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Abstract

We show that the network coding and index coding problems are equivalent. This equivalence holds in the general

setting which includes linear and non-linear codes. Specifically, we present an efficient reduction that maps a network

coding instance to an index coding instance while preserving feasibility. Previous connections were restricted to the

linear case.

I. INTRODUCTION

In the network coding paradigm, a set of source nodes transmits information to a set of terminal nodes over

a network; internal nodes of the network may mix received information before forwarding it. This mixing (or

encoding) of information has been extensively studied over the last decade (see, e.g., [2], [3], [4], [5], [6], and

references therein). While network coding in the multicast setting is well understood, this is not the case for the

general multi-source, multi-terminal setting. In particular, determining the capacity of a general network coding

instance remains an intriguing, central, open problem (see, e.g., [7], [8], [9]).

A special instance of the network coding problem introduced in [10], which has seen significant interest lately,

is the so-called index coding problem [10], [11], [12], [13], [14], [15]. The index coding problem encapsulates the

“broadcast with side information” problem in which a single server wishes to communicate with several clients,

each requiring potentially different information and having potentially different side information (as shown by the

example in Fig. 1(a)).

One may think of the index coding problem as a simple and representative instance of the network coding

problem. The instance is “simple” in the sense that any index coding instance can be represented as a topologically
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ĉB

Fig. 1. (a) An instance of the index coding problem: A server has 4 binary sources X1, . . . , X4 ∈ {0, 1}. Four terminals seek information;

each is described by the set of sources it wants and the set of sources it has (corresponding to the communication demand and side information,

respectively). The server can sequentially transmit the four sources to all four terminals using four broadcasts. However, this is not optimal. It

is sufficient to broadcast only 2 bits, namely X1 +X2 +X3 and X1 +X4, where ‘+’ denotes the xor operation. (b) Index coding is a special

case of the network coding problem. In this example all links are of unit capacity (unlabeled links) or of capacity ĉB (labeled links). Links

directly connecting a terminal node to a collection of sources represent that terminal’s “has” sets. For blocklength n, any solution to the index

coding problem with ĉBn broadcast bits can be efficiently mapped to a solution to the corresponding network coding instance and vice versa.

This implies that the index coding problem is a special case of the network coding problem. The focus of this work is on the opposite assertion,

proving that the network coding problem is a special case of the index coding problem.

simple network coding instance in which only a single internal node has in-degree greater than one and thus only

a single internal node can perform encoding (see Fig. 1(b) for an example). It is “representative” in the sense that

the index coding paradigm is broad enough to characterize the network coding problem under the assumption of

linear coding [16]. Specifically, given any instance I of the network coding problem, one can efficiently construct

an instance Î of the index coding problem such that: (a) There exists a linear solution to I if and only if there

exists a linear solution to Î, and (b) any linear solution to Î can be efficiently turned into a linear solution to I.1

The results of [16] hold for (scalar and vector) linear coding functions only, and the analysis there breaks down

once one allows general coding (which may be non-linear) at internal nodes. The study of non-linear coding

functions is central to the study of network coding since it is shown in [17] that there exist instances in which

linear codes do not suffice to achieve capacity (in the general multi-source, multi-terminal setting).

In this work, we extend the equivalence between network coding and index coding to the setting of general

encoding and decoding functions. Our results effectively imply that when one wishes to solve a network coding

instance I, a possible route is to turn the network coding instance into an index coding instance Î (via our reduction),

solve the index coding instance Î, and turn the solution to Î into a solution to the original network coding instance

I. Hence, any efficient scheme to solve index coding would yield an efficient scheme to solve network coding.

Stated differently, our results imply that understanding the solvability of index coding instances would imply an

understanding of the solvability of network coding instances as well.

The remainder of the paper is structured as follows. In Section II, we present the models of network and index

1Notions such as “solution,” “feasibility,” and “capacity” that are used in this section are defined in Section II.
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coding. In Section III, we present an example based on the “butterfly network” that illustrates our proof techniques.

In Section IV, we present the main technical contribution of this work: the equivalence between network and index

coding. In Section V, we show a connection between the capacity regions of index coding and network coding in

networks with colocated sources. Finally, in Section VI, we conclude with some remarks and open problems.

II. MODEL

In what follows, we define the model for the network coding and index coding problems. Throughout this

paper, “hatted” variables (e.g., x̂) correspond to the variables of index coding instances, while “unhatted” variables

correspond to the network coding instance. For any k > 0, [k] = {1, . . . , bkc}.

A. Network coding

An instance I = (G,S, T,B) of the network coding problem includes a directed acyclic network G = (V,E), a

set of sources nodes S ⊂ V , a set of terminal nodes T ⊂ V , and an |S| × |T | requirement matrix B. We assume,

without loss of generality, that each source s ∈ S has no incoming edges and that each terminal t ∈ T has no

outgoing edges. Let ce denote the capacity of each edge e ∈ E, namely for any blocklength n, each edge e can

carry one of the messages in [2cen]. In our setting, each source s ∈ S holds a rate Rs random variable Xs uniformly

distributed over [2Rsn] and independent from all other sources.

A network code, (F ,G) = ({fe}, {gt}), is an assignment of an encoding function fe to each edge e ∈ E and a

decoding function gt to each terminal t ∈ T . For e = (u, v), fe is a function taking as input the random variables

associated with incoming edges to node u; the random variable corresponding to e, Xe ∈ [2cen], is the random

variable equal to the evaluation of fe on its inputs. If e is an edge leaving a source node s ∈ S, then Xs is the

input to fe. The input to the decoding function gt consists of the random variables associated with incoming edges

to terminal t. The output of gt is a vector of reproductions of all sources required by t (the latter are specified by

the matrix B defined below).

Given the acyclic structure of G, edge messages {Xe} can be defined by induction on the topological order

of G. Namely, given the functions {fe}, one can define functions {f̄e} such that each f̄e takes as its input the

information sources {Xs} and transmits as its output the random variable Xe.2 More precisely, for e = (u, v) in

which u is a source node, define f̄e ≡ fe. For e = (u, v) in which u is an internal node with incoming edges

In(e) = {e′1, . . . , e′`}, define f̄e ≡ fe(f̄e′1 , . . . , f̄e′`). Namely, the evaluation of f̄e on source information {Xs} equals

the evaluation of fe given the values of f̄e′ for e′ ∈ In(e). We use both {fe} and {f̄e} in our analysis.

The |S| × |T | requirement matrix B = [bs,t] has entries in the set {0, 1}, with bs,t = 1 if and only if terminal t

requires information from source s.

A network code (F ,G) is said to satisfy terminal node t under transmission (xs : s ∈ S) if the output of decoding

function gt equals (xs : b(s, t) = 1) when (Xs : s ∈ S) = (xs : s ∈ S). The network code (F ,G) is said to satisfy

2In the network coding literature, {fe} and {f̄e} are sometimes referred to as the local and global encoding functions, respectively.
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the instance I with error probability ε ≥ 0 if the probability that all t ∈ T are simultaneously satisfied is at least

1− ε. The probability is taken over the joint distribution on random variables (Xs : s ∈ S).

For a rate vector R = (R1, . . . , R|S|), an instance I of the network coding problem is said to be (ε,R, n)-feasible

if there exists a network code (F ,G) with blocklength n that satisfies I with error probability at most ε when

applied to source information (X1, . . . , X|S|) uniformly distributed over Πn
s=1[2Rsn]. An instance I of the network

coding problem is said to be R-feasible if for any ε > 0 and any δ > 0 there exists a blocklength n such that I

is (ε,R(1− δ), n)-feasible. Here, R(1− δ) = (R1(1− δ), . . . , R|S|(1− δ)). The capacity region of an instance I

refers to all rate vectors R for which I is R-feasible.

B. Index coding

An instance Î = (Ŝ, T̂ , {Ŵt̂}, {Ĥt̂}) of the index coding problem includes a set of sources Ŝ = {ŝ1, ŝ2, . . . , ŝ|Ŝ|}

all available at a single server, and a set of terminals T̂ = {t̂1, . . . , t̂|T̂ |}. Given a blocklength n, each source ŝ ∈ Ŝ

holds a rate R̂ŝ random variable X̂ŝ uniformly distributed over [2R̂ŝn] (and independent from all other sources).

Each terminal requires information from a certain subset of sources in Ŝ. In addition, information from some sources

in Ŝ is available a priori as side information to each terminal. Specifically, terminal t̂ ∈ T̂ is associated with sets:

• Ŵt̂ which is the set of sources required by t̂, and

• Ĥt̂ which is the set of sources available at t̂.

We refer to Ŵt̂ and Ĥt̂ respectively as the “wants” and “has” sets of t̂. The server uses an error-free broadcast

channel to transmit information to the terminals. The objective is to design an encoding scheme that satisfies the

demands of all of the terminals while minimizing the number of bits sent over the broadcast channel. (See Fig. 1

(a).) The number of bits transmitted over the broadcast channel is described by the broadcast rate ĉB . In our setting,

ĉB equals the number of bits transmitted over the broadcast channel divided by the blocklength of the transmitting

code. (See Fig. 1 (b).)

An index code (F̂ , Ĝ) = (f̂B , {ĝt̂}t̂∈T̂ ) for Î, with broadcast rate ĉB , includes an encoding function f̂B for the

broadcast channel and a set of decoding functions Ĝ = {ĝt̂}t̂∈T̂ with one function for each terminal. The function

f̂B takes as input the source random variables {X̂ŝ} and returns a rate ĉB random variable X̂B ∈ [2ĉBn]. The input

to the decoding function ĝt̂ consists of the random variables in Ĥt̂ (the source random variables available to t̂) and

the broadcast message X̂B . The output of ĝt̂ is the reconstruction by terminal t̂ of all sources required by t̂ (and

described by Ŵt̂).

An index code (F̂ , Ĝ) of broadcast rate ĉB is said to satisfy terminal t̂ under transmission (x̂ŝ : ŝ ∈ Ŝ) if the

output of decoding function ĝt̂ equals (x̂ŝ : ŝ ∈ Ŵt̂) when (X̂ŝ : ŝ ∈ Ŝ) = (x̂ŝ : ŝ ∈ Ŝ). Index code (F̂ , Ĝ) is said

to satisfy instance Î with error probability ε ≥ 0 if the probability that all t̂ ∈ T̂ are simultaneously satisfied is at

least 1− ε. The probability is taken over the joint distribution on random variables {X̂ŝ}ŝ∈Ŝ .

For a rate vector R̂ = (R̂1, . . . , R̂|Ŝ|), an instance Î to the index coding problem is said to be (ε, R̂, ĉB , n)-feasible

if there exists an index code (F̂ , Ĝ) with broadcast rate ĉB and blocklength n that satisfies Î with error probability at

most ε when applied to source information (X̂ŝ : ŝ ∈ Ŝ) uniformly and independently distributed over Πŝ∈Ŝ [2R̂ŝn].
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Fig. 2. (a) The butterfly network with two sources s1 and s2 and two terminals t1 and t2. (b) The equivalent index coding instance. The server

has 9 sources: one for each source, namely X̂1 and X̂2, and one for each edge in the network, namely X̂e1 , . . . , X̂e7 . There are 7 terminals

corresponding to the 7 edges in the network, 2 terminals corresponding to the two terminals of the butterfly network, and one extra terminal

t̂all.

An instance Î of the network coding problem is said to be (R̂, ĉB)-feasible if for any ε > 0 and δ > 0 there exists a

blocklength n such that Î is (ε, R̂(1− δ), ĉB , n)-feasible. As before, R̂(1− δ) = (R̂1(1− δ), . . . , R̂|Ŝ|(1− δ)). The

capacity region of an instance Î with broadcast rate ĉB describes all rate vectors R̂ for which Î is (R̂, ĉB)-feasible.

Remark 1: Throughout our analysis, we assume that the edge alphabet sizes {2cen}e∈E and 2ĉBn are integers.

We elaborate on this point in the Conclusions section (Section VI) of our work.

III. EXAMPLE

Our main result, formally stated as Theorem 1 in Section IV, states that the network coding and index coding

problems are equivalent. The proof is based on a reduction that constructs, for any given network coding problem,

an equivalent index coding problem. In this section, we explain the main elements of our proof by applying it to the

“butterfly network” [2] shown in Fig. 2(a). For simplicity, our example does not consider any error in communication.

Our reduction is similar to the construction in [16]; our analysis differs to handle non-linear encoding.

