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Abstract—Index codes reduce the number of bits broadcast by
a wireless transmitter to a number of receivers with different
demands and with side information. It is known that the
problem of finding optimal linear index codes is NP-hard. We
investigate the performance of different heuristics based on rank
minimization and matrix completion methods for constructing
linear index codes over the reals. As a summary of our results,
the alternating projections method gives the best results in terms
of minimizing the number of broadcast bits and convergence rate
and leads to up to 13% savings in communication cost compared
to graph coloring algorithms studied in the literature. Moreover,
we describe how the proposed methods can be used to construct
linear network codes for non-multicast networks.

I. INTRODUCTION

We investigate the performance of different rank minimiza-
tion methods for constructing linear index codes [2], [3], and
therefore linear network codes by the equivalence in [4], [5].
Index codes reduce the number of bits broadcast by a wireless
transmitter that wishes to satisfy the different demands of a
number of receivers with side information in their caches.
Fig. 1 illustrates an instance of the index coding problem.
A wireless transmitter has n 4 packets, or messages,
X1,..., Xy, and there are n = 4 users (receivers) u1, . . .
User u; wants packet X; and has a subset of the packets as
side information. The packets in the cache could have been
obtained in a number of ways: packets downloaded earlier,
overheard packets, or packets downloaded during off-peak
network hours. Each user reports to the transmitter the indices
of its requested and cached packets, hence the nomenclature
index coding [6]. Assuming an error-free broadcast channel,
the objective is to design a coding scheme at the transmitter,
called index code, that satisfies the demands of all the users
while minimizing the number of broadcast messages. For
instance, the transmitter can always satisfy the demands of
all the users by broadcasting all the four packets. However,
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Fig. 1: An index code example.

An extended version of this paper can be found in [1].
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Fig. 2: Comparison of different methods for constructing scalar linear index
codes for n = 100 users and messages. Each user caches each message
independently with probability p (except its requested message).

it can save half of the broadcast rate by transmitting only 2
coded packets, X + X2+ X3 and X; + X, to the users. Each
user can decode its requested packet by using the broadcast
packets and its side information. The problem that we focus
on here is how to construct linear index codes that minimize
the number of broadcast messages.

Contribution: Answering the question above turns out to
be an NP-hard problem in general [7]-[9]. Motivated by a
connection between linear index codes and rank minimization
[6], we propose to use rank minimization and matrix comple-
tion methods to construct linear index codes. The underlying
matrices representing an index coding problem have a special
structure (all ones diagonal) that affects the performance of
these methods. For instance, the celebrated nuclear norm
minimization method [10], [11] does not perform well here.
We present our findings on the performance of different
other methods, such as alternating projections, directional
alternating projections and alternating minimization, through
extensive simulation results on random instances of the index
coding problem. These methods are performed over the real
numbers and give linear index codes over the reals which
have applications to topological interference management in
wireless networks [12], [13]. As a sample of our results,
Fig. 2 compares the performance of index codes obtained
by the Alternating Projections (AP) method to other methods
studied in the literature. We assumed that packets are cached
independently and randomly with probability p. The figure
shows the savings in communication cost resulting from using
index codes compared to no-coding and linear network coding



2015 IEEE Information Theory Workshop - Fall (ITW)

for multicast (all users decode all messages). Moreover, the
AP method leads to up to 13% savings in broadcast messages
compared to graph coloring [2], [7].

Recently, several equivalences and connections have been
established between index coding and other problems. These
connections can be leveraged to apply the rank minimization
methods presented here to these equivalent problems. For in-
stance, using the reduction between index coding and network
coding devised in [4], [5] to show the equivalence of the two
problems, the methods proposed here could be readily applied
to construct linear network codes over the reals [14], [15]
for general non-multicast networks. Similarly, these methods
can be used to construct certain class of locally repairable
codes over the reals using the duality between index codes
and locally repairable codes established in [16], [17]. Our
computer code for constructing linear index codes, network
codes and locally repairable codes is available online [18].

