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Abstract—We consider the problem of providing privacy, in
the private information retrieval (PIR) sense, to users requesting
data from a distributed storage system (DSS). The DSS uses an
(n, k) Maximum Distance Separable (MDS) code to store the
data reliably on unreliable storage nodes. Some of these nodes
can be spies which report to a third party, such as an oppressive
regime, which data is being requested by the user. An information
theoretic PIR scheme ensures that a user can satisfy its request
while revealing, to the spy nodes, no information on which data
is being requested. A user can achieve PIR by downloading all
the data in the DSS. However, this is not a feasible solution
due to its high communication cost. We construct PIR schemes
with low download communication cost. When there is b = 1
spy node in the DSS, we construct PIR schemes with download
cost 1

1−R per unit of requested data (R = k/n is the code rate),
achieving the information theoretic limit for linear schemes. The
proposed schemes are universal since they depend on the code
rate, but not on the generator matrix of the code. When there
are 2 ≤ b ≤ n− k spy nodes, we devise linear PIR schemes that
have download cost equal to b+ k per unit of requested data.

I. INTRODUCTION

Consider the following scenario. A group of online peers
(storage nodes) want to collaborate together to form a peer-to-
peer (p2p) distributed storage system (DSS) to store and share
files reliably, while ensuring information theoretic private
information retrieval (PIR). The PIR [1], [2] property allows
a user (possibly one of the peers) to download a file while
revealing no information about which file is being downloaded.
We are mainly motivated by the following two applications: 1)
A DSS that protects users from surveillance and monitoring,
for instance from an oppressive regime. The people (peers)
collectively contribute to storing the data and making it
pervasively available online. But, some peers could be spies
for the regime. They could turn against their “neighbors” and
report to the oppressor the identity of users accessing some
information deemed to be anti-regime (blogs, photos, videos,
etc.), leading to their persecution; 2) A DSS that protects
the personal information of users, such as gender, age group,
disease, etc., which can be inferred from their file access
history. This information can potentially be used to target them
with unwanted advertisement, or even affect them adversarially
in other areas, such as applications to health insurance or
bank loans. In this respect, the studied DSS can provide an
infrastructure, at least in theory, over which applications, such
as cloud storage and social networking, can be run with a
privacy guarantee for the users.

We suppose the DSS is formed of n peers or nodes. Peers
can be temporarily offline or can leave the system at any time.
The data is stored redundantly in the system to guarantee
its durability and availability. We assume that the DSS uses
an (n, k) maximum distance separable (MDS) code that can
tolerate n − k simultaneous node failures. A certain number
of nodes in the DSS, say b, whose identities are unknown
to the users or the system, are spies and can report the user
requests to the oppressor, or sell this information to interested
third parties. The user can always achieve PIR by asking to
download all the files in the DSS. However, this solution is
not feasible due to its high communication cost, and more
efficient solutions have been studied in the PIR literature [3]–
[9] assuming the data is replicated in the system. The next
example illustrates a PIR scheme with efficient communication
cost that can be run on MDS coded data.

Example 1: Consider a DSS formed of n = 4 nodes that
stores m files (ai, bi), ai, bi ∈ GF (3`), i = 1, 2, . . . ,m. The
DSS uses an (n, k) = (4, 2) MDS code over GF (3) to
store the files. Nodes 1, . . . , 4 store respectively, ai, bi, ai +
bi, ai + 2bi, i = 1, . . . ,m. Suppose the user is interested
in retrieving file f , i.e., (af , bf ), which can equally likely
be any of the m files. To this end, the user generates a
random vector U = (u1, . . . , um) with components chosen
independently and uniformly at random from the underlying
base field GF (3). It sends the query vector Q = U to
nodes 1 and 2 and Q = U + Vf to nodes 3 and 4, where
Vf is the all zero vector of length m with a 1 in the f th

entry. Upon receiving the user’s request, each node in the
DSS returns to the user the projection of all its data on the
received query vector. For instance, suppose that the user
wants file 1. Then, nodes 1, . . . , 4 return the following symbols
from GF (3`), I1, I2, a1 + b1 + I1 + I2, a1 + 2b1 + I1 + 2I2,
where I1 =

