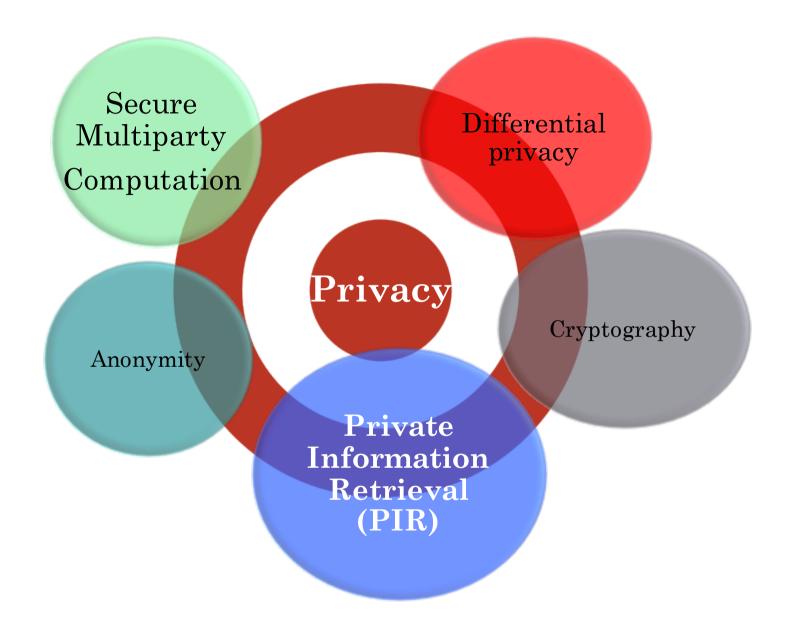
Private Information Retrieval from MDS Coded Data in Distributed Storage Systems

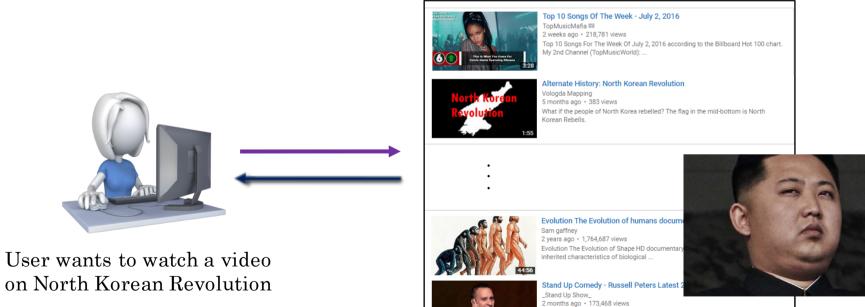
Salim El Rouayheb ECE Department Illinois Institute of Technology

Joint work with Razane Tajeddine



Private Information Retrieval (PIR)

- User wants to retrieve a file from a database without revealing the identity of this file.
- This problem was first introduced by Chor et. al in 1995. [Chor, Goldreich, Kuchilevitz and Sudan '95].