Related work: Index coding was introduced by Birk and
Kol in [2] as a caching problem in satellite communications.
The connection between linear index codes and the minimum
rank of the side information graph was established in [6]. The
sub-optimality of linear index codes was shown in [19]—-[21].
The work of [22] further explored the connection to graph
coloring and uncovered surprising properties on index coding
on the direct sums of graphs. Linear programming bounds
were studied in [23] and connections to local graph coloring
and multiple unicast networks were investigated in [24] and
[17], respectively. The work in [25] investigated index codes
on random graphs. Tools from network information theory
[26], [27] and distributed source coding [28] were used to
tackle the index coding problem. Related to index coding is the
line of work on distributed caching in [29], [30]. Recently, a
matrix completion method for constructing linear index codes
over finite fields was proposed in [31], and a method for
constructing quasi-linear vector network codes over the reals
was described in [32].

II. MODEL

An instance of the index coding problem is defined as
follows. A transmitter or server holds a set of n messages
or packets, X = {Xy,...,X,}, where the X;’s belong to
some alphabet. There are n users, uq,...,u,. Let W; C X
(“wants” set) represents the packets requested by u;, and the
set H; C X (“has” set) represents the packets available to
u,; as side information in its cache. WLOG, we can assume
that W, contains only one packet. Otherwise, the user can
be represented by multiple users satisfying this condition. We
assume that initially the transmitter does not know which
packets are cached at each user, and the users tell the
transmitter the indices of the packets they have in an initial
stage. Typically, the alphabet size is much larger than the
number of packets n, so the overhead in the initial stage is
negligible. The transmitter uses an error-free broadcast channel
to transmit information to the terminals. The objective is to
design a coding scheme at the transmitter, called index code,
that satisfies the demands of all the users while minimizing
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Fig. 3: (a) Side information graph G4 of the example in Fig. 1. (b) A clique
cover for its undirected subgraph G and the corresponding index code. (c)
Graph coloring of the complement graph G.

b)) G

the number of broadcast bits. We focus on scalar linear index
codes in which the transmitted packets are linear combinations
over a certain field of the original packets at the transmitter. We
denote by L,,;, the minimum number of broadcast messages
achieved by scalar linear index codes.

III. CONNECTIONS TO GRAPH COLORING AND RANK
MINIMIZATION

An index coding problem, with n messages and n users
can be represented by a directed graph G, referred to as side
information graph, defined on the vertex set {1,2,...,n}. An
edge (i, j) is in the edge set of G4 iff user u; caches packet X ;.
The side information graph G, representing the instance in
Fig. 1 is depicted in Fig. 3(a). Its maximal undirected subgraph
G in Fig. 3(b) is obtained from G4 by replacing any two edges
in opposite directions by an undirected edge, and removing the
remaining directed edges. We will say that G4 is undirected if
G4 and G are the same graph. It can be shown that L,,;, <

x(G) [2], [7], where x(G) is the chromatic number x(G) of
the complement graph G (See Fig. 3(b, c)).

It was shown in [6] that finding L,,;, is equivalent to
minimizing the rank of a matrix M. For instance, this matrix

M for the example in Fig. 1 is given by

X1 X9 X3 X4

up (1 * % 0

M= uy |x 1 x 0
ug |0 x 1 =

ug \x 0 0 1

The matrix M is constructed by setting all the diagonal
elements to 1’s, a star in the (i, )" position if edge (i,7)
exists in Gy, i.e., user u; caches packet X, otherwise the
entry is 0. The intuition is that the ith row of M represents
the linear coefficients of the coded packet that user u; will use
to decode X;. Hence, the zero entries enforce that this coded
packet does not involve packets that u; does not have. The
packets that u; has can always be subtracted out of the linear
combination. The goal is to choose values for the stars “x”
from a certain field F such that the rank of M is minimized.
The saving in transmitted messages can be achieved by making
the transmitter only broadcast the coded packets that generate
the row space of M. It turns out that this formulation of index
coding coincides with the minimum rank of a graph, minrk
defined by Haemers [33]. Therefore, the optimal rate for a
scalar linear index code Ly,;, = minrk(G) < ¥(Gq) [6].
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Fig. 4: (a) Alternating Projections (AP) method between two convex sets.
(b) AP method for the index coding problem (see Egs. (1) and (2)).