We start by briefly describing the butterfly network. The network has two information sources s1 and s2 that,

for blocklength 1 and rate (1, 1), hold binary random variables X1 and X2, respectively, uniformly distributed on

{0, 1}×{0, 1}. There are also two terminals (destinations) t1 and t2 that want X1 and X2, respectively. Each edge

in the network, e ∈ {e1, . . . , e7}, has capacity 1. Following the notation in Section II-A, let Xei = f̄ei(X1, X2) be

the one-bit message on edge ei of the butterfly network. Then, the following is a network code that satisfies the

demands of the terminals:

Xe1 = Xe2 = X1

Xe3 = Xe4 = X2 (1)

Xe5 = Xe6 = Xe7 = X1 +X2,
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where ‘+’ denotes the xor operation. Terminal t1 can decode X1 by computing X1 = Xe4 +Xe7 , and t2 can decode

X2 by computing X2 = Xe1 +Xe6 . Thus, the butterfly network is (ε,R, n) = (0, (1, 1), 1)-feasible.

The problem now is to construct an index coding instance that is “equivalent” to the butterfly network; equivalence

here means that any index code for that instance would imply a network code for the butterfly network, and vice

versa. We propose the construction, based on that presented in [16], in which the server has 9 sources and 10

terminals, as shown in Fig. 2. The sources are divided into two categories:

• X̂1 and X̂2 correspond to sources X1 and X2, respectively, in the butterfly network.

• X̂e1 , . . . , X̂e7 correspond to the edges e1, . . . , e7, respectively, in the butterfly network.

The terminals are divided into three categories:

• For each edge ei in the butterfly network, terminal t̂ei has the variables X̂ej corresponding to edges ej incoming

to ei, and wants X̂ei .

• For each terminal ti in the butterfly network, terminal t̂i in the index coding instance has the variables X̂ej

corresponding to edges ej in the butterfly network incoming to ti, and wants X̂i. Namely t̂1 has X̂e4 and X̂e7 ,

and wants X̂1; whereas t̂2 has X̂e1 and X̂e6 , and wants X̂2.

• A single terminal t̂all has all variables that correspond to sources of the butterfly network (i.e., X̂1 and X̂2)

and wants all variables that correspond to edges of the butterfly network (i.e., X̂e1 , . . . , X̂e7 ).

Next, we explain how the solutions are mapped between these two instances. “Direction 1” strongly follows the

analysis appearing in [16]; our major innovation is in “Direction 2”. (Both proof directions are presented below for

completeness.)

Direction 1: Network code to index code. Suppose we are given a network code with local encoding functions

fei and global encoding functions f̄ei , i = 1, . . . , 7. In our index coding solution the server broadcasts the 7-bit

vector X̂B = (X̂B(e1), . . . , X̂B(e7)), where

X̂B(ei) = X̂ei + f̄ei(X̂1, X̂2), i = 1, . . . , 7. (2)

For instance, the index code corresponding to the network code in (1) is

X̂B(e1) = X̂e1 + X̂1 X̂B(e2) = X̂e2 + X̂1

X̂B(e3) = X̂e3 + X̂2 X̂B(e4) = X̂e4 + X̂2 (3)

X̂B(e5) = X̂e5 + X̂1 + X̂2 X̂B(e6) = X̂e6 + X̂1 + X̂2

X̂B(e7) = X̂e7 + X̂1 + X̂2.

One can check that this index code allows each terminal to recover the sources in its “wants” set using the

broadcast X̂B and the information in its “has” set (see [16]). For example, for the network’s index code, terminal

t̂e5 computes

X̂e5 = X̂B(e5)− (X̂B(e2)− X̂e2)− (X̂B(e3)− X̂e3).

Here, both ‘+’ and ‘-’ denote the xor operation.
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More generally, by (2), terminal node t̂all computes X̂e for each e using X̂B and its “has” set (X̂1, X̂2) as

X̂e = X̂B(e)− f̄e(X̂1, X̂2).

Each terminal t̂i or t̂ei similarly begins by computing f̄e′ for each incoming edge e′ using its “has” set and X̂B

as f̄e′(X̂1, X̂2) = X̂B(e′)− X̂e′ . Terminal t̂ei then computes f̄ei(X̂1, X̂2) as

f̄ei(X̂1, X̂2) = fei

(
f̄e′(X̂1, X̂2)|e′ is an incoming edge of ei

)
and then applies the definition of X̂B in (2) to recover X̂ei as X̂ei = X̂B(ei)− f̄ei(X̂1, X̂2). Terminal t̂i applies

the decoder gi to compute X̂i as

X̂i = gi

(
f̄e′(X̂1, X̂2)|e′ is an incoming edge of ti

)
;

since gi(f̄e′(X1, X2)|e′ is an incoming edge of ti) equals Xi with probability 1, the given code is guaranteed to

decode without error.

Direction 2: Index code to network code. Let ĉB equal the total capacity of edges in the butterfly network, i.e.,

ĉB = 7. Suppose we are given an index code with broadcast rate ĉB that allows each terminal to decode the sources

it requires (with no errors). We want to show that any such code can be mapped to a network code for the butterfly

network. Let us denote by X̂B = (X̂B,1, . . . , X̂B,7) the broadcast information where X̂B is a (possibly non-linear)

function of the 9 sources available at the server: X̂1, X̂2 and X̂e1 , . . . , X̂e7 .

For every terminal t̂, there exists a decoding function ĝt̂ that takes as input the broadcast information X̂B and

the sources in its “has” set and returns the sources it requires. For example ĝt̂e1 (X̂B , X̂1) = X̂e1 . The full list of

decoding functions is:

ĝt̂e1
(X̂B , X̂1) = X̂e1 ĝt̂e2

(X̂B , X̂1) = X̂e2

ĝt̂e3
(X̂B , X̂2) = X̂e3 ĝt̂e4

(X̂B , X̂2) = X̂e4

ĝt̂e5
(X̂B , X̂e2 , X̂e3) = X̂e5 ĝt̂e6

(X̂B , X̂e5) = X̂e6 (4)

ĝt̂e7
(X̂B , X̂e5) = X̂e7 ĝt̂1(X̂B , X̂e4 , X̂e7) = X̂1

ĝt̂2(X̂B , X̂e1 , X̂e6) = X̂2 ĝt̂all(X̂B , X̂1, X̂2) = (X̂e1 , . . . , X̂e7).

We use these decoding functions to construct the network code for the butterfly network. Consider, for example,

edge e5. Its incoming edges are e2 and e3, so we need to define a local encoding fe5 which is a function of the

information Xe2 and Xe3 they are carrying. In our approach, we fix a specific value σ for X̂B , and define

fe5(Xe2 , Xe3) = ĝt̂e5
(σ,Xe2 , Xe3).