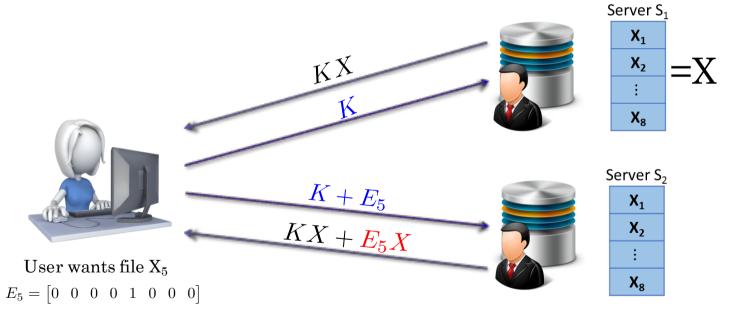


3

Server

Toy Example

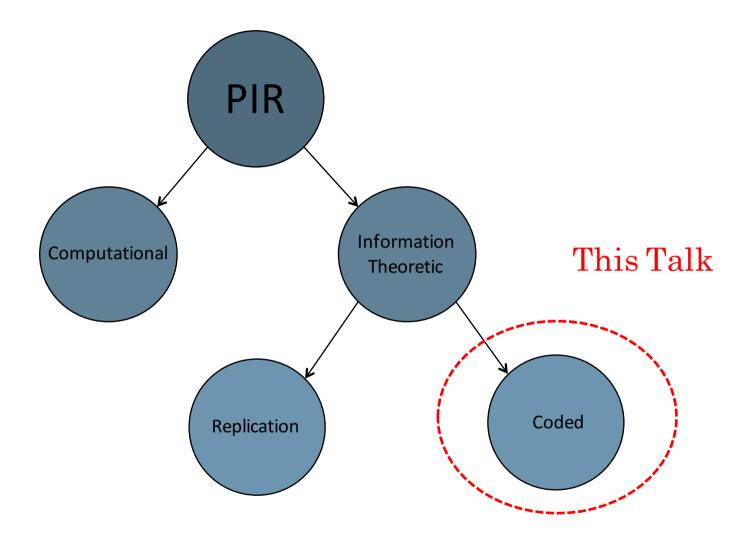
• Database replicated on two non colluding servers.



[Chor et al. '1995]

Computational vs. Info Theoretic Privacy

- Relaxation: Computational PIR
- Can achieve privacy on one server without downloading whole database. [Kushilevitz and Ostrovsky, '97], [Chor and Gilboa, '97], [Cachin, Micali, and Stadler, '99], ...
- High computational complexity. [Sion and Carbunar, '07]

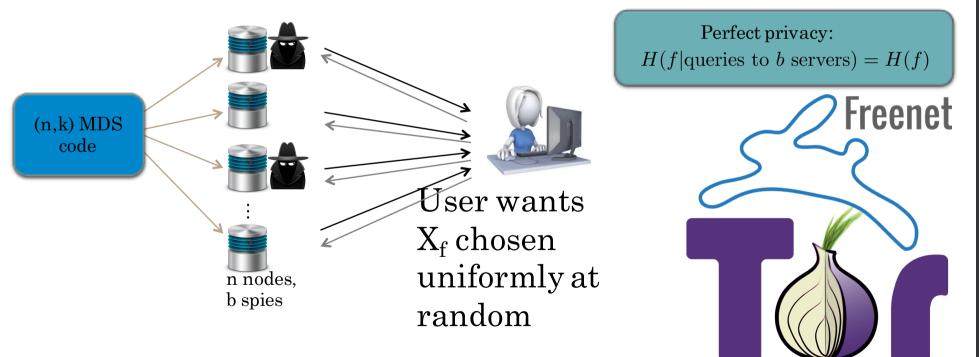


Model

- A distributed storage system with n nodes storing files $X_1, ..., X_m$
- (n,k) MDS code is given and not design parameter.
- b passive spy nodes

Goal: Design PIR scheme with min download cost

 $\mathbf{7}$



Related work: Replicated Data

- PIR scheme on replicated non-colluding nodes with total, upload and download, communication cost of $\mathcal{O}((n^2 \log n)m^{1/n})$ and $\mathcal{O}(m^{1/3})$ for the case when n=2 [Chor, Goldreich, Kuchilevitz and Sudan '95]
- PIR scheme on replicated non-colluding nodes with communication cost $\mathcal{O}(m^{1/(2n-1)})$ [Ambainis, '97] and $\mathcal{O}(m^{\frac{c \log \log n}{n \log n}})$ [Beimel et al, '02]
- PIR protocols with total communication cost that is subpolynomial in the size of the database [Yekhanin '08], [Efremenko '12] and [Dvir and Gopi '15]
- Fundamental limits and achievable schemes on *download cost* for replication. [Sun and Jafar '16]

Related Work on Coded PIR

- Batch codes [Ishai et al. '04]
- One extra bit of download is sufficient to achieve PIR. [Shah, Rashmi, and Ramchandran, ISIT '14]
- Methods for transforming a replication-based PIR scheme into a coded-based PIR scheme with the same communication cost [Fazeli, Vardy, and Yaakobi, ISIT '15]
- Bounds on the the tradeoff between storage and download communication cost. [Chan, Ho, and Yamamoto, ISIT '15]
- PIR array codes [Blackburn & Etzion '16]