∑m
i=1 uiai and I2 =

∑m
i=1 uibi are thought of

as “interference” terms. The returned information form an
invertible linear system and the user can decode a1 and b1.
Assume that the DSS contains b = 1 spy node. Then, the
proposed scheme achieves PIR since the query vector to each
node is statistically independent of the file index f . However,
if the spy node, say node 1, knows the query vector of another
node, say node 3, it may be able to pin down which file the
user wanted, by computing Vf = Q−U . However, we assume
that the spy node does not have access to the queries coming to
the other regular (non-spy) nodes, and PIR is indeed achieved
here. This PIR scheme downloads 4 symbols to retrieve a file
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of size 2 symbols. We say that the communication price of
privacy cPoP = 4/2 = 2 for this scheme, which does not
depend on the number of files in the system.
Replication-based PIR: PIR was first introduced in the seminal
papers of Chor et al. in [1], [2] followed by significant amount
of research in this area [3]–[7], [10], [11]. The classical model
considers a binary database of length m and a user that wishes
to retrieve privately the value of a bit (a record) in it, while
minimizing the total communication cost including the upload
(query) and download phase. Chor et al. showed that if there
is one server storing the database, the user has to download
the whole database in order to achieve information theoretic
PIR. However, when the database is replicated on n non-
colluding (non-cooperating) servers (nodes), they devised a
PIR scheme with total, upload and download, communication
cost, O((n2 log n)m1/n) (and O(m1/3) for the special case
of n = 2). In the past few years, there has been significant
progress in developing PIR protocols with total communica-
tion cost that is subpolynomial in the size of the database [10]–
[12]. PIR in a computational sense was shown to be achievable
with a single server (no replication) in [13] assuming the
hardness of quadratic residuosity problem. PIR schemes on
databases that are replicated but not perfectly synchronized
were studied in [14].
Coded PIR: The original model studied in PIR assumes that
the entire data is replicated on each node. PIR on coded data
was studied in the literature on Batch Codes [15], where the
data is coded to allow parallel processing leading to amortizing
the PIR communication cost over multiple retrievals. Recently,
the PIR problem in DSSs that use erasure codes was initiated
in [8], where it was shown that one extra bit of download
is sufficient to achieve PIR assuming the number of servers
n to be exponential in the number of files. Bounds on the
information theoretic tradeoff between storage and download
communication cost for coded DSSs were derived in [9].
The setting when nodes can be byzantine (malicious) was
considered in [16] and robust PIR schemes were devised using
locally decodable codes. In [17], methods for transforming a
replication-based PIR scheme into a coded-based PIR scheme
with the same communication cost were studied.
Contributions: Motivated by the two DSS applications men-
tioned earlier, we draw the following distinctions with the
previous literature on coded PIR: (i) To the best of our
knowledge, all the previous work on coded PIR, except for
[9], assumes that the code is used to encode together data from
different files (records). However, the model here is different,
since in DSS applications only data chunks belonging to the
same file are encoded together (as done in Example 1); (ii) The
work in [9] studies fundamental limits on the costs of coded
PIR. Here, we provide explicit constructions of PIR scheme
with efficient communication cost.

In comparison with the classical literature on replication-
based PIR, we make the following observations: (i) We focus
only on the number of downloaded bits (or symbols) in the
communication cost of a PIR scheme. The motivation is that
typically in DSSs, the size of a file is relatively larger than

the total number of files; (ii) We assume that a regular non-
spy node believes in the privacy cause and does not reveal
the queries it receives to any other node. Only the spy nodes
cooperate (collude) and share their queries in the hope of
determining the requested file. This justifies the constraint later
that at most b nodes can collude, and that the PIR scheme
should ensure privacy even if such collusions occur.

In the model we study, we assume that the MDS code
parameters (n, k) are given and depend on the desired re-
liability level for the data. Therefore, they are not design
parameters that can be chosen to optimize the efficiency of
the PIR scheme. However, the code itself may have to be
designed jointly with the PIR scheme. A PIR scheme incurs
many overheads on the DSS, including communication cost,
computations [6], and connectivity (user contacts n instead of
k nodes, as seen in Example 1). However, we measure here
the efficiency of a PIR scheme only by its total download
communication cost, which we refer to as the communication
Price of Privacy (cPoP). The cPoP is the total amount of
downloaded data per unit of retrieved file. The following ques-
tions naturally arise here: (1) What is the minimum achievable
cPoP for given n, k and b? (2) How to efficiently construct
codes and PIR schemes that achieve optimal cPoP? (3) Do the
code and PIR scheme have to be designed jointly to achieve
optimum cPoP? The last question addresses the problem of
whether reliability and PIR could be addressed separately in a
DSS. Moreover, it may have practical implications on whether
data already existing in coded form needs to be re-encoded to
achieve PIR with minimum cPoP.