Similarly, we define the encoding functions for every edge in the butterfly network, and the decoding functions for
the two terminals t1 and t2 by applying the corresponding decoder to the received inputs and the fixed value of
σ. The crux of our proof lies in showing that there exists a value of σ for which the corresponding network code
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allows correct decoding. In the example at hand, one may choose σ to be the all zero vector 0. (In this example,
all values of σ are equally good.) The resulting network code is:

fe1(X1) = ĝt̂e1
(0, X1) fe2(X1) = ĝt̂e2

(0, X1)

fe3(X2) = ĝt̂e3
(0, X2) fe4(X2) = ĝt̂e4

(0, X2)

fe5(Xe2 , Xe3) = ĝt̂e5
(0, Xe2 , Xe3) fe6(Xe5) = ĝt̂e6

(0, Xe5)

fe7(Xe5) = ĝt̂e7
(0, Xe5),

and the decoders at terminals t1 and t2 are ĝt̂1(0, Xe4 , Xe7) and ĝt̂2(0, Xe1 , Xe6), respectively.

To prove correct decoding, we show that for any fixed values X̂1 = x̂1 and X̂2 = x̂2, there exists a unique

value for the vector (X̂e1 , . . . , X̂e7) that results in the broadcast transmission of X̂B = 0. (Recall that X̂B is a

function of X̂1, X̂2 and X̂e1 , . . . , X̂e7 .) Otherwise, since ĉB = 7, t̂all cannot decode correctly. Roughly speaking,

this correspondence allows us to reduce the analysis of correct decoding in the network code to correct decoding

in the index code. Details on this reduction and the choice of σ appear in the next section.

IV. MAIN RESULT

We now prove the main result of this work: an equivalence between network and index coding.

Theorem 1: For any instance I of the network coding problem, one can efficiently construct an instance Î of

the index coding problem and an integer ĉB such that for any rate vector R, any integer n, and any ε ≥ 0 it holds

that I is (ε,R, n) feasible if and only if Î is (ε, R̂, ĉB , n) feasible. Here, the rate vector R̂ for Î can be efficiently

computed from R and I, and the network and index codes that imply feasibility in the reduction can be efficiently

constructed from one another.

In words, Theorem 1 states that for any network coding instance I one can efficiently construct an index coding

instance Î that preserves feasibility. Specifically, for any feasible rate vector R, our reduction allows the construction

of rate R network codes for I by studying index codes for Î.

Proof: Let G = (V,E) and I = (G,S, T,B). Let n be any integer, and let R = (R1, . . . , R|S|). We start by

defining Î = (Ŝ, T̂ , {Ŵt̂}, {Ĥt̂}), the integer ĉB , and the rate vector R̂. See Fig. 2 for an example. To simplify

notation, we use the notation X̂ŝ to denote both the source ŝ ∈ Ŝ and the corresponding random variable. For

e = (u, v) in E, let In(e) be the set of edges entering u in G. If u is a source s let In(e) = {s}. For ti ∈ T , let

In(ti) be the set of edges entering ti in G.

• Set Ŝ consists of |S|+ |E| sources: one source, denoted X̂s, for each source s ∈ S and one source, denoted

X̂e, for each edge e ∈ E from I. Thus, Ŝ = {X̂s}s∈S ∪ {X̂e}e∈E .

• Set T̂ consists of |E| + |T | + 1 terminals: |E| terminals, denoted t̂e, correspond to the edges in E, |T |

terminals, denoted t̂i, correspond to the terminals in I, and a single terminal, denoted t̂all. Thus, T̂ = {t̂e}e∈E∪

{t̂i}i∈[|T |] ∪ {t̂all}.

• For each t̂e ∈ T̂ , we set Ĥt̂e
= {X̂e′}e′∈In(e) and Ŵt̂e

= {X̂e}.

March 31, 2014 DRAFT



9

• For each t̂i ∈ T̂ , let ti be the corresponding terminal in T . We set Ĥt̂i
= {X̂e′}e′∈In(ti) and Ŵt̂i

=

{X̂s}s:b(s,ti)=1.

• For t̂all set Ĥt̂all
= {X̂s}s∈S and Ŵt̂all

= {X̂e}e∈E .

• Let R̂ be a vector of length |S| + |E| consisting of two parts: (R̂s : s ∈ S) represents the rate R̂s of each

X̂s and (R̂e : e ∈ E) represents the rate R̂e of each X̂e. Set R̂s = Rs for each s ∈ S and R̂e = ce for each

e ∈ E. Here Rs is the entry corresponding to s in the vector R, and ce is the capacity of the edge e in G.

• Finally, set ĉB =
∑
e∈E ce =

∑
e∈E R̂e.

We now present our proof. The fact that I is (ε,R, n) feasible implies that Î is (ε, R̂, ĉB , n) feasible is essentially

shown in [16] and is presented here for completeness. The other direction is the major technical contribution of

this work.

I is (ε,R, n) feasible implies that Î is (ε, R̂, ĉB , n) feasible:

For this direction, we assume the existence of a network code (F ,G) = ({fe} ∪ {gt}) for I that is (ε,R, n)

feasible. As mentioned in Section I, given the acyclic structure of G, one may define a new set of functions {f̄e}

with input (Xs|s ∈ S) such that the evaluation of f̄e on (Xs|s ∈ S) is identical to the evaluation of fe on

(Xe′ |e′ ∈ In(e)), which is Xe. We construct an index code (F̂ , Ĝ) = (f̂B , {ĝt}) for Î. We do this by specifying

the broadcast encoding function f̂B and the decoding functions {ĝt̂}t̂∈T̂ .

The function f̂B is defined in chunks, with one chunk (of support set [2cen]) for each edge e ∈ E denoted f̂B(e).

We denote the output of f̂B(e) by X̂B(e) and the output of f̂B by the collection X̂B = (X̂B(e) : e ∈ E). In what

follows for two random variables A1 and A2 of identical support A we think of A as an additive group and use

‘A1 + A2’ to denote addition modulo |A| (similarly for subtraction). For each e ∈ E, the corresponding chunk

f̂B(e) equals X̂e + f̄e(X̂1, . . . , X̂|S|). It follows that X̂B is a function of the source random variables of Î with

support
∏
e∈E

[
2R̂en

]
= [2ĉBn] (here, we are using the assumptions mentioned in Remark 1 and note that without

these assumptions it still holds that
∣∣∣∏e∈E

[
2R̂en

]∣∣∣ =
∏
e∈Eb2R̂enc ≤ b2ĉBnc =

∣∣[2ĉBn]
∣∣ and thus X̂B can be

expressed in [2ĉBn]).