Our Results: Single Spy

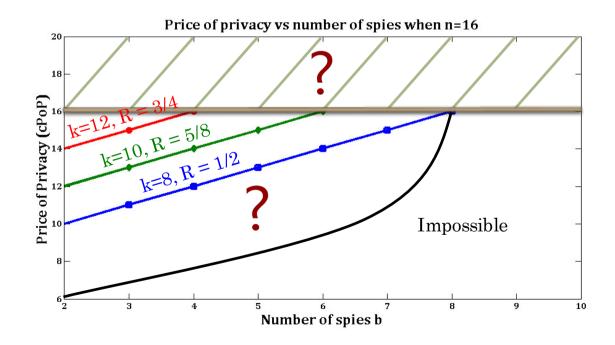
Theorem 1: Consider a DSS using an (n, k)MDS code over GF(q), with b = 1 spy node. Then, there is an explicit linear PIR scheme for any number of files m over GF(q) with download communication cost (price of privacy): $PoP = \frac{n}{n-k} = \frac{1}{1-R}.$

- Achieves the information theoretic optimum given in [Chan et al, ISIT '15] for linear PIR scheme.
- Achieve the bound given in [Sun et. al, ISIT '16] when applying replication.*
- The PIR scheme is universal, i.e. does not depend on the MDS code.



Our Results: Multiple Spies

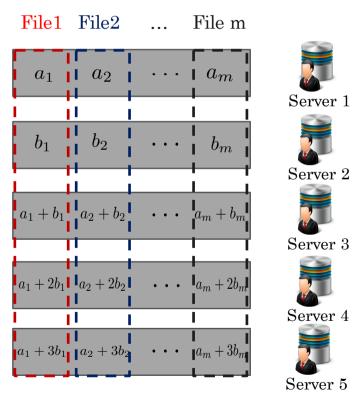
Theorem 2: Consider a DSS using an (n, k)MDS code over GF(q), with $b \le n - k$ spy nodes. Then, there is an explicit linear PIR scheme over GF(q) with download communication cost, PoP = b + k.



Example on Theorem 1

• Consider a (5,2) MDS code with b = 1 spy node.

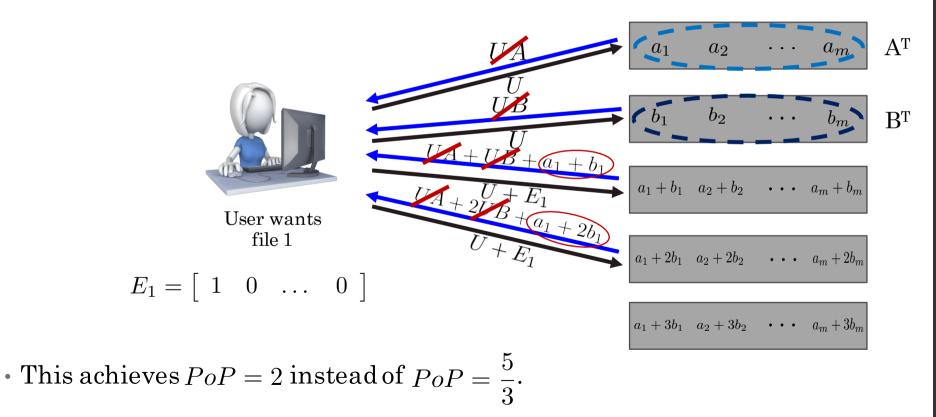
• Goal is to achieve
$$PoP = \frac{n}{n-k} = \frac{5}{3}$$
.



12

First Attempt

• Generate an iid random vector $U = \begin{bmatrix} u_1 & u_2 & \dots & u_m \end{bmatrix}$.



