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1 Discrete Time Markov Chains (DTMC)

Definition 1 (Markov Chain). Let Xt for t = 0, 1, 2, ... be a sequence of random variables. We
say that Xt is a Markov Chain with state space Ω and transition matrix P if for any two states
x, y ∈ Ω:

P (Xt+1 = y|Xt = x, ...,X1 = x1, X0 = x0) = P (Xt+1 = y|Xt = x)
.
= P (x, y)

This property is what we call the Markov Property, when the future depends on the past only through
the present.

Remark 1. We use the following notation for this chapter:

P (x, y) = P (Xt+1|Xt)

6= P (Xt+1, Xt)

Remark 2. P (x, y) is actually the element corresponding to the row of state x and the column of
state y in what we call the transition matrix P.

states

x→

y ↓

P (x, y)
∑

y P (x, y) = 1 for all x ∈ Ω

The sum of all elements in a raw of P is 1 and all elements are positive, then P is a stochastic
matrix.
As we are dealing with time homogeneous chains then P does not variate with t.

Example 1. Two states Markov chain: Ω = {0, 1}
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The transition matrix for the chain represented is the above state diagram is

0 1

P =
0
1

[
1− p p
q 1− q

]
Many applications could be modeled using a two states Markov Chain:

– The Gilbert Elliot model for wireless channels: Ω = {good channel, bad channel}

– Tomorrow’s weather prediction based on today’s weather: Ω = {snow, no snow}

Remark 3. If the future depends on the present and one state before like P (Xt+1|Xt, Xt−1), then
we can model the system where a state is not anymore the individual state but a pair (Xt, Xt−1)

Figure 1: The state diagram of the Markov chain of the augmented space

Now the state space is of the size |Ω|2 = 4

Example 2. Random Walk on Z

A random walk moves right or left by at most one step on each move.

A state Xt is defined by

Xt = W0 +W1 +W2 + ....+Wt

where Wis are iid random variables drawn from the following distribution:

Wi 6=0 =

{
1 with probability p

−1 with probability 1− p

The future state Xt+1 depends only on the current state Xt

Figure 2: Random Walk on Z

The state space Ω = Z. It is infinite.
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Example 3. Gambler’s Ruin (Check Homework 1)

A Gambler has $k initially. He flips a coin at each time and proceed as follow:{
if he gets a Head → he wins$1

if he gets a Tail → he loses $1

Once he reachs $0 or a maximum sum he wishes to win $n, he stops palying.

The Gambler’s Ruin problem can be modeled as a random walk on a finite Markov chain bounded
by the state 0 from below and the targeted sum n from above with an initial state X0 equals to the
initial sum k.

Figure 3: The state diagram of the Gambler’s Ruin Markov chain

0 1 2

P =

0
1
2

k

n− 1
n



1 0 0 0 0 ... 0 0 0 0
1
2 0 1

2
1
2 0 1

2
1
2 0 1

2
...

...

1
2 0 1

2
1
2 0 1

2
0 0 0 0 0 ... 0 0 0 1


Example 4. Random Walk on Graph

Starting at state 0, at each time instant, we jump to one of the neighbors with equal probability.

Figure 4: An undirected graph of 5 vertices

P =


0 1

3
1
3

1
3 0

1
2 0 0 0 1

2
1
2 0 0 1

2 0
1
3 0 1

3 0 1
3

0 1
2 0 1

2 0


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Special case: Random walk on a cycle Cn

Figure 5: A cycle of 6 vertices

2 Two-state Markov Chains

Figure 6: The state diagram of two states Markov chain

The question that we are seeking to answer is what is the P (Xt|X0)?

• For t = 1:

– P (X1 = 0|X0 = 0) = 1− p
– P (X1 = 1|X0 = 0) = p

• For t = 2: Conditionning on X0 = 0

– P (X2 = 0|X0 = 0) = (1− p)2 + pq
It is the probability to stay at 0 at t = 1 and t = 2, or leave 0 at t = 0 and get back to
it at t = 2

– P (X2 = 1|X0 = 0) = (1− p) p+ (1− q) p
It is the probability to stay at 0 at t = 1 and reach 1 at t = 2, or leave 0 at
t = 0 and stay at 1 at t = 2

What about any t?
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First, for a deterministic initial state like µ0 =
[

1 0
]
, we get:

P (Xt) = P (Xt|X0 = 0)P (X0 = 0) + P (Xt|X0 = 1)P (X0 = 1)

= P (Xt|X0 = 0)

We note by µt =
[
P (Xt = 0) P (Xt = 1)

]
Suppose we know the distribution µt at time t, then

P (Xt+1 = 0) = P (0, 0)P (Xt = 0) + P (1, 0)P (Xt = 1)

P (Xt+1 = 1) = P (0, 1)P (Xt = 0) + P (1, 1)P (Xt = 1)

We can condensate the equations above vectorially by

µt+1 = µtP

By iterating this equation starting at t = 0, we get

µ1 = µ0P

µ2 = µ0P
2

...