We now define the decoding functions:

• For t̂e in T̂ we set ĝt̂e to be the function defined as follows:

– Terminal t̂e has Ĥt̂e
= {X̂e′}e′∈In(e). For each e′ ∈ In(e), the decoder computes X̂B(e′) − X̂e′ =

(f̄e′(X̂1, . . . , X̂|S|) + X̂e′)− X̂e′ = f̄e′(X̂1, . . . , X̂|S|).

– Let In(e) = {e′1, . . . , e′`}. Using the function fe from the network code (F ,G), the decoder computes

fe(f̄e′1(X̂1, . . . , X̂|S|), . . . , f̄e′`(X̂1, . . . , X̂|S|)).

By the definition of f̄e, this is exactly f̄e(X̂1, . . . , X̂|S|).

– Finally, the decoder computes X̂B(e) − f̄e(X̂1, . . . , X̂|S|) = X̂e, which is the source information that

terminal t̂e wants in Î.

March 31, 2014 DRAFT



10

• For t̂i ∈ T̂ the process is almost identical to that above. Let ti ∈ T be the terminal in I corresponding to t̂i.

The decoder first computes X̂B(e′) − X̂e′ = f̄e′(X̂1, . . . , X̂|S|) for e′ ∈ In(ti), then the function gti is used

on the evaluations of f̄e′ and the outcome is exactly the set of sources Ŵt̂i
= {X̂s}s:b(s,ti)=1 wanted by ti.

• For t̂all, recall that Ĥt̂all
= {X̂s}s∈S and Ŵt̂all

= {X̂e}e∈E . The decoder calculates X̂e by evaluating X̂B(e)−

f̄e(X̂1, . . . , X̂|S|).

Let ε ≥ 0. We now show that if the network code (F ,G) succeeds with probability 1 − ε on network I (over

the sources {Xs}s∈S with rate vector R), then the corresponding index code also succeeds with probability 1− ε

over Î with sources {X̂} and rate vector R̂.

Consider any realization xS = {xs} of source information {Xs}s∈S (of the given network coding instance I) for

which all terminals of the network code decode successfully. Denote a realization of source information {X̂ŝ}ŝ∈Ŝ
in Î by (x̂S, x̂E), where x̂S corresponds to the sources {X̂s}s∈S and x̂E corresponds to sources {X̂e}e∈E . Let

x̂S(s) be the entry in x̂S corresponding to source X̂s for s ∈ S, and let x̂E(e) be the entry in x̂E corresponding

to source X̂e for e ∈ E. Consider any source realization (x̂S, x̂E) in Î “corresponding” to xS = {xs}; that is,

consider any source realization (x̂S, x̂E) in which for x̂S(s) = xs for all s ∈ S. Here x̂E(e) may be set arbitrarily

for each e ∈ E.

For source realization xS of I, let xe be the realization of Xe transmitted on edge e in the execution of the

network code (F ,G). By our definitions, it holds that for any edge e ∈ E, f̄e(x̂S) = f̄e(xS) = xe. It follows

that the realization of X̂B(e) = X̂e + f̄e(X̂1, . . . , X̂|S|) is x̂E(e) + f̄e(x̂S) = x̂E(e) + xe. In addition, as we are

assuming that each terminal decodes correctly, for each terminal ti ∈ T of I it holds that gi(xe′ : e′ ∈ In(ti)) =

(xs : b(s, ti) = 1).

Consider a terminal t̂e in Î. The decoding procedure of t̂e first computes for e′ ∈ In(e) the realization of

X̂B(e′) − X̂e′ ; by the discussion above, this realization is exactly x̂E(e′) + xe′ − x̂E(e′) = xe′ . The decoder

then computes fe(xe′ : e′ ∈ In(e)) = f̄e(xS) = f̄e(x̂S) = xe. Finally, the decoder computes the realization of

X̂B(e)− f̄e(X̂1, . . . , X̂|S|) which is x̂E(e) + xe − xe = x̂E(e), which is exactly the information that the decoder

needs. Similarly, consider a terminal t̂i in Î corresponding to a terminal ti ∈ T of I. The decoding procedure of

t̂i first computes for e′ ∈ In(ti) the realization of X̂B(e′) − X̂e′ , which, by the discussion above, is exactly xe′ .

The decoder then computes gi(xe′ : e′ ∈ In(ti)) = (xs : b(s, ti) = 1), which is exactly the information needed

by t̂i. Finally, consider the terminal t̂all. The decoding procedure of t̂all computes, for each e ∈ E, the realization

of X̂B(e)− f̄e(X̂1, . . . , X̂|S|); this realization is x̂E(e) + xe− xe = x̂E(e), which again is exactly the information

needed by t̂all.

Combining all of these cases, we conclude that all terminals of Î decode correctly on source realization (x̂S, x̂E)

corresponding to source realization xS that is correctly decoded in I. This implies that the instance Î is indeed

(ε, R̂, ĉB , n) feasible.
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Î is (ε, R̂, ĉB , n) feasible implies that I is (ε,R, n) feasible:

Here, we assume that Î is (ε, R̂, ĉB , n) feasible with ĉB =
∑
e∈E ce =

∑
e∈E R̂e (as defined above). Thus,

there exists an index code (F̂ , Ĝ) = (f̂B , {ĝt̂}) for Î with blocklength n and success probability at least 1 − ε.

In what follows, we obtain a network code (F ,G) = {fe} ∪ {gt} for I. The key observation we use is that, by

our definition of ĉB =
∑
e∈E R̂e, the support [2ĉBn] of the encoding f̂B is exactly the size of the product of the

supports of the source variables {X̂e} in Î. This is where we explicitly use the assumptions mentioned in Remark 1.

The implications of this observation are described below.

We start with some notation. For each realization x̂S = {x̂s}s∈S of source information {X̂s}s∈S in Î, let Ax̂S

be the realizations x̂E = {x̂e}e∈E of {X̂e}e∈E for which all terminals decode correctly. That is, if we use the term

“good” to refer to any source realization pair (x̂S, x̂E) for which all terminals decode correctly, then

Ax̂S
= {x̂E | the pair (x̂S, x̂E) is good}.

Claim 1: For any σ ∈ [2ĉBn] and any x̂S, there is at most one x̂E ∈ Ax̂S
for which f̂B(x̂S, x̂E) = σ.