Subdivision

• Divide each part into 3,

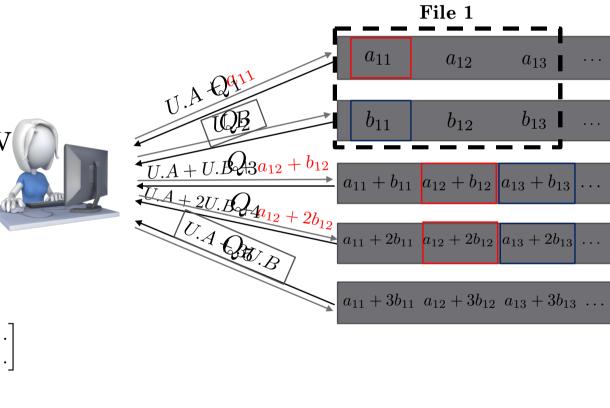
- 2 subqueries.
- 2 random vectors U and V

$$Q_{1} = \begin{bmatrix} u_{1} + 1 & u_{2} & u_{3} & \dots \\ v_{1} & v_{2} & v_{3} & \dots \end{bmatrix}$$

$$Q_{2} = \begin{bmatrix} u_{1} & u_{2} & u_{3} & \dots \\ v_{1} + 1 & v_{2} & v_{3} & \dots \end{bmatrix}$$

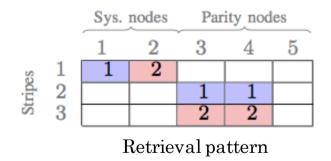
$$Q_{3} = Q_{4} = \begin{bmatrix} u_{1} & u_{2} + 1 & u_{3} & \dots \\ v_{1} & v_{2} & v_{3} + 1 & \dots \end{bmatrix}$$

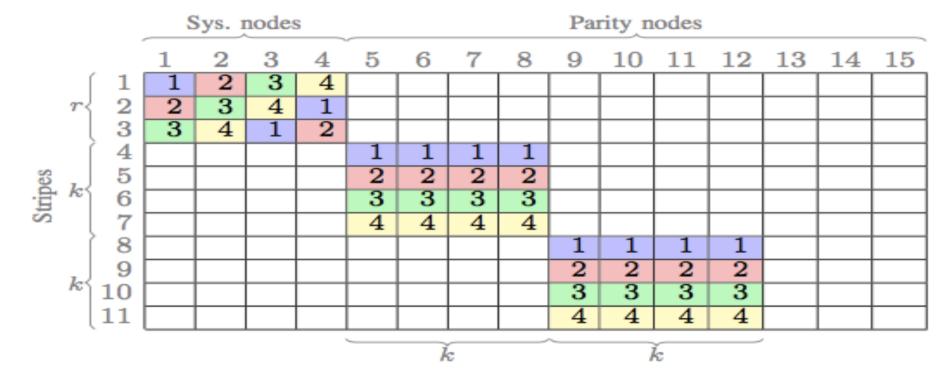
$$Q_{5} = \begin{bmatrix} u_{1} & u_{2} & u_{3} & \dots \\ v_{1} & v_{2} & v_{3} & \dots \end{bmatrix}$$



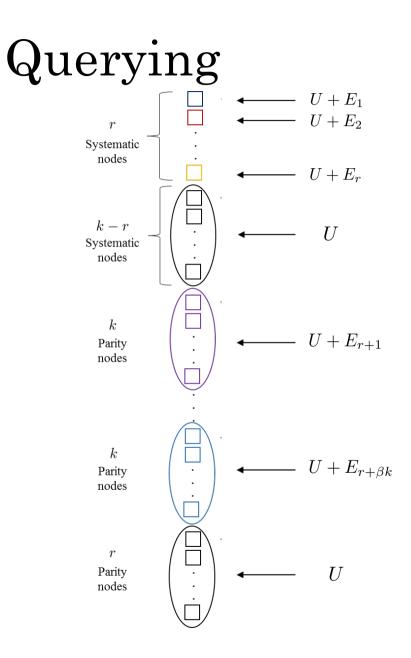
Proof of Theorem 1

- Scheme:
 - We divide each file into n k stripes.
 - k sub-queries are made to each node (dimension of code is d).
 - We write $n k = \beta k + r$.
- Conditions:
 - Decode n k parts in each sub-query.
 - Parts not on same node.
 - Different parts in each sub-query





Retrieval pattern for (15,4) MDS



Where the E_i s are matrices with 1s at the positions we want to decode.

- *k*equations to decode interference.
- *r* equations from systematic nodes to decode parts of the first r stripes.
- βk equations from parity nodes to decode βk complete stripes.
- In total, $\beta k + r$ parts decoded.