In this paper, we make progress towards answering the
last two questions and provide constructions of efficient PIR
schemes for querying MDS coded data. Specifically, we make
the following contributions: (i) For b = 1, i.e., a single spy
node, we construct linear PIR scheme with cPoP = 1

1−R
(R = k/n is the code rate), thus achieving the lower bound
on cPoP for linear schemes in [9]; (ii) For 2 ≤ b ≤ n − k,
we construct linear PIR schemes with cPoP = b + k. While
the minimum cPoP in this regime is unknown, the constructed
schemes have a cPoP that does not depend on m, the number
of files in the system. An important property of the scheme
for b = 1 is its universality. It depends only on n, k and b,
but not on the generator matrix of the code. Moreover, both
of these schemes can be constructed for any given MDS code,
i.e., it is not necessary to design the code jointly with the PIR
scheme. This implies that b does not have to be a rigid system
parameter. Each user can choose their own value of b to reflect
its desired privacy level, at the expense of a higher cPoP . The
DSS can serve all the users simultaneously storing the same
encoded data, i.e., without having to store different encodings
for different values of b.

II. MODEL

DSSs: Consider a distributed storage system (DSS) formed
of n storage nodes indexed from 1 to n. The DSS stores
m files, X1, . . . , Xm, of equal sizes. The DSS uses WLOG
a systematic(n, k) MDS code over GF (q) to store the data
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node 1 node 2 . . . node k node k + 1 . . . node n

fil
e
1

x111 x121 . . . x1k1 λ1,k+1x
1
11 + · · ·+ λk,k+1x

1
k1 . . . λ1nx111 + · · ·+ λknx

1
1k

...
...

...
...

...
...

...
x11α x12α . . . x1kα λ1,k+1x

1
1α + · · ·+ λk,k+1x

1
kα . . . λ1nx11α + · · ·+ λknx

1
kα

...
...

...
...

...
...

...
...

fil
e
m

xm11 xm21 . . . xmk1 λ1,k+1x
1
11 + · · ·+ λk,k+1x

m
k1 . . . λ1nxm11 + · · ·+ λknx

m
1k

...
...

...
...

...
...

...
xm1α xm2α . . . xmkα λ1,k+1x

m
1α + · · ·+ λk,k+1x

m
kα . . . λ1nx11α + · · ·+ λknx

m
kα

TABLE I: The layout of the encoded symbols of the m files in the DSS.

redundantly and achieve reliability against n−k node failures.
We assume that each file, Xi, i = 1, . . . ,m, is divided
into α stripes, and each stripe is divided into k blocks. We
represent the file Xi = [xijl], j = 1, . . . , k, l = 1, . . . , α, as
a k × α matrix, with symbols from the finite field GF (q`).
The jth row of the matrix Xi is stored on the systematic node
j, j = 1, . . . , k. Each stripe of each file is encoded separately
using the same systematic MDS code with a k × n generator
matrix Λ = [λij ] with elements in GF (q). Since the code
is systematic, the square submatrix of Λ formed of the first
k columns is the identity matrix. The encoded data is stored
on the DSS as shown in Table I. We assume that the user
knows this layout table, i.e., it knows the coding coefficients
for each node. We denote by Wi ∈ GF (q`)mα the column
vector representing all the data on node i.

PIR: Suppose the user wants file Xf , where f is chosen
uniformly at random from the set [m] = {1, . . . ,m}. To
retrieve file Xf , the user sends requests to the nodes, among
which there are b collaborating spy nodes. The goal is to
devise a PIR scheme that allows the user to decode Xf ,
while revealing no information, in an information theoretic
sense, about f to the spy nodes. The user does not know the
identity of the spy nodes. Otherwise, it can avoid contacting
them. The spy nodes can collaborate together and analyze the
different requests they receive from the user in order to identify
the requested file. However, as explained in the introduction,
the spy nodes do not have access to the requests coming to
the regular nodes in the system. Under this setting, we are
interested in linear PIR schemes.

