplication, typically ranges be-
tween 0.4 and 0.9.When deletions arise from user requests,
they typically result in significantly smaller values of ,
ranging from 0.01 to 0.1 [25], [34].

2) UD: The uniform deletions model. The underlying as-
sumption is that each data block has deletions,
with the set of coordinates chosen uniformly at random.
This combinatorial model may be seen as an average case
simplification of the PND model.

Suppose that is the communication cost between a user and
a storage node, with edits occurring in accordance with the PND
and UD models. The following results, proved in Appendix D,
establish the average communication costs of various synchro-
nization protocols for a distributed system involving users and
MDS array encoded storage nodes.
Theorem 8 (Scheme T): Consider Scheme T. Let be the

communication cost between a user and a storage node, with
edits occurring in accordance with the PND and UD models.
Then , where
1) for model UD, we have

(12)

2) for model PND, we have

(13)

Proposition 9 (Scheme P/V): Consider either Scheme P or
Scheme V. Define to be the communication cost between one
selected user and a connected storage node, with edits occur-
ring according to the above models. Then under both models
UD and PND,

(14)
It is not difficult to see that for the RESET scheme, one has

(15)
for both the UD and PND model.
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Fig. 5. Comparison of communication costs of schemes T (black), P/V (blue)
and RESET (red) for a range of blocklengths and edit probability .
Observe that under Scheme T, the performance of the UD and PND model
almost coincide. The square, diamond, and circle symbols correspond respec-
tively to field sizes , , and . The blocklengths are in bits.

We proceed next to numerically compare the communication
cost savings of the proposed schemes for a practical system
model. For this task, we adopt a setup similar to [25] and
focus our attention on the well studied HYDRAstor DSS. Each
storage node in a typical third generation HYDRAstor DSS
is equipped with 12 1TB SATA disks, resulting in an overall
storage capacity of 12TB. We assume that the atomic storage
units are the disks themselves; furthermore, we restrict our
attention to MDS array codes over the finite fields

[35] that are used by typical HYDRAstor
systems to protect information against disk failures. We assume
block sizes up to 7.1 KB, as data sections of size 64 KB are
divided into 9 fragments. Each disk stores roughly 155 million
data blocks.
In Fig. 5, we plot the average communication costs of

schemes T, P and RESET for a fixed value of the deduplication
rate and for different block and field sizes. The
results indicate that in the high deletion scenario, RESET
outperforms all other schemes only for small field sizes, but
the P/V Schemes offer more than twofold improvements over
other methods when the field size is large.
Fig. 6 shows the average communication costs of Schemes T,

P and RESET for a fixed field size and for different
edit and deduplication probabilities. The chosen deletion prob-
abilities cover both the operational point where one expects the
communication cost savings to outweigh the storage overhead
(i.e., ) and where the deduplication rate is very high
(i.e., ) [25]. As expected, as increases, the com-
munication cost increases for Scheme P/V, while it decreases
for Scheme RESET.

VIII. CONCLUSION
We introduced the problem of synchronizing of deduplicated

and coded information and proposed a collection of efficient
protocols for reconciling distributed coded data. The gist of
the proposed solution is intermediary encoding, which allows
the edited encoded information to retain repair and reconstruc-
tion properties, althoughwith a different encoding functionality.

Fig. 6. Comparison of the communication cost of Schemes T (black), P/V
(blue), and RESET (red) for a range of blocklengths and for different deletion
probabilities , 0.25 and 0.5. The field size is fixed to .
The performance of Scheme T changes negligibly as varies, and is represented
by a single line. The blocklengths are in bits.

Hence, the synchronization protocols may be seen as a form of
functional reconciliation methods – methods that preserve func-
tional properties but not a particular code structure. For the pre-
sented protocols, we derived simple fundamental lower and av-
erage case performance bounds and simulated the protocols on
a HYDRAstor-based model.

APPENDIX A
PROOF OF PROPOSITION 1

To prove the claimed result, we adapt the fooling set method
from communication complexity (see [26, § 13.2.1]), stan-
dardly used to lower bound the deterministic communication
complexity of a function.
Assume that and are the deleted coordi-

nates, i.e., the first user deleted the last coordinate,
while the second user deleted the first coordinate. De-
fine to be a function such that

.
Then the task of node 3 is to update its value to .
A fooling set for of size is a subset

and and a value such that (a) for every
, and (b) for every distinct

, either or
. One can show that if has a fooling set of

size , then the total deterministic communication cost for
any protocol computing is at least [26, Lemma 13.5].
To prove the claim, we exhibit next a fooling set of size

for the function of interest. Set and consider the subset
of of size defined as
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Then for all . Furthermore,
if , or equivalently, if

, we can check that

. Therefore, is
a fooling set of size .

APPENDIX B
MODIFICATIONS OF THE INTERMEDIARY ENCODING FUNCTION

We describe next simple modifications of (1a) that allow for
systematic MDS codes and for variable data block lengths.
(a) Systematic MDS. A systematicMDS array code is a MDS

array code with the property that the data blocks are ex-
plicitly stored amongst a set of nodes, termed the sys-
tematic nodes. In other words, the content of the system-
atic nodes are the blocks , .
Assume a systematic MDS code with functionalities
and . As before, let be invertible

matrices and define a systematic encoding function
according to

if is systematic,
otherwise.