Querying

- User creates a $d \times m\alpha$ random matrix U.
- Send matrix

-
$$Q_l = U + V_l$$
, to send to nodes $l = 1, \dots, n - r$.
- $Q_l = U$, to send to nodes $l = n - r + 1, \dots, n$.

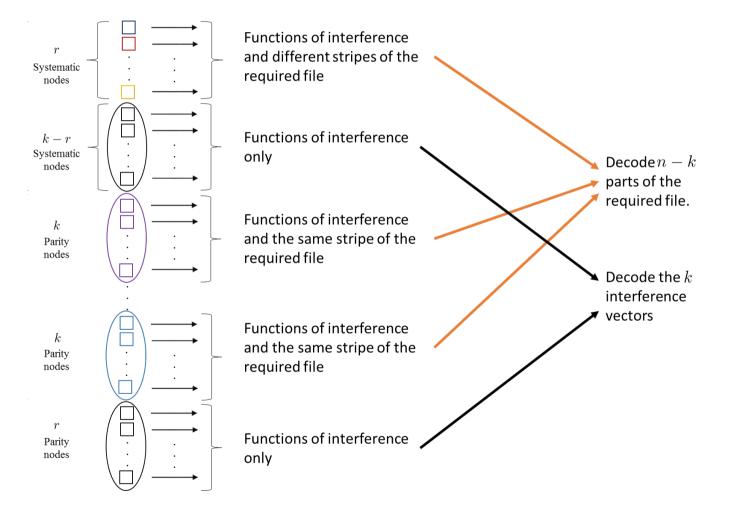
• Where

$$- E_1 = \left[\underbrace{\mathbf{0}_{k \times (f-1)\alpha}}_{\text{files } 1, \dots, f-1} \underbrace{\mathbf{0}_{(k-r) \times r}}_{\text{wanted file } f} \underbrace{\mathbf{0}_{k \times \beta k}}_{\text{files } f+1, \dots, m} \right],$$

- E_l l = 1, 2, ..., k, is obtained from matrix E_{l-1} by a single downward cyclic shift of its row vectors.
- For parity nodes $l=sk+1,\ldots,sk+k$ for $s=1,\ldots,\beta$

$$E_l = \underbrace{\left[\begin{array}{c|c} \mathbf{0}_{k \times (f-1)\alpha} & \mathbf{0}_{k \times r} & \mathbf{0}_{k \times (s-1)k} & I_{k \times k} & \mathbf{0}_{k \times (\beta-s)k} & \mathbf{0}_{k \times (m-f)\alpha} \right]}_{\text{files } 1, \dots, f-1} \text{ wanted file } f & \text{files } f+1, \dots, m \end{array}$$

Response and Decoding



Decoding

- Decodability:
 - From systematic node $l=1,\ldots,k$ and sub-query i

$$\begin{aligned} x_{i1}^f + I_l & l = i \\ I_l & l = (i+1)_k, \dots, (i+k-r)_k \\ x_{l(i+k+1-l)_k}^f + I_l & l = (i+k-r+1)_k, \dots, (i+k-1)_k \end{aligned}$$
 where $I_l = U_i^T W_l$

– From parity nodes $l = n - r + 1, \dots, n$

$$\lambda_{1l}I_1 + \lambda_{2l}I_2 + \dots + \lambda_{kl}I_k$$

- The rest of the parity nodes return:

$$\lambda_{1l}x_{1,r+(s-1)k+i}^f + \dots + \lambda_{kl}x_{k,r+(s-1)k+i}^f + \lambda_{1l}I_1 + \lambda_{2l}I_2 + \dots + \lambda_{kl}I_k$$

Part 3 – Privacy

- Privacy:
 - Since b = 1, the only way a node l can learn information about f is from its own query matrix Q_i . By, construction Q_i is statistically independent of f and this scheme achieves perfect privacy.