IV. INDEX CODING ON RANDOM UNDIRECTED GRAPHS

We focus on the case in which the side information graph
G4 is undirected. Details on the directed case can be found
in [1]. Our approach is to use convex optimizing methods
to find L,,;, by minimizing the rank of the matrix M over
the reals. The nuclear norm minimization method [10] always
output the maximum rank n (instead of min rank) because all
the diagonal entries in M are 1s. We found the alternating
projections (AP) method [34], [35] to be the most promising.

A. Alternating Projections Method

Given two convex regions C and D, a sequence of alter-
nating projections between these two regions converges to a
point in their intersection as illustrated in Fig. 4(a) [34]-[36].
Therefore, completing the index coding matrix M by choosing
values for the “*” such that M has a low rank r can be thought
of as finding the intersection of two regions C and D in R"*",
in which

C={M e R"™rank(M) < r}, (1)
and
D= {M S Rnxn;mij =0 if (Z,]) §é G and m;; = 1,
i=1,...,n} (2)

Note that C is not convex and therefore convergence of the AP
method is not guaranteed. However, the AP method can give
a certificate, which is the completed matrix M, that a certain
rank r is achievable. Therefore, we will use the AP method
as a heuristic as described in Algorithm APIndexCoding.

The projection of a matrix on the region C is obtained by
singular value decomposition (SVD) [37]. We noticed from
our simulations that a considerable improvement in perfor-
mance and convergence rate, can be obtained by projecting
on C’ C C, the set of positive semi-definite matrices of rank
less or equal than 7,

C'={MeR"™"  M>0and rank(M) <7}. (3

The projection on C’ is done by eigenvalue decomposition
and taking the eigenvectors corresponding to the r largest
eigenvalues, as done in Step 8. The Projection on D is obtained
by resetting the fixed entries to their fixed values in M, as done
in Step 9 and 10. Step 11 uses the ¢? norm, ||-||, which is equal
to the largest singular value of the matrix.
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Fig. 5: Average index code length obtained by APIndexCoding, LDG and
Greedy Coloring on random undirected graphs G(n, p).

B. Simulation Results

We tested the performance of Algorithm APIndexCoding
on randomly generated graphs. We used the Erdos-Renyi
model to generate random undirected graphs G(n,p) on n
vertices where edges between two vertices are chosen iid
with probability p. We compare the performance of Algo-
rithm APIndexCoding to greedy coloring and Least Difference
Greedy (LDG) [2], [3]. Also, we have tested the Alternating
minimization method [34], [38], [39], but we have discarded
it since it converged very slowly for the cases we tested.

Fig. 5 shows the average rank obtained by the APIndex-
Coding Algorithm for n between 0 and 100 and different
values of p. In all our simulations, each data point is obtained
by running the algorithms on 1000 graph realizations and
€ = 0.001 in the stopping criterion. The APIndexCoding

Algorithm APIndexCoding: Alternating projections
method for index coding
Input: Graph G (or Gy)
Output: Completed matrix M* with low rank r*
1 Set rj, = greedy coloring number of G
2 while 3M € C’ such that rankM < r;, do

3 Randomly pick My € C’'. Set i =0 and ry, =1, — 1;
4 repeat
5 1=1+1;

/* Projection on C' (or () */
6 Find the eigenvalue decomposition

Mi—l = UEVT, with

Y =diag(o1,...,0n), 01 >+ > 0n;
7 Seto;=0ifo; <0,l=1,...,n;

Compute M; = > 7% ojujv];

/* Projection on D */
9 M;11 = M, Set diagonal entries of M;,; to 1;
10 Change the (a, b)!" position in M, to 0 if edge

(a,b) does not exist in G;
11 until ||M1'+1 — Mz” <€

12 end
3 return M* = M; and r* = ry.

[
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Fig. 6: Histogram of index code length obtained by APIndexCoding, LDG
and Greedy Coloring on random undirected graphs when n = 100.

