
CORRECTING LOCALIZED DELETIONS USING GUESS & CHECK CODES
SERGE KAS HANNA AND SALIM EL ROUAYHEB

LOCALIZED DELETIONS

When deletions occur in a transmitted sequence, the deleted
bits are completely removed from the sequence and their posi-
tions are unknown at the receiver (unlike erasures). A burst of
deletions refers to the case where a certain number of consec-
utive bits are deleted.

Localized deletions are a more generalized form of bursts of
deletions. In this setting, a ≤ b deletions are localized within a
certain window of length b. These a deletions do not necessar-
ily occur in consecutive positions.

For the problem of correcting a single burst of exactly b dele-
tions, Levenshtein [1] showed that the asymptotic number of
redundant bits needed is at least log n+ b− 1 bits, where n is
the length of the codeword. Schoeny et al. [2] derived the same
bound non-asymptotically.

The problem of correcting localized deletions arises in several
applications. One example is the file synchronization applica-
tion where a relatively small part of a large file is edited by
deleting and inserting characters. Two remote nodes commu-
nicate interactively in order to synchronize the localized edits.

Fig. 1: An example of file synchronization with localized dele-
tions. The student is editing a certain section of a scientific
paper, which is shared online with his academic advisor. The
two parties communicate interactively in order to synchronize
the advisor’s version of the paper.

RESULTS: CODES FOR CORRECTING LOCALIZED DELETIONS
Theorem 1 (Code properties for correcting one set of localized deletions) Guess & Check (GC) codes can correct in polynomial
time a ≤ b deletions that are localized within a single window of size at most b bits, where m log k + 1 ≤ b ≤ (m+ 1) log k + 1 for some
constant integer m ≥ 0. Let c > m+ 2 be a constant integer. The code has the following properties:

1. Redundancy: n− k = c log k + b+ 1 bits.

2. Encoding complexity is O(k log k), and decoding complexity is O
(
k3/ log k

)
.

3. Probability of decoding failure:

Pr(F ) ≤ km+4

kc log k
− (m+ 2)

km+3

kc
. (1)

Theorem 2 (Code properties for correcting z > 1 sets of localized deletions) Guess & Check (GC) codes can correct in polyno-
mial time z > 1 sets of a ≤ b deletions, with each set being localized within a window of size at most b bits, where
m log k + 1 ≤ b ≤ (m+ 1) log k + 1 for some constant integer m ≥ 0. Let c > z(m + 2) be a constant integer. The code has the fol-
lowing properties:

1. Redundancy: n− k = zc log k + z2b+ z bits.

2. Encoding complexity is O(k log k), and decoding complexity is O
(
kz+2/ logz k

)
.

3. Probability of decoding failure:

Pr(F ) = O
(
kz(m+4)

kc logz k

)
. (2)

REFERENCES

[1] V. Levenshtein, “Asymptotically optimum binary code with correction for losses of one or two adjacent bits," Problemy Kibernetiki, vol. 19, pp. 293-298, 1967.
[2] C. Shoeny, A. Wachter-Zeh, R. Gabrys and E. Yaakobi, “Codes correcting a burst of deletions and insertions,” IEEE Transactions on Information Theory, vol. 63,

pp. 1971-1985, April 2017.
[3] S. Kas Hanna and S. El Rouayheb, “Guess & Check Codes for Deletions, Insertions, and Synchronization” submitted to IEEE Transactions on Information

Theory, 2017.

NUMERICAL RESULTS: SIMULATIONS ON THE PROBABILITY OF DECODING FAILURE

Fig. 3: (a = b = log k localized deletions) The graph shows the
probability of decoding failure Pr(F ) of GC codes for differ-
ent message lengths k. The results of Pr(F ) are averaged over
10000 runs of simulations. The window position in which the
deletions are localized is also chosen uniformly at random.

Fig. 4: (δ = 3 non-consecutive deletions) The graph shows the
probability of decoding failure Pr(F ) of GC codes for differ-
ent message lengths k. The results of Pr(F ) are averaged over
10000 runs of simulations. The positions of the deletions is
chosen uniformly at random.

GUESS & CHECK CODES

Fig. 2: Encoding block diagram of Guess & Check codes [3] for correcting a ≤ b deletions that are localized within a single
window (z = 1) of size at most b bits. Block I: The binary message of length k bits is chunked into adjacent blocks of length log k
bits each, and each block is mapped to its corresponding symbol in GF (q) where q = 2log k = k. Block II: The resulting string is
coded using a systematic (k/ log k + c, k/ log k) q−ary MDS code where c is the number of parity symbols. Block III: The symbols
in GF (q) are mapped to their binary representations. Block IV: A buffer of b zeros followed by a single one is inserted between
the systematic and the parity bits.

Example: length of message: k = 16, length of window: b = log k = 4, field size: GF (16).

1. Encoding (bits in red get deleted):

u =

block 1

1 1 0 0︸ ︷︷ ︸
α6

block 2

1 0 1 0︸ ︷︷ ︸
α9

block 3

0 1 1 1︸ ︷︷ ︸
α10

block 4

1 0 0 0︸ ︷︷ ︸
α3

GC Encoder x = 1100 1010 0111 1000

buffer

00001

parities

1001 1000 0001 .

2. Decoding (3 guesses):

• Guess 1: 1 1 0 0 1︸ ︷︷ ︸
E

0 0 1 1︸ ︷︷ ︸
α4

1 0 0 0︸ ︷︷ ︸
α3

parities

1 0 0 1︸ ︷︷ ︸
α14

1 0 0 0︸ ︷︷ ︸
α3

0 0 0 1︸ ︷︷ ︸
1

Decode using−−−−−−−−→
first 2 parities

0 1 0 0︸ ︷︷ ︸
α2

0 1 1 0︸ ︷︷ ︸
α5

0 0 1 1︸ ︷︷ ︸
α4

1 0 0 0︸ ︷︷ ︸
α3

Check with−−−−−−→
3rd parity

• Guess 2: 1 1 0 0︸ ︷︷ ︸
α6

1 0 0 1 1︸ ︷︷ ︸
E

1 0 0 0︸ ︷︷ ︸
α3

1 0 0 1︸ ︷︷ ︸
α14

1 0 0 0︸ ︷︷ ︸
α3

0 0 0 1︸ ︷︷ ︸
1

Decode using−−−−−−−−→
first 2 parities

1 1 0 0︸ ︷︷ ︸
α6

1 0 1 0︸ ︷︷ ︸
α9

0 1 1 1︸ ︷︷ ︸
α10

1 0 0 0︸ ︷︷ ︸
α3

Check with−−−−−−→
3rd parity

• Guess 3: 1 1 0 0︸ ︷︷ ︸
α6

1 0 0 1︸ ︷︷ ︸
α14

1 1 0 0 0︸ ︷︷ ︸
E

1 0 0 1︸ ︷︷ ︸
α14

1 0 0 0︸ ︷︷ ︸
α3

0 0 0 1︸ ︷︷ ︸
1

Decode using−−−−−−−−→
first 2 parities

1 1 0 0︸ ︷︷ ︸
α6

1 0 0 1︸ ︷︷ ︸
α14

1 1 0 0︸ ︷︷ ︸
α6

0 0 0 0︸ ︷︷ ︸
0

Check with−−−−−−→
3rd parity


