Serge Kas Hanna and Salim El Rouayheb

Localized Deletions

When deletions occur in a transmitted sequence, the deleted When deletions occur in a transmitted sequence, the deleted
bits are completely removed from the sequence and their positions are unknown at the receiver (unlike erasures). A burst of deletions refers to the case where a certain number of consecutive bits are deleted.
Localized deletions are a more generalized form of bursts of deletions. In this setting, $a \leq b$ deletions are localized within a certain window of length b. These a deletions do not necessarily occur in consecutive positions.
For the problem of correcting a single burst of exactly b deletions, Levenshtein [1] showed that the asymptotic number of redundant bits needed is at least $\log n+b-1$ bits, where n is the length of the codeword. Schoeny et al. [2] derived the same bound non-asymptotically.
The problem of correcting localized deletions arises in several applications. One example is the file synchronization applicaapplications. One example is a relatively small part of a large file is edited by deleting and inserting characters. Two remote nodes commudeleting and inserting characters. Two remote nodes commu-
nicate interactively in order to synchronize the localized edits.

Fig. 1: An example of file synchronization with localized deletions. The student is editing a certain section of a scientific paper, which is shared online with his academic advisor. The two parties communicate interactively in order to synchronize the advisor's version of the paper.

Guess \& Check Codes

Fig. 2: Encoding block diagram of Guess \& Check codes [3] for correcting $a \leq b$ deletions that are localized within a single window ($z=1$) of size at most b bits. Block I: The binary message of length k bits is chunked into adjacent blocks of length $\log k$ bits each, and each block is mapped to its corresponding symbol in $G F(q)$ where $q=2^{\log k}=k$. Block II: The resulting string is coded using a systematic $(k / \log k+c, k / \log k) q$-ary MDS code where c is the number of parity symbols. Block III: The symbols in $G F(q)$ are mapped to their binary representations. Block IV: A buffer of b zeros followed by a single one is inserted between the systematic and the parity bits.
Example: length of message: $k=16$, length of window: $b=\log k=4$, field size: $G F(16)$.

1. Encoding (bits in red get deleted):

$$
\mathbf{u}=\underbrace{\text { block } 1_{1100}^{1100}}_{\alpha^{6}} \underbrace{\frac{\text { block } 2}{1010}}_{\alpha^{9}} \underbrace{\underbrace{\text { block } 3}_{\alpha^{3}}}_{\alpha^{10}} \underbrace{\frac{\text { block } 4}{1000}} \rightarrow \underbrace{\text { GC Encoder }} \rightarrow \mathrm{x}=1100101001111000 \begin{gathered}
\text { buffer } \\
00001 \\
100110000001
\end{gathered} \text { parities } .
$$

2. Decoding (3 guesses):

- Guess 1: $\underbrace{11001}_{\mathcal{E}} \underbrace{0011}_{\alpha^{4}} \underbrace{1000}_{\alpha^{3}} \underbrace{1001}_{\alpha^{14}} \underbrace{1000}_{\alpha^{3}} \underbrace{\text { parities }}_{1} \frac{\text { Decode using }}{\text { first } 2 \text { parities }} \underbrace{0100}_{\alpha^{2}} \underbrace{0110}_{\alpha^{5}} \underbrace{0011}_{\alpha^{4}} \underbrace{1000}_{\alpha^{3}} \frac{\text { Check with }}{3^{\text {rd }} \text { parity }} \mathbb{X}$
- Guess 2: $\underbrace{1100}_{\alpha^{6}} \underbrace{10011}_{\mathcal{E}} \underbrace{1000}_{\alpha^{3}} \underbrace{1001}_{\alpha^{14}} \underbrace{1000}_{\alpha^{3}} \underbrace{0001}_{1} \frac{\text { Decode using }}{\text { first } 2 \text { parities }} \underbrace{100}_{\alpha^{6}} \underbrace{1010}_{\alpha^{9}} \underbrace{0111}_{\alpha^{10}} \underbrace{1000}_{\alpha^{3}} \frac{\text { Check with }}{3^{\text {rd }} \text { parity }}$
- Guess 3: $\underbrace{1100}_{\alpha^{6}} \underbrace{1001}_{\alpha^{14}} \underbrace{11000}_{\mathcal{E}} \underbrace{1001}_{\alpha^{14}} \underbrace{1000}_{\alpha^{3}} \underbrace{0001}_{1} \frac{\text { Decode using }}{\text { first } 2 \text { parities }} \underbrace{1100}_{\alpha^{6}} \underbrace{1001}_{\alpha^{14}} \underbrace{1100}_{\alpha^{6}} \underbrace{0000}_{0} \frac{\text { Check with }}{3^{\text {rd }} \text { parity }}$ X