Definition 1: A PIR scheme is linear over GF (q), and of
dimension d, if it consists of the following two stages.

1. Request stage: Based on which file the user wants, it sends
requests to a subset of nodes in the DSS. The request to node i
takes the form of a d×mα query matrix Qi over GF (q).

2. Download stage: Node i responds by sending the projection
of its data onto Qi, i.e., Ri = QiWi ∈ GF (q`)d.

We think of each query matrix Qi as formed of d sub-
queries corresponding to each of its d rows. Moreover, we
think of the response of node i as formed of d sub-responses
corresponding to projecting the node data on each row of Qi.

Definition 2 (Information theoretic PIR): A linear PIR
scheme achieves (perfect) information theoretic PIR iff
H(f |Qj , j ∈ γ) = H(f), for all sets γ ∈ [n], |γ| = b and any

number of files m1. Here, H(.) denotes the entropy function.
The objective is to design a linear PIR scheme that (i) allows

the user to decode its requested file Xf and (ii) achieves in-
formation theoretic PIR with a low cPoP that does not depend
on m. In the classical literature on PIR, the communication
cost includes both the number of bits exchanged during the
request and download stages. In DSSs, we assume that the
content of the file dominates the total communication cost,
i.e., ` is much larger than m. Therefore, we will only consider
the download communication cost, which we will refer to as
the communication price of privacy (cPoP).

Definition 3 (cPoP): The communication Price of Privacy
(cPoP) of a PIR scheme is the ratio of the total number of bits
sent from the nodes to the user during the download stage to
size of the requested file.

III. MAIN RESULTS

In this section, we state our two main results. The proof of
Theorem 1 is given in Section V. The proof of Theorem 2 is
omitted and can be found in the extended version [18].

Theorem 1: Consider a DSS using an (n, k) MDS code over
GF (q), with b = 1 spy node. Then, the linear PIR scheme
over GF (q) described in Section IV achieves perfect PIR with
cPoP = 1

1−R , where R = k/n.
The existence of PIR schemes over large fields that can

achieve cPoP = 1
1−R for b = 1 follows from Theorem 4 in

[9]. We prove Theorem 1 by providing an explicit construction
of the linear PIR scheme. The proposed PIR construction
is over same field over which the code is designed and is
universal in the sense that it depends only on the parameters
n, k and b and not on the generator matrix of the code.

Theorem 2: Consider a DSS using an (n, k) MDS code over
GF (q), with possibly 2 ≤ b ≤ n − k spy nodes. Then, there
exists an explicit linear PIR scheme over the same field that
achieves perfect PIR with cPoP = b+ k.

IV. PIR SCHEME CONSTRUCTION FOR b = 1

We describe here the PIR scheme referred to in Theorem 1.
We assume WLOG that the MDS code is systematic. The
PIR scheme requires the number of stripes α = n − k and
the dimension d = k. Using the division algorithm, we write
α = βk + r where, β and r are integers and 0 ≤ r < k and
β ≥ 0.

1We require the PIR scheme to be applicable to any number of files m.
This is related to the concept of strong achievability in [9].
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1

Sys. nodes

2 3 4 5

Parity nodes

6 7 8 9 10 11 12 13 14 15
St

ri
pe

s

1
r

1 2 3 4
2 2 3 4 1
3 3 4 1 2
4

k

1 1 1 1
5 2 2 2 2
6 3 3 3 3
7 4 4 4 4
8

k

1 1 1 1
9 2 2 2 2

10 3 3 3 3
11

k

4

k

4 4 4

TABLE II: Example of the retrieval pattern for (n, k) = (15, 4).
The α×n entries of the table correspond to the α×n coded symbols
of the wanted file. All entries with same number, say j (also given
the same color) are privately retrieved in the jth sub-query. Note that
there are k = 4 nodes, including the last r = 3 nodes, in every sub-
query, that do not have any retrieved symbols. The responses of these
nodes are used to decode the “interference” from all the files, needed
to confuse the nodes about what is being requested. This interference
is then cancelled out from the other sub-responses in order to decode
the desired file symbols in each sub-query.