Proof: Let x̂S = {x̂s}s∈S be a realization of the source information {X̂s}s∈S . For any x̂S and any x̂E ∈ Ax̂S
, it

holds that terminal t̂all decodes correctly given the realization x̂S of the “has” set Ĥt̂all
and the broadcast information

f̂B(x̂S, x̂E). That is, ĝt̂all(f̂B(x̂S, x̂E), x̂S) = x̂E. We now show (by means of contradiction) that for a given x̂S

the function f̂B(x̂S, x̂E) obtains different values for different x̂E ∈ Ax̂S
. This proves our assertion.

Suppose that there are two values x̂E 6= x̂′E in Ax̂S
such that f̂B(x̂S, x̂E) = f̂B(x̂S, x̂

′
E). This implies that

x̂E = ĝt̂all(f̂B(x̂S, x̂E), x̂S) = ĝt̂all(f̂B(x̂S, x̂
′
E), x̂S) = x̂′E, which gives a contradiction.

Claim 2: There exists a σ ∈ [2ĉBn] such that at least a (1 − ε) fraction of source realizations x̂S satisfy

f̂B(x̂S, x̂E) = σ for some x̂E ∈ Ax̂S
.

Proof: Consider a random value σ chosen uniformly from [2ĉBn]. For any realization x̂S, the probability that

there exists a realization x̂E ∈ Ax̂S
for which f̂B(x̂S, x̂E) = σ is at least |Ax̂S

|/2ĉBn. This follows by Claim 1,

since for every x̂E ∈ Ax̂S
it holds that f̂B(x̂S, x̂E) is distinct. Hence, the expected number of source realizations

x̂S for which there exists a realization x̂E ∈ Ax̂S
with f̂B(x̂S, x̂E) = σ is at least∑

x̂S
|Ax̂S

|
2ĉBn

.

By our definitions, the total number of source realizations (x̂S, x̂E) for which the index code (F̂ , Ĝ) succeeds is

exactly
∑

x̂S
|Ax̂S

|, which by the ε error assumption is at least

(1− ε)
∏
s∈S
b2nR̂sc

∏
e∈E
b2nR̂ec.

Here, b2nR̂sc is the alphabet size of source X̂s and b2nR̂ec is the alphabet size of source X̂e. Since ĉB =
∑
e∈E R̂e,

and by our assumption in Remark 1, we conclude that
∏
e∈Eb2nR̂ec =

∏
e∈E 2nR̂e = 2

∑
e∈E nR̂e = 2ĉBn thus

(1− ε)
∏
s∈Sb2nR̂sc

∏
e∈Eb2nR̂ec

2ĉBn
= (1− ε)

∏
s∈S
b2nR̂sc,
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which, in turn, is exactly the size of a (1− ε) fraction of all source realizations x̂S.

We conclude that there is a σ ∈ [2ĉBn] which “behaves” at least as well as expected, that is, a value of σ that

satisfies the requirements in the assertion.

We now define the encoding and decoding functions of (F ,G) for the network code instance I. Specifically, we

define the encoding functions {fe} and the decoding functions {gt} for the edges e in E and terminals t in T . We

first formally define the functions and then prove that they yield an (ε,R, n) feasible network code for I.

Let σ be the value whose existence is proven in Claim 2. Let Aσ be the set of realizations x̂S for which there

exists a realization x̂E ∈ Ax̂S
with f̂B(x̂S, x̂E) = σ. By Claim 2, the size of Aσ is at least (1− ε)

∏
s∈Sb2nR̂sc =

(1− ε)
∏
s∈Sb2nRsc.

For e ∈ E let

fe :
∏

e′∈In(e)

[2nce′ ]→ [2nce ]

be the function that takes as input the random variables (Xe′ : e′ ∈ In(e)) and returns as output

Xe = ĝt̂e(σ, (Xe′ : e′ ∈ In(e)));

here, Xe′ is a random variable with support [2ce′n]. For terminals ti ∈ T in I let

gti :
∏

e′∈In(ti)

[2nce′ ]→
∏

s∈S:b(s,ti)=1

[
2nRs

]
be the function that takes as input the random variables (Xe′ : e′ ∈ In(ti)) and returns as output

ĝt̂i(σ, (Xe′ : e′ ∈ In(ti))).

The following argument shows that the network code (F ,G) defined above decodes correctly with probability

1− ε. Consider any rate-R realization xS = {xs}s∈S of the source information in I, where R = (R1, . . . , R|S|).

Consider the source information x̂S of Î corresponding to xS, namely let x̂S = xS. If x̂S ∈ Aσ , then there exists

a realization x̂E of source information {X̂e} in Î for which f̂B(x̂S, x̂E) = σ. Recall that, by our definitions, all

terminals of Î decode correctly given source realization (x̂S, x̂E). As before, for any s ∈ S, let x̂S(s) = xs be the

entry in x̂S that corresponds to X̂s. For e ∈ E, let x̂E(e) be the entry in x̂E that corresponds to X̂e.

We show by induction on the topological order of G that, for source information xS, the evaluation of fe in

the network code above results in the value xe which is equal to x̂E(e). For the base case, consider any edge

e = (u, v) in which u is a source; recall that any source has no incoming edges. In that case, by our definitions,

the information xe on edge e equals

fe(xs) = ĝt̂e(σ, xs) = ĝt̂e(f̂B(x̂S, x̂E), x̂S(s)) = x̂E(e).

The last equality follows from the fact that the index code (F̂ , Ĝ) succeeds on source realization (x̂S, x̂E). Thus

all terminals (and, in particular, terminal t̂e) decode correctly.

Next, consider any edge e = (u, v) with incoming edges e′ ∈ In(e). In that case, by our definitions, the

information xe on edge e equals fe(xe′ : e′ ∈ In(e)). However, by induction, each xe′ for which e′ ∈ In(e)
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satisfies xe′ = x̂E(e′). Thus,

xe = fe(xe′ : e′ ∈ In(e)) = ĝt̂e(σ, (xe′ : e′ ∈ In(e))) = ĝt̂e(f̂B(x̂S, x̂E), (x̂E(e′) : e′ ∈ In(e))) = x̂E(e).

Again, the last equality follows because the index code (F̂ , Ĝ) succeeds on (x̂S, x̂E).

Finally, we address the value of the decoding functions gt for any t ∈ T . By definition, the outcome of gt is

ĝt̂i(σ, (xe′ : e′ ∈ In(ti))) = ĝt̂i(f̂B(x̂S, x̂E), (x̂E(e′) : e′ ∈ In(ti))) = (x̂S(s) : b(s, ti) = 1) = (xs : b(s, ti) = 1).

Once again, we use the inductive argument stating that xe′ = x̂E(e′) and the fact that the index code (F̂ , Ĝ)

succeeds on source realization (x̂S, x̂E); thus all terminals (and, in particular, terminal t̂i) decode correctly. The

analysis above suffices to show that the proposed network code (F ,G) succeeds with probability 1− ε on a source

input with rate vector R. In more detail, we have presented correct decoding for I when xS = x̂S ∈ Aσ and have

shown that |Aσ| ≥ (1− ε)
∏
s∈Sb2nRsc. We thus conclude the proof of the asserted theorem.

V. CAPACITY REGIONS

In certain cases, our connection between network and index coding presented in Theorem 1 implies a tool for

determining the network coding capacity via the capacity of index coding instances. Below, we present such a

connection in the case of colocated sources (i.e., network coding instances in which all the sources are colocated

at a single node in the network). Similar results can be obtained for “super source” networks (studied in, e.g.,

[18], [19]) and have been obtained in the subsequent work [20] for the case of linear encoding. We discuss general

network coding instances in Section VI.

Corollary 1: For any instance of the network coding problem I where all sources are colocated, one can efficiently

construct an instance to the index coding problem Î and an integer ĉB such that for any rate vector R, R is in the

capacity region of I if and only if R̂ is in the capacity region of Î with broadcast rate ĉB . Here, the rate vector

R̂ for Î can be efficiently constructed from R.

Proof: Let I be an instance of the network coding problem and let R be any rate vector. The instance Î, the

rate vector R̂, and ĉB are obtained exactly as presented in Theorem 1. We now show that any R is in the capacity

region of I if and only if R̂ is in the capacity region of Î with broadcast rate ĉB .

From network coding to index coding: Suppose that R is in the capacity region of the network coding instance

I. Namely, for any ε > 0, any δ > 0, and source rate vector R(1− δ) = (R1(1− δ), . . . , R|S|(1− δ)), there exists

a network code with a certain blocklength n that satisfies I with error probability ε. As shown in the proof of the

first direction of Theorem 1, this network code can be efficiently mapped to an index code for Î with blocklength

n, broadcast rate ĉB , error probability ε, and source rate vector R̂δ = ({R̂s(1−δ)}s∈S , {R̂e}e∈E), where R̂s = Rs

for each s ∈ S and R̂e = ce for each e ∈ E. Therefore, for any ε > 0 and any δ > 0, there exists a blocklength n

for which Î is (ε, R̂δ, ĉB , n) feasible. Thus, R̂ is in the capacity region of Î with broadcast rate ĉB .

From index coding to network coding: Suppose that R̂ is in the capacity region of Î with broadcast rate ĉB .

Recall that R̂ = ({R̂s}s∈S , {R̂e}e∈E) and ĉB =
∑
e∈E ce =

∑
e∈E R̂e. Therefore, for any ε > 0 and any δ ≥ 0
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there exists an index code with a certain blocklength n and error probability ε such that Î is (ε, R̂(1− δ), ĉB , n)-

feasible. Consider any such ε and δ. In what follows, we assume that n is sufficiently large with respect to δ so

that logn
n ≤ δ. There is no loss of generality with this assumption since concatenation encoding can be used to

increase the blocklength without increasing the error probability or decreasing the rate significantly (see, e.g., [19,

Claim 2.1]).

Note that we cannot readily use the proof of the second direction of Theorem 1 to map the index code into a

network code for I. The problem is that our mapping from Theorem 1 (and in particular the analysis of Claim 2)

requires that ĉB be at most the sum of rates of random variables in Î that correspond to edges in E, namely, that

ĉB ≤ (1 − δ)
∑
e∈E R̂e. However, in our setting we have ĉB =

∑
e∈E R̂e. The proof of Theorem 1 does not go

through due to this (seemingly small) slackness. We thus proceed by modifying the proof of Theorem 1 to utilize

our assumption that all sources in I are colocated. We start by revisiting and modifying Claim 2 to obtain Claim 3,

which is stated below and proven at the end of this section. Throughout, we use notation defined in the proof of

Theorem 1.

Claim 3: There exists a set Σ ⊂ [2ĉBn] of cardinality

|Σ| ≤ 4n(1− δ)(
∑
s∈S

R̂s)2
nδ

∑
e∈E R̂e

such that least a (1− 2ε) fraction of source realizations x̂S satisfy f̂B(x̂S, x̂E) = σ for some x̂E ∈ Ax̂S
and some

σ ∈ Σ.

Assuming Claim 3, we now define the encoding and decoding functions for the network coding instance I.

Suppose that all the sources s ∈ S are colocated at a single node called the source node. For each source realization

xS, the source node checks whether there exists x̂E ∈ AxS
and some σxS

∈ Σ such that f̂B(xS, x̂E) = σxS
. If so,

we proceed with Case A below, otherwise we proceed with Case B.

In Case A the network code operates in two phases. During the first phase, the source node sends an overhead

message to all the nodes in the network3 revealing the value of σxS
. Transmitting this overhead message requires at

most log |Σ| bits. In the second phase, we implement the network code described in the second direction of the proof

of Theorem 1 with σ = σxS
. The source xS is transmitted through the network by sending on edge e the message

Xe = ĝt̂e(σxS
, (Xe′ : e′ ∈ In(e))) and by implementing the decoding function ĝt̂i(σxS

, (Xe′ : e′ ∈ In(ti))) at each

terminal ti. The given code transmits at most log |Σ|+ nCe bits across each channel e ∈ E. We therefore require

a blocklength of

n′ = max
e∈E

nCe + log |Σ|
Ce

= n

(
1 + max

e∈E

log |Σ|
nCe

)
to ensure that the given code can be implemented. Representing n′ as n′ = n(1+δ′) gives δ′ = maxe∈E log |Σ|/(nCe),

which tends to zero as δ tends to zero by Claim 3. Here we use our assumption that our blocklength n is sufficiently

3Any node that cannot be reached by a directed path from the source node can be set to remain inactive (not transmit any message) without

altering the capacity region of the network.
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large with respect to δ. The proof of Theorem 1 implies that such encoding and decoding functions for I will allow

successful decoding when the source realization for I is xS.