Results: CODES FOR CORRECTING LOCALIZED DELETIONS

Theorem 1 (Code properties for correcting one set of localized deletions) Guess \& Check (GC) codes can correct in polynomial time $a \leq b$ deletions that are localized within a single window of size at most b bits, where $m \log k+1 \leq b \leq(m+1) \log k+1$ for some constant integer $m \geq 0$. Let $c>m+2$ be a constant integer. The code has the following properties:

1. Redundancy: $n-k=c \log k+b+1$ bits.
2. Encoding complexity is $\mathcal{O}(k \log k)$, and decoding complexity is $\mathcal{O}\left(k^{3} / \log k\right)$
3. Probability of decoding failure:

$$
\begin{equation*}
\operatorname{Pr}(F) \leq \frac{k^{m+4}}{k^{c} \log k}-(m+2) \frac{k^{m+3}}{k^{c}} \tag{1}
\end{equation*}
$$

Theorem 2 (Code properties for correcting $z>1$ sets of localized deletions) Guess \& Check (GC) codes can correct in polynomial time $z>1$ sets of $a \leq b$ deletions, with each set being localized within a window of size at most b bits, where $m \log k+1 \leq b \leq(m+1) \log k+1$ for some constant integer $m \geq 0$. Let $c>z(m+2)$ be a constant integer. The code has the following properties:

1. Redundancy: $n-k=z c \log k+z^{2} b+z$ bits.
2. Encoding complexity is $\mathcal{O}(k \log k)$, and decoding complexity is $\mathcal{O}\left(k^{z+2} / \log ^{z} k\right)$.
3. Probability of decoding failure:

$$
\operatorname{Pr}(F)=\mathcal{O}\left(\frac{k^{z(m+4)}}{k^{c} \log ^{z} k}\right)
$$

Numerical Results: Simulations on the probability of decoding failure

Fig. 3: ($a=b=\log k$ localized deletions) The graph shows the probability of decoding failure $\operatorname{Pr}(F)$ of GC codes for different message lengths k. The results of $\operatorname{Pr}(F)$ are averaged over 10000 runs of simulations. The window position in which the deletions are localized is also chosen uniformly at random.

Fig. 4: ($\delta=3$ non-consecutive deletions) The graph shows the probability of decoding failure $\operatorname{Pr}(F)$ of GC codes for different message lengths k. The results of $\operatorname{Pr}(F)$ are averaged over 10000 runs of simulations. The positions of the deletions is chosen uniformly at random.

References

[1] V. Levenshtein, "Asymptotically optimum binary code with correction for losses of one or two adjacent bits," Problemy Kibernetiki, vol. 19, pp. 293-298, 1967. [2] C. Shoeny, A. Wachter-Zeh, R. Gabrys and E. Yaakobi, "Codes correcting a burst of deletions and insertions," IEEE Transactions on Information Theory, vol. 63, pp. 1971-1985, April 2017.
[3] S. Kas Hanna and S. El Rouayheb, "Guess \& Check Codes for Deletions, Insertions, and Synchronization" submitted to IEEE Transactions on Information
Theory, 2017.
[3] S. Kas Hanna
Theory, 2017.