µt = µ0P
t

Lemma 1. The state distribution µt at time t of a Markov chain of transition matrix P is

µt = µ0P
t

3 Stationary distribution

We wish to know to what distribution π the chain is going to converge to after running it for enough
time if such limiting distribution exists. So,

π = lim
t→∞

µt

Since

lim
t→∞

µt = lim
t→∞

µt+1 = π

then π should statisfy

π = πP

Definition 2. The stationary distribution π of a Markov chain with a transition matrix P is the
solution of the equation

π = πP
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Example 5. The two-state Markov chain

[
π0 π1

]
=
[
π0 π1

] [ 1− p p
q 1− q

]
π0 = π0 (1− p) + π1q

π1 = π0p+ π1 (1− q)

π0 =
q

p+ q

π1 =
p

p+ q

Then,

lim
t→∞

P (Xt = 0) =
q

p+ q

lim
t→∞

P (Xt = 1) =
p

p+ q

4 Finite Time Analysis

The question to answer now is how fast we are converging to π?

Recall that µt = µ0P
t and suppose that P is diagonalizable so it can be written as:

P = UΛU−1 for Λ =


λ0 0 ... 0
0 λ1
...
0 λn


Then,

P2 = UΛU−1UΛU−1

= UΛ2U−1

for any t,

Pt = UΛtU−1

Now let us go back to the two-state Markov chain:

Finding the eigenvalues of P of the previous example for all p and β:

det (P− λI) = det

([
1− p− λ p

q 1− q − λ

])
= (1− p− λ)(1− q − λ)− pq
= (λ− 1)(λ+ p+ q − 1)
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Hence we get two eigenvalues, λ1 = 1 and λ2 = 1 − p − q. Their corresponding eigenvectors and
the matrix U are the following:

¯
Φ1 =

[
1
1

]
,

¯
Φ2 =

[
p
−q

]
Therefore, if p+ q 6= 0

U =

[
1 p
1 −q

]
U−1 =

1

−p− q

[
−q −p
−1 1

]
Otherwise,

¯
Φ2 =

[
0
0

]
. which is not linearly independent of

¯
Φ1

So, for p+ q 6= 0 and with µ0 =
[

1 0
]
:

µt = µ0P
t

µt = µ0UΛtU−1

µt =
[

1 0
] [ 1 p

1 −q

] [
1 0

0 (1− (p+ q))t

]
1

p+ q

[
q p
1 −1

]

Then,

µTt =


q

q+p −
q

q+p (1− p− q)t

p
q+p −

q
q+p (1− p− q)t


For |1− (p+ q) | < 1

limt→∞µt =
[

q
q+p

p
q+p

]
= π

We can see that the chain converge exponentially to its stationary distribution π. This convergence
is determined by λ2: the second largest eigenvalue.

Now for |1− (p+ q) | = 1

• Case 1: p = q = 1

Figure 7: The state diagram of the case when p = q = 1

The chain never converge to a stationary distribution. Depending on the initial state, let us
say X0 = 0, the chain is going to be at 0 for any even t and at 1 for any odd t regardless
since when the chain started.
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Figure 8: the state diagram for the case when p = q = 0

• Case 2: p = q = 0

The chain will be stuck in 1 or 0 depending on the initial state and never get out of it. 1 and
0 are called absorbing states.

Remark 4. When a matrix is diagonalizable?

Theorem : If P is a n× n matrix with n linearly independent eigenvectors φ0, φ1, ...φn, then P is
diagonalizable

Fact: If P has n distincts eigenvalues, then P has n linearly independent eigenvectors. (Refer to
Linear Algerbra textbooks)

Remark 5. A stochastic matrix has always an eigenvalue λ1 = 1. All other eigenvalues are in
absolute value smaller than 1.

Proof. For the matrix P, the sum of the row vectors is equal to 1. The matrix P has the eigenvalue

1 for the eigenvector
[

1 1 ... 1
]T

P.
[

1 1 ... 1
]T

=
[

1 1 ... 1
]T

Assume now that v is an eigenvalue |λ| > 1. Then At = |λ|tv has exponentially growing length for
t→∞. This implies that there is for large t one coefficient

[
At
]
ij

which is larger than 1. but At is

a stochastic matrix as well and has all entries ≤ 1(easy to prove). The assumption of an eigenvalue
larger than 1 can not be valid.

5 Convergence Analysis: Irreducibility and Aperiodicity

We have seen two cases where a 2 states Markov Chain does not converge to a stationary distribu-
tion. How about a chain with any number of states?