Algorithm always outperforms LDG and greedy coloring.
For instance, an improvement of 13% over greedy coloring
is obtained for n = 30 and p 0.8. Fig. 6 shows the
histogram of the distribution of the rank by APIndexCoding
which suggests a concentration around the mean of ranks
returned by APIndexCoding. Note that in Fig. 2 the graph
G4 is directed, but the results on alternating projections
were obtained by applying APIndexCoding algorithm on the
undirected subgraph G. We also tested the APIndexCoding
algorithm on all non-homomorphic directed graphs on at most
5 vertices as reported in [40]. APIndexCoding was always able
to find the optimal index coding length except for when it is
not an integer (28 graphs on n = 5 vertices).

C. Convergence Rate and Running Time

We ran the simulations on a DELL XPS i7 - 16GB Memory
Desktop using Matlab software. Fig. 7 depicts the average
time taken by the APIndexCoding algorithm to converge on a
random undirected graph G(n,p). To speed up the converge
time, we tested a variant of the AP method, called Directional
Alternating Projections (DirAP) [1], [41]. DirAP projects on
the tangent space of the region every other iteration and can
lead to considerable savings in time as seen in Fig. 7 (more
details in [1]).

80| -+ - Greedy Col. |
- =& - LDG
- x- DirAP

60 |- —&— APIndexCoding N

40

20

Average Running Time per Graph (sec.)

20 40 140
Fig. 7: Running time of APIndexCoding and directional APIndexCoding on

random undirected graphs when p = 0.2.

17

D. Decoding Error Analysis

The APIndexCoding algorithm returns the matrix M* with
low rank r*. However, M* is not in C in general, but is very
“close” to a matrix in C (in ¢2 norm distance) as dictated
by the stopping criteria of the algorithm. This will cause a
small decoding error at the users side. The following lemma
bounds the decoding error for bounded messages, i.e., |X;| <
Xmaz, ¢ =1,...,n. The proof can be found in [1].

Lemma 1: Let X = [X1,Xa,...,X,]T be the message
vector at the transmitter. Assume that the index code given

by matrix M* is used and let X = [X1, Xs,..., X,]7 be the
messages decoded by the users. Then,
IX = X[| < €Xmax/n. @)

V. NETWORK CODING VIA RANK MINIMIZATION

The rank minimization heuristics presented here provide a
computational tool for constructing linear network codes for
non-multicast networks.

source, destinations and edge
capacities ¢(.).

|

Construct the matrix M of the
equivalent index coding problem
using the reduction in [4], [5].

Find r*, the minimum rank of M
using APIndexCoding algorithm.

!

Input: Network N (G, E) with

1

Output: “Either the network does
not admit a linear network code
or the rank minimization method
could not find an optimal index
coding solution.”

Yes

Output: Linear network code
given by the completed matrix
M* that defines the local
encoding functions for the edges
and decoding functions for the
destinations.

!

End

Fig. 8: Linear network coding via rank minimization.

The main idea is to use the efficient reduction in [4], [5] to
transform a given network coding problem NC to an index
coding problem ZC and then to apply the APIndexCoding
algorithm to ZC. Suppose that A'C is defined over a network
N(V, E) with vertex set V, edge set F, and each edge e € E
has capacity c(e). The reduction guarantees the following
property: A'C has a network code over a certain alphabet that
allows all the destinations to decode their messages with zero
probability of error if and only if ZC has an index code of
length 7* = __; c(e) over the same alphabet. This property
gives the algorithm illustrated in the flow chart of Fig. 8. This
algorithm was implemented in Matlab and can be found and
tested on the link in [18].
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VI. CONCLUSION

We have investigated the performance of rank minimization
methods for constructing linear index codes over the reals.
Our simulation results indicate that the Alternating Projections
method and its Directional variant, always outperform graph
coloring algorithms and converge much faster than the Alter-
nating Minimization method. Our results lead to the following
open questions that we plan to address in our future work:
(i) Can the proposed methods here be adapted to construct
linear index codes over finite fields? (ii) Under what conditions
on the index coding matrices, can these methods be given
theoretical guarantees to construct optimal linear index codes?
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