In Case B, we allow the network to operate arbitrarily and consider this case as an error. Claim 3 implies that

Case B happens with probability at most 2ε. Therefore, for R = (R̂s1 , . . . , R̂s|S|) the network coding instance I is

(2ε, R(1−δ)
1+δ′ , n(1 + δ′)) feasible for δ′ = maxe∈E log |Σ|/(nCe). Since 2ε tends to zero as ε approaches zero, and

1−δ
1+δ′ tends to 1 as δ approaches zero, we conclude that I is R-feasible.

We now present the proof of Claim 3.

Proof: (Claim 3) Consider the set A of elements x̂S for which |Ax̂S
| is of size no smaller than 2n(1−δ)ĉB−1.

Recall that ĉB =
∑
e∈E R̂e. Notice that

|A| ≥ (1− 2ε)
∏
s∈S
b2n(1−δ)R̂sc.

This bound must be satisfied since otherwise the total error in the index code we are considering would be greater

than ε, which is a contradiction to our assumption.

Let Σ′ be a subset of [2nĉB ] of cardinality |Σ′| = b2δnĉBc consisting of elements chosen independently and

uniformly at random from [2nĉB ]. For x̂S ∈
∏
s∈S [2n(1−δ)R̂s ], define the binary random variable Zx̂S

such that

Zx̂S
= 1 whenever there exist x̂E ∈ Ax̂S

and σ ∈ Σ′ such that f̂B(x̂S, x̂E) = σ; and Zx̂S
= 0 otherwise.

Using Claim 1, x̂S ∈ A implies

Pr(Zx̂S
= 1) = 1−

(
1− |Ax̂S

|
2nĉB

)|Σ′|

≥ 1−
(

1− 2n(1−δ)ĉB−1

2nĉB

)|Σ′|

= 1−
(

1− 1

2|Σ′|

)|Σ′|

>
1

4
.

We say that the x̂S ∈ A is covered by Σ′ if Zx̂S
= 1. It suffices to cover all x̂S ∈ A in order to satisfy our

assertion.

In expectation, Σ′ covers at least 1
4 of the elements in A. By a standard averaging argument, it follows that

there exists a choice for the set Σ′ that covers 1
4 of the elements in A. By removing these covered values of x̂S

and repeating on the remaining elements in A in a similar manner iteratively, we can cover all the elements of A.

Specifically, iterating 1 + log |A|/ log (4/3) times (each time with a new Σ′) all elements of A will eventually be

covered. Namely, in iteration i we cover all but
(

3
4

)i |A| of the elements in A. Taking Σ to be the union of all Σ′i

obtained in iteration i, we conclude our assertion:

|Σ| ≤
(

1 +
log |A|

log (4/3)

)
|Σ′| ≤ 4(log |A|)|Σ′| ≤ 4 log

(
2n(1−δ)

∑
s∈S R̂s

)
2δnĉB = 4n(1−δ)

(∑
s∈S

R̂s

)
2δn

∑
e∈E R̂e .

VI. CONCLUSIONS

In this work, we address the equivalence between the network and index coding paradigms. Following the line

of proof presented in [16] for a restricted equivalence in the case of linear encoding, we present an equivalence for
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general (not necessarily linear) encoding and decoding functions. Our results show that the study and understanding

of the index coding paradigm imply a corresponding understanding of the network coding paradigm on acyclic

topologies.

Although our connection between network and index coding is very general it does not directly imply a tool

for determining the network coding capacity region as defined in Section II for general network coding instances.

Indeed, as mentioned in the proof of Corollary 1 for colocated sources, a naive attempt to reduce the problem of

determining whether a certain rate vector R is in the capacity region of a network coding instance I to the problem

of determining whether a corresponding rate vector R̂ is in the capacity region of an index coding instance Î, shows

that a stronger, more robust connection between index and network coding is needed. Specifically, a connection

which allows some flexibility in the value of the broadcast rate ĉB might suffice. Such a connection is the subject

of continuing research.

Recently, it has been shown [19], [21] that certain intriguing open questions in the context of network coding are

well understood in the context of index coding (or the so-called “super-source” setting of network coding). These

include the “zero-vs-ε error” question: which asks, “What is the maximum loss in rate for insisting on zero error

communication as compared to the rate when vanishing decoding error suffices?” [18], [19]; the “edge removal”

question: “What is the maximum loss in communication rate experienced from removing an edge of capacity δ > 0

from a network?” [22], [23]; and the “δ-dependent source” question, which asks: “What is the maximum loss in

rate when comparing the communication of source information that is “almost” independent to that of independent

source information?” [21].

At first, it may seem that the equivalence presented in this work implies a full understanding of the open questions

above in the context of network coding. Although this may be the case, a naive attempt to use our results with

those presented in [19], [21] again shows the need of a stronger connection between index and network coding that

(as above) allows some flexibility in the value of ĉB .

Throughout this work we have assumed according to Remark 1 that the values {2cen}e∈E and 2ĉBn are integral.

The assumption of Remark 1 allows us to compare the alphabet size 2ĉBn = 2
∑
cen of the broadcast link in the

index coding instance Î to the product
∏
e 2cen of the alphabet sizes of the edges of the network coding instance,

and trivially holds if the edge capacities {ce} are integral. If the edge capacities are not integral, then one might

need to truncate the corresponding alphabet sizes and use, e.g., b2cenc instead of 2cen in the calculations performed

throughout our work. Truncating the alphabet sizes would lead to the comparison of
⌊
2
∑
cen
⌋

with
∏
e b2cenc. As

the former expression may be larger than the latter, Claim 2 of our analysis may not necessarily hold. However,

a closer look at Claim 2 reveals that a slight variant of Theorem 1 (in which an (ε, R̂, n, ĉB) index code will

correspond to an (O(ε), R, n) network code) follows from our analysis as long as the ratio between
⌊
2
∑
cen
⌋

and∏
e b2cenc is bounded by (1 + ε); a fact that holds if we consider sufficiently large blocklengths n (that depend

on the set {ce}e∈E and ε). Hence, for edge capacities that are not integral, this slight variant of Theorem 1 holds

for sufficiently large n. As noted in the body of this work, restricting our study in this case to large blocklength

codes comes at only a negligible cost in rate as concatenation encoding can be used to convert an (ε,R, n) feasible
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solution to a network coding instance I into an (ε,R(1− 5
√
ε), n′) feasible solution with blocklength n′ which is

larger than any n0 of our choice (e.g., [19, Claim 2.1]).
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