Irreducibility

Let us consider the following chain:

Figure 9: The state diagram of an irreducible Markov chain
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Two possible scenarios are possible for the limiting distribution:

π =
[
∗ ∗ 0 0 0

]
or

π =
[

0 0 0 ∗ ∗
]

Suppose that X0 = 0 the chain is reduced to one of two classes depending on whether we go from
0 to 2 or 4 at t = 1. Such a chain does not converge to a stationary distribution.

Definition 3. Irreducibility

A Markov chain is irreducible if for any two states x and y ∈ Ω, it is possible to go from x to y in
a finite time t:

P t (x, y) > 0, for some t ≥ 1 for all x, y ∈ Ω

Definition 4. A class in a Markov chain is a set of states that are all reacheable from each other.

Lemma 2. Any transition matrix P of an irreducible Markov chain has a unique distribution
stasfying π = πP.

Periodicity:

Figure 10: The state diagram of a periodic Markov chain

This chain is irreducible but that is not sufficient to prove the convergence

Starting at state 0:

• For all even time t: the chain can be only at 0 or 2

• For all odd time t: the chain can be at 1 or 3

Then, there is no convergence.

Definition 5. The period of a state x is defined by

d (x) = gcd
{
t|P t (x, x) > 0

}
Applying this definition to our example chain:

• d (0) = gcd {2, 4} = 2

• d (1) = gcd {2, 4} = 2
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• d (2) = gcd {2, 4, 6, 8, ...} = 2

• d (3) = gcd {2, 4, 6, 8, ...} = 2

Definition 6. A state is periodic if d (x) > 1. Otherwise, we call it aperiodic.

Lemma 3. All states of an irreducible chain has the same period.

Example 6. Consider the following chains:

Figure 11: Chain 1

Figure 12: Chain 2

Questions

1. Are these two chains irreducible?

2. Are they periodic?

Anwers

1. Both chains 1 and 2 are irreducible. We can reach any state starting by any other.

2. For the first chain: Starting at 1, it could take you {3, 6, ..} to go back to 1. Then, the
period of 1 = 3. The chain is irreducible which implies that all states are of period 3. So it
is periodic.

For the second chain: Starting at 1, it could take you {3, 5, ..} to go back to 1.Then, the
period of 1 = 1. The chain is irreducible which implies that all states are of period 1. So it
is aperiodic.

Theorem 1. A finite state Markov chain that is irreducible and aperiodic converges to its stationary
distribution π given by π = πP, i.e., limt→∞ µt = π

6 Random Walk on Graph

Let G (V, E) be a graph with |E| = m edges.

The state diagram of a random walk on this graph is:
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Figure 13: Undirected graph of 5 nodes

Figure 14: State diagram of the random walk on the previous graph

1. What is the stationary distribution of a random walk on a graph?

Recall if x, y ∈ V , then,

P (x, y) =

{
1

deg(x) if x is adjcent to y

0 otherwise

where deg (x) is the number of outgoing edges from node x. So, for the graph above:

P =


0 1

2
1
2 0 0

1
2 0 1

2 0 0
1
3

1
3 0 1

3 0
1
3

1
3 0 1

3 0
0 0 0 1 0


The stationary distribution π must satisfy π = πP.

The number of non-zero elements of the yth column of P = deg (y). For example, for y=2:

1

2
∗ 2 +

1

3
∗ 3 +

1

2
∗ 2 = 3 =deg (2)

1

2
deg (1) +

1

3
deg (3) +

1

2
deg (4) =deg (2)
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In general for n vertices,

deg (y) =
∑
x

deg (x)P (x, y)

Deg = DegP

where Deg is [deg (1) , deg (2) , ..., deg (n)] the degree vector.

But Deg is not a probability to consider it for a stationary distribution so we have to normalize
it by

∑
y deg (y) = 2|E| = 2m

Then,

π =
1

2m
[deg (1) , ..., deg (n)]

Lemma 4. The stationary distribution of a random walk on an undirected graph G (V, E) of
n vertices and m edges is:

π =
1

2m
[deg (1) , ..., deg (n)]

2. Does this MC converge to its statinary distribution?

• If the graph is connected then the MC is irreducible.

• Aperiodicity? Let us focus on a particular family of graph: Cn cycles of n vertices:

For n odd :

Figure 15: Odd cycle

To go from 1 to 1:

• 2 steps: 1− 2− 1

• 5 steps: 1− 2− 5− 4− 3− 1

• ...