The scheme consists of the user sending a d ×mα query
matrix Qi to each node i, i = 1, . . . , n. To form the query
matrices, the user generates a d × mα random matrix U =
[uij ], whose elements are chosen uniformly at random from
GF (q), the same field over which the MDS code is defined.
The query matrices are then defined as follows:

Qi = U + Vi, i = 1, . . . , n− r, (1)
Qi = U, i = n− r + 1, . . . , n. (2)

U is the random component of the query aimed at confusing
the node about the request, whereas Vi is a deterministic matrix
that depends on the index f of the requested file and its role
is to ensure that the user can decode the file. The matrices Vi
are 0-1 matrices of dimensions d×mα. A “1” in the (j, l)th

position of Vi implies that, during the jth subquery, the lth

symbol on node i is being retrieved privately. The matrices Vi
are designed to satisfy the following two conditions:

1) in each sub-query, a new systematic symbol of Xf is
retrieved from each of the first r systematic stripes, and

2) βk new coded symbols are retrieved from β different
stripes, i.e., k symbols per stripe.

Based on these desired retrieval patterns, we choose

V1 =

[
0k×(f−1)α

Ir×r 0k×βk 0k×(m−f)α0(k−r)×r

]
, (3)

and Vi, i = 2, . . . , k, is obtained from matrix Vi−1 by a single
downward cyclic shift of its row vectors. As for the parity
nodes i = sk + 1, . . . , sk + k, s = 1, . . . , β, we choose

Vi=
[
0k×(f−1)α+r+(s−1)k Ik×k 0k×(β−s)k+(m−f)α

]
. (4)

Example 2 (Retrieval pattern):
Consider a DSS using an (n, k) = (15, 4) MDS code.

Therefore, we have d = k = 4 sub-queries to each node.
Also, the number of stripes is α = n − k = 11. This gives

1

Sys. nodes

2 3 4 5

Parity nodes

St
ri

pe
s 1 1 2

2 1 1
3 2 2

TABLE III: Retrieval pattern for a (5,2) code.

β = 2 and r = 3. Table II gives the retrieval pattern of the
PIR scheme.

Example 3 (Decoding):

Consider a DSS using a (5, 2) MDS code with generator

matrix Λ =

(
1 0 1 1 1
0 1 1 2 3

)
, over GF (5). Suppose

the DSS is storing m = 3 files, X1, X2, X3, following the
layout in Table I. Our goal is to construct a linear scheme
that achieves perfect PIR against b = 1 spy node, with
cPoP = 1

1−R = 5
3 . The construction in Section IV gives

α = n − k = 3 and d = k = 2. Therefore, we get β = 1
and r = 1. Suppose WLOG that the user wants file X1, i.e.,
f = 1. The user generates an 2× 9 random matrix U = [uij ],
whose elements are chosen uniformly at random from GF (5).
For the nodes 1, . . . , 4, the query matrix Qi = U + Vi, and
Q5 = U . Therefore, following Table III we have

Q1 =

[
u11 + 1 u12 u13 u14 u15 u16 u17 u18 u19

u21 u22 u23 u24 u25 u26 u27 u28 u29

]
,

Q2 =

[
u11 u12 u13 u14 u15 u16 u17 u18 u19

u21 + 1 u22 u23 u24 u25 u26 u27 u28 u29

]
,

Q3 =

[
u11 u12 + 1 u13 u14 u15 u16 u17 u18 u19

u21 u22 u23 + 1 u24 u25 u26 u27 u28 u29

]
,

Q4 =

[
u11 u12 + 1 u13 u14 u15 u16 u17 u18 u19

u21 u22 u23 + 1 u24 u25 u26 u27 u28 u29

]
.