Let be the resulting information stored over the
nodes. The reconstruction algorithm may be used unal-
tered provided that some pre-processing of is
performed first. Specifically, suppose that and is a
systematic node with for some .
We modify this information to . If denotes
the array resulting from the previous computation, recon-
struction is performed according to .

(b) Data blocks of variable lengths. For , let be
of length and let be a right invertible ma-
trix, where . We define

via (1a). If we perform re-
construction via (2a), we arrive at an MDS array
code. Note that the right inverse of is required for
reconstruction.

APPENDIX C
HYBRID SCHEMES

We describe in detail the hybrid scheme that combines
Schemes P and V. Define . Then, for ,
initialize

where is a Vandermonde matrix of dimension
and is an identity matrix of dimension . For subsequent

edits, we proceed as outlined in Algorithm Scheme H.
Proposition 10 (Scheme H): Consider an MDS

array code and assume a single deletion per user. The updates
in accordance to Scheme H result in an MDS array

code. In the worst case, each user introduces a storage over-
head of bits and incurs a communication cost
of bits for its edit.
The proof is similar to the proofs of Proposition 4 and

Proposition 5 and is therefore omitted.

Scheme H: Assumption: is deleted at coordinate .

1 if then
2 User sends to all connected storage nodes the

value of the deleted symbol – ( bits) and the
coordinate ( bits)

3 with the th row removed
4 else
5 User computes the vector

6 User sends to all connected storage nodes the
vector ( bits)

7 User pads with a zero.
8 end
9 for do
10 Subtract where

if ,

otherwise.

11 end

APPENDIX D
PROBABILISTIC ANALYSIS OF THE COMMUNICATION COST
In what follows, we derive the formulae for the expected com-

munication costs given in Section VII and estimate these values
in the asymptotic regime. In particular, we show that even on
average, Scheme T requires communicating bits per
one single round of editing.
We first prove the results (12), (13) and (14) of Section VII.
For Scheme T, recall the definitions of , and from

Section III. For the model UD, we have ,
while holds for model PND. Hence,

for model UD,
and for model PND. Therefore, our
problem reduces to estimating for the various schemes
under consideration. To do so, we follow the standard derivation
methods in order statistics (see David and Nagaraja [36]).
Recall that and observe

that

for model UD,

for model PND.

This establishes (12) and (13).
On the other hand, the communication cost between a user

and a connected storage node for Schemes P/V is given by
, where denotes the corresponding number of

edits of the user. Since for the models UD and PND the expected
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number of edits is , (14) follows after some straightforward
algebraic manipulations.
Let and be the expected communication cost of

Scheme T and Scheme P/V, respectively. In the following
analysis, asymptotics are computed in and we assume that
is either fixed or that . Furthermore, we assume that

and that or as .
Under these assumptions, we have .
1) For model UD, note that for all

when . Hence, and so,
, or

So, , while .
Hence, if .

2) For model PND, note that when
and . Hence, and

so, , or

Again, , while .
Hence, if .

Consequently, for both probabilistic models and our pro-
posed protocols, we achieve a communication complexity that
is asymptotically negligible compared to that of Scheme T.

APPENDIX E
EXTENSIONS FOR GENERAL CODES

We demonstrate in what follows that our schemes are appli-
cable to general DSSs. For this purpose, consider an informa-
tion vector to be stored in a DSS.
We make use of the following definitions.
1) An encoding function is a map .
2) For any -subset of , a map

is termed a reconstruction function if for
,

3) Given a and -subset of , a map
is termed an exact repair function

if

where is the information stored over nodes.
Depending on the set of subsets over which a repair func-

tion is defined, one recovers various families of codes:
1) Maximum distance separable (MDS) codes [28, Ch. 11].

Here, we have and , and the reconstruc-
tion and repair algorithms coincide.

2) Regenerating codes [6]. Here, , and we require a
repair function for all and all -subsets
of . We note that in bandwidth-limited DSSs, it is
of importance to define an additional function, mapping
words from to . More precisely, a repair algo-
rithm maps inputs from to and then to

, where is usually smaller than and indicates the re-
quired amount of downloaded bits. The intermediary func-
tion does not change our analysis.

3) Locally Repairable Codes (LRC) [8]. Here, , and
for all , we only require a repair function for
some -subset of . Efficient repair is achieved by
minimizing the number of nodes that needs to be contacted.

We refer to the three aforementioned families of encodings for
DSSs as DSS codes, and focus on code maps that
are linear. As in Section II-B, we assume users and associate
each user with a data block of length . Also, as before, we can
extend an DSS code to an DSS
code. In this DSS code, wemay regard the given
information as a -tuple of data blocks, each of length , written
as .
The traditional encoding function is

defined in such a way that for ,

(16)
Hence, the information stored at the nodes represents an

tensor. The corresponding reconstruction and repair
functions are similar to the functions
for -subsets of ; and for
and -subsets of , respectively, defined such that for

,

(17)

(18)

where , for brevity, is the encoded data
stored in the DSS. Using the above traditional encoding func-
tions as building blocks, we derive an intermediary encoding
scheme for general DSSs codes.

Proposition 11: Consider an DSS. For any
integer and invertible matrices , the
function given by (1a) describe an DSS
code.
Given the above intermediary encoding scheme for general

DSSs, we may adapt Schemes P and V, where we simply regard
the net change matrix as a three-dimensional tensor.
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