Then the period of 1 = gcd (2, 5, ..) = 1. The chain is aperiodic

For n even :

The period of 1 is 2. So this chain is periodic and does not converge. The stationary
distribution is π =

[
1
4

1
4

1
4

1
4

]
and it is about the fraction of time that the chain spends on each

state here. While the probability of being at a given state depends always on the first state
and if that time is even or odd.
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Figure 16: Even cycle

The point is a period of 2 exits always as we can leave a state to one of its neighbors and come
back directly. So any graph that only has an even number of cycles is going to be periodic.
We call these graphs: Bipartite graphs.

The get an aperiodic graph out of a periodic one, we can always add self loops to all states of
the graph fairly and assigned a probability 1/2 to each. We call this graph the Lazy version.

Figure 17: The lazy version of the 4-cycle

7 The Pòlya Urn Model

We consider an urn containing 2 balls: white and black at the beginning of the process at k = 0.
At each time k, we choose uniformly a random ball from the urn, then return it and add a new
ball of the same color. Let Bk the number of balck balls at time k.

1. Is Bk a Markov chain?

• First Bk can take values: 1, 2, 3, ... , k + 1 and the total number of balls is k + 1

– P (Bk+1 = j + 1|Bk = j) = j
k+2

– P (Bk+1 = j|Bk = j) = 1− j
k+2

Bk+1 just depends on the number of balls at time k regardless how we have reached Bk

2. What is the distribution of Bk on {1, 2, 3, ... , k + 1} ?
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Figure 18: The possible outcomes for k=0,1 and 2 of the Pòlya urn model

• Checking First for B2

P (B2 = 1) =
2

3

1

2
=

1

3

P (B2 = 2) =
1

2

1

3
+

1

2

1

3
=

1

3

P (B2 = 3) =
1

2

2

3
=

1

3

We can see that B2 is uniformly distributed over {1, 2, 3, ...}
• We assume that Bk is uniformly distributed on {1, 2, 3, ..., k + 1}, and we will proceed

by induction to prove it.

Let us prove that Bk+1 is uniformly distributed over {1, 2, 3, ..., k + 2}
• P (Bk+1 = j) =?

– For j = 1 :

P (Bk+1 = 1) = P (Bk = 1) P (Picking aWhite ball)

=
1

k + 1

k + 1

k + 2

=
1

k + 2

– For 1 < j < k + 2 :

P (Bk+1 = j) = P (Bk = j) P (Picking aWhite ball) + P (Bk = j − 1) P (Picking aBlack ball)

=
1

k + 1

k + 2− j
k + 2

+
1

k + 1

j − 1

k + 2

=
1

k + 1

k + 1

k + 2

=
1

k + 2
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– For j = k + 2 :

P (Bk+1 = k + 2) = P (Bk = k + 1) P (Picking aBlack ball)

=
1

k + 1

k + 1

k + 2

=
1

k + 2

So the assumption is proved for k + 1.

8 The Ballot Markov Chain

We are intrested in counting the votes of two candidates A and B. We suppose that A got a votes
and B got b votes with b > a. The ballots are mixed together, and the vote counting happens by
picking one ballot randomly and updating the score according to it.

1. Show that the score after each ballot count a MC.

Let Xt = (at, bt) where at is the number of revealed votes for candidate A up to t, and bt is
the votes of candidate B up to t.

So, t = at + bt, and the remaing votes to count equal a+ b− t.

P (Xt+1 = (x+ 1, t− x) |Xt = (x, t− x)) =
a− x

a+ b− t

P (Xt+1 = (x, t− x+ 1) |Xt = (x, t− x)) =
b− t+ x

a+ b− t

2. Show that all paths from (0, 0) to (a, b) have the same probability.

P (any path) =
a (a− 1) (a− 2) ... 1 b (b− 1) ... 1

(a+ b) (a+ b− 1) ... 1

=
a! b!

(a+ b)!

=
1(

a+ b
b

)
3. What is the probability of B always leading in the vote count?

This is the probability that the path from (0, 0) to (a, b) never crosses the x = y line.
Since all paths have the same probability:

P (B always leading) = P (the path never crosses x = y)

=
# of paths (0, 0) to (a, b) that do not cross x = y

total number of paths

where total number of paths =

(
a+ b
b

)
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Figure 19: One good path to have for the votes counting

Let us count the number of paths that do not cross x = y. Any such path must start with a

step up meaning a vote for B: # of such paths =

(
a+ b− 1

a

)
Then I can take the part right after crossing x = y and reflet it to get all paths from (0, 1)
to (b, a). There is a bijection between all paths from (0, 0) to (a, b) that cross x = y and all
paths from (0, 1) to (b, a).

Figure 20: Reflexion Principle

#of all paths from (0, 1) to (b, a) =

(
a+ b− 1

b

)
Then,

P (B always leading) =

(
a+ b− 1

a

)
−
(
a+ b− 1

b

)
(
a+ b
b

)
=
b− a
b+ a

.
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