This construction achieves perfect PIR, since the only infor-
mation any node i knows about f is through the query matrix
Qi, which is random and independent of f . Next, we want to
illustrate how the user can decode the file symbols. Each node
sends back the length 2 vector, Ri = (ri1, ri2) = QiWi, i =
1, . . . , 5, to the user. Consider the sub-responses of the 5 nodes
to the first sub-query. They form the following linear system:

x111 + I1 = r11 (5)
I2 = r21 (6)

x112 + x122 + I1 + I2 = r31 (7)

x112 + 2x122 + I1 + 2I2 = r41 (8)
I1 + 3I2 = r51, (9)

where Il = U1Wl, l = 1, 2, and U1 is the first row of U .
The user can first decode I1 and I2 from (6) and (9). Then,

canceling out the values of I1 and I2 from the remaining
equations, the user can solve for x111, x

1
12 and x122. Similarly,

the user can obtain x121, x
1
13 and x123 from the sub-responses to

the second sub-query. This PIR scheme downloads 2 symbols
from each server. Therefore, it has a cPoP = 10

6 = 5
3 , which

matches the bound in Theorem 1.
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V. PROOF OF THEOREM 1

We prove Theorem 1 by showing that the scheme described
in Section IV has the following properties.
Decodability: The scheme consists of d = k sub-queries. We
focus on the ith sub-query, corresponding to the ith row of the
query matrices. From (1), (2), (3) and (4), we can find the sub-
responses of the nodes. The systematic nodes l, l = 1, . . . , k,
return the following sub-responses to the ith sub-query,

xfi1 + Il l= i (10)
Il l=(i+1)k, . . . , (i+k−r)k (11)

xfl(i+k+1−l)k + Il l=(i+k−r+1)k, . . . , (i+k−1)k, (12)

where Il = UiWl, l = 1, . . . , k, Ui is the ith row of U , and
with the following notation: (a)b = a mod b if a 6= b, and
(b)b = b. The parity nodes, l = n − r + 1, . . . , n, return the
following r sub-responses, respectively, to the ith sub-query,

λ1lI1 + λ2lI2 + · · ·+ λklIk, l = n− r + 1, . . . , n. (13)

The parity nodes, l = sk + 1, . . . , sk + k, for s = 1, . . . , β,
return the following sub-responses to the ith sub-query,

λ1lx
f
1,r+(s−1)k+i+ λ2lx

f
2,r+(s−1)k+i+ · · ·+ λklx

f
k,r+(s−1)k+i

+ λ1lI1 + λ2lI2 + · · ·+ λklIk,

l = sk + 1, . . . , sk + k. (14)

Equations (11) and (13) form a linear system of k equations in
the k unknowns I1, . . . , Ik. The linear equations in this system
correspond to the k columns of the code generator matrix Λ
having indices (i+ 1)k, . . . , (i+k− r)k and n− r+ 1, . . . , n.
Since Λ is a generator matrix of an (n, k) MDS code, any k×k
square submatrix of Λ is full rank. Therefore, (11) and (13)
form an invertible system, and the user can decode I1, . . . , Ik.
By canceling out these terms from (10) and (12) the user can
decode r different systematic symbols from its wanted file.
Similarly, from (14) the user decodes k coded symbols from
each of β different stripes. Since the code is MDS, the k
coded symbols in every stripe can be used to decode the k
systematic symbols corresponding to that stripe. In total, the
user can decode βk + r = α symbols of its wanted file per
sub-query. But, there are k sub-queries and, by the design of
the query matrices Vi, the retrieved symbols are different in
each sub-query. Therefore, the user is able to decode all the
α× k symbols in its wanted file.

Privacy: Since b = 1, the only way a node i can learn
information about f is from its own query matrix Qi. By,
construction Qi is statistically independent of f and this
scheme achieves perfect privacy.

cPoP: Every node i ∈ [n] responds with d = k symbols.
Therefore, the total number of symbols downloaded by the
user is kn. Therefore, cPoP = kn

k(n−k) = 1
1−R .

VI. CONCLUSION

We studied the problem of constructing PIR schemes with
low communication cost for requesting data from a DSS that
uses MDS codes. Some nodes in the DSS may be spies who

will report to a third party, such as an oppressive regime, which
data is being requested by a user. The objective is to allow
the user to obtain its requested data without revealing any
information on the identity of the data to the spy nodes. We
constructed PIR schemes against one spy node that achieve the
information theoretic limit on the download communication
cost for linear schemes. An important property of these
schemes is their universality since they depend on the code
rate, but not on the MDS code itself. When there are more than
one spy node, we devised PIR schemes that have download
cost independent of the total size of the data in the DSS.
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