• cPoP:

• Every node responds with d = k symbols. Therefore, the total number of symbols downloaded by the user is kn. Therefore,

$$cPoP = \frac{kn}{k(n-k)} = \frac{1}{1-R}$$

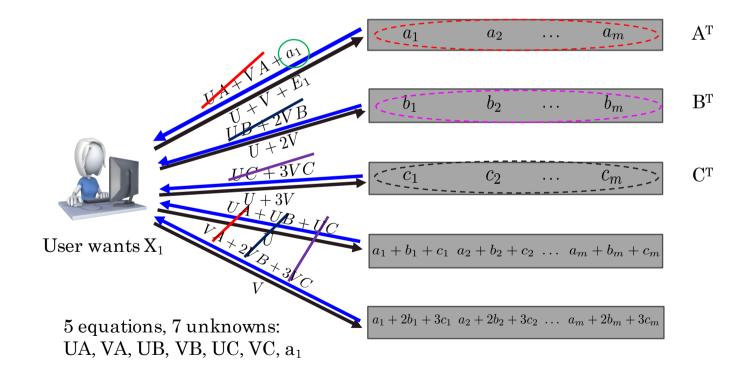
$Example \ on \ Theorem \ 2$

- Assume a (5,3) MDS code.
- Consider b = 2 colluding nodes.
- W.L.O.G. user wants file 1.

File 1	File 2	•••	File m
a_1	a_2		a_m
	1		
b_1	b_2	•••	b_m
	 	1	
c_1	c_2		c_m
	1	 	
$a_1 + b_1 + c_1$	$a_2 + b_2 + c_2$		$a_m + b_m + c_m$
	1	 	
$a_1 + 2b_1 + 3c_1$	$a_2 + 2b_2 + 3c_2$	 	$a_m + 2b_m + 3c_m$

$Example \ on \ Theorem \ 2$

• User generates 2 random vectors Uand V.

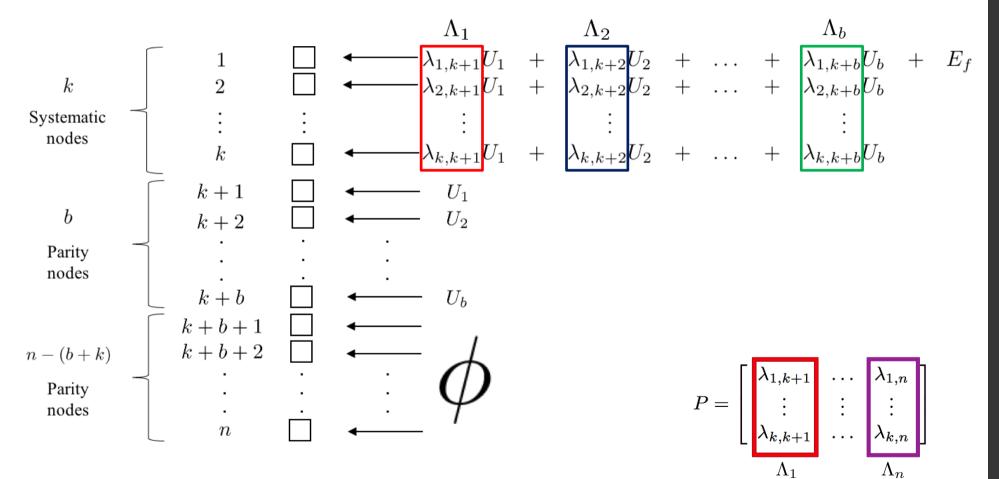


Proof of Theorem 2

Theorem 2: Consider a DSS using an (n, k) MDS code over GF(q), with $b \le n - k$ spy nodes. Then, there is an explicit linear PIR scheme over GF(q) with download communication cost, PoP = b + k.

• Consider an (n,k) MDS code with the following generator matrix:

$$\Lambda = \left[\begin{array}{cccc} I_{k \times k} \\ \vdots \\ \lambda_{k,k+1} \end{array} \begin{array}{c} \ddots \\ \lambda_{k,n} \end{array} \right]$$



 U_1, \ldots, U_b : b random vectors

25

Open Problems

- Fundamental information theoretical bounds of the communication cost (cPoP).
- Is joint design of MDS code and PIR scheme necessary to achieve fundamental bounds?
- Partial retrieval of parts of the file.
- Beyond MDS codes, general linear codes, regenerating codes, Locally Recoverable codes, etc.
- General collusion patterns
- Malicious nodes etc...

Thank you!

27