ECE541: Stochastic Signals and Systems

Fall 2018

Chapter 8: Random Processes

Dr. Salim El Rouayheb

1 Random Process

Definition 1. A discrete random process X(n), also denoted as X_n , is an infinite sequence of random variables X_1, X_2, X_3, \ldots ; we think of n as the time index.

- 1. Mean function: $\mu_X(n) = E[X(n)].$
- 2. Auto-correlation function: $R_{XX}(k,l) = E[X(k)X(l)].$
- 3. Auto-covariance function: $K_{XX}(k,l) = R_{XX}(k,l) \mu_X(k)\mu_X(l)$.

Definition 2. X(n) is a Gaussian r.p. if $X_{i_1}, X_{i_2}, \ldots, X_{i_m}$ are jointly Gaussian for any $m \ge 1$.

Example 1. Let W(n) be an i.i.d Gaussian r.p with autocorrelation $R_{WW}(k,l) = \sigma^2 \delta(k-l)$ and mean $\mu_W(n) = 0 \forall n$, where

$$\delta(x-a) = \begin{cases} 1 & x = a, \\ 0 & otherwise. \end{cases}$$
$$\Rightarrow R_{WW}(k,l) = E [W_k W_l] = \begin{cases} \sigma^2 & k = l, \\ 0 & otherwise. \end{cases}$$

Which means that for l = k,

$$R_W(k,l) = E[W_l^2] = V[W_l] = \sigma^2,$$

and $W_l \ \mathcal{C} W_k$ are correlated. While for $l \neq k$,

$$R_W(k,l) = 0,$$

and $W_l \ & W_k$ are uncorrelated and therefore independent because they are jointly Gaussian.

A new averaging r. p. X(n) defined as

$$X(n) = \frac{W(n) + W(n-1)}{2} \quad n \ge 1,$$

for example for n = 1,

$$X(1) = \frac{W_1 + W_0}{2}.$$

Figure 1: A possible realization of the random process W(n) and its corresponding averaging function X(n).

Questions:

- 1. What is the pdf of X(n)?
- 2. Find the autocorrelation function $R_{XX}(k, l)$

Answers:

1. From previous chapters we know that X(n) is a Gaussian r.v. because it is a linear combination of Gaussian r.v. Hence, it is enough to find the mean and variance of X_n to find its pdf.

$$E[X(n)] = E\left[\frac{1}{2}(W_n + W_{n-1})\right],$$

= $\frac{1}{2}(E[W_n] + E[W_{n-1}]),$
= 0.

$$V[X(n)] = V\left[\frac{1}{2}(W_n + W_{n-1})\right],$$

= $\frac{1}{4}(V[W_n] + V[W_{n-1}])$ because $W_n \& W_{n-1}$ are independent,
= $\frac{1}{4}(\sigma^2 + \sigma^2),$
= $\frac{\sigma^2}{2}.$

OR:

$$V[X(n)] = E[X_n^2] - \mu_{X_n}^2, \qquad (1)$$

$$= E \left[\frac{1}{4} \left(W_n + W_{n-1} \right)^2 \right],$$
 (2)

$$= \frac{1}{4} \left(E \left[W_n^2 \right] + E \left[W_{n-1}^2 \right] + 2E \left[W_n W_{n-1} \right] \right), \tag{3}$$

$$=\frac{1}{4}\left(\sigma^2 + \sigma^2\right),\tag{4}$$

$$=\frac{\sigma^2}{2},\tag{5}$$

where equation (4) follows from the fact that

$$E[W_n W_{n-1}] = R_{WW}(n, n-1) = 0.$$

Therefore,

$$f_{X_n}(x_n) = \frac{1}{\sqrt{2\pi}\frac{\sigma}{\sqrt{2}}} \exp\left(-\frac{x_n^2}{2\frac{\sigma^2}{2}}\right),$$
$$= \frac{1}{\sigma\sqrt{\pi}} \exp\left(-\frac{x_n^2}{\sigma^2}\right).$$

2. Before we apply the formula, let us try to find the autocorrelation intuitively. By definition:

$$X_1 = \frac{W_1 + W_0}{2}, \quad X_2 = \frac{W_2 + W_1}{2}, \quad X_3 = \frac{W_3 + W_2}{2}.$$

It is clear that X_1 and X_3 are uncorrelated (independent) because they do not have any W_i in common and W(n) is i.i.d. However, X_1, X_2 and X_2, X_3 are correlated.

$$\begin{aligned} R_{XX}(k,l) &= E\left[X_k X_l\right], \\ &= \frac{1}{4} E\left[\left(W_k + W_{k-1}\right) \left(W_l + W_{l-1}\right)\right], \\ &= \frac{1}{4} \left(E\left[W_k W_l\right] + E\left[W_k W_{l-1}\right] + E\left[W_{k-1} W_l\right] + E\left[W_{k-1} W_{l-1}\right]\right). \end{aligned}$$

Recall from the definition of W(n) that

$$E[W_k W_l] = \begin{cases} \sigma^2/2 & k = l, \\ 0 & \text{otherwise,} \end{cases} \qquad E[W_k W_{l-1}] = \begin{cases} \sigma^2/4 & k = l-1, \\ 0 & \text{otherwise,} \end{cases}$$
$$E[W_{k-1} W_l] = \begin{cases} \sigma^2/4 & k = l+1, \\ 0 & \text{otherwise,} \end{cases} \qquad E[W_{k-1} W_{l-1}] = \begin{cases} \sigma^2/2 & k = l, \\ 0 & \text{otherwise.} \end{cases}$$

Therefore,

$$R_{XX}(k,l) = \begin{cases} \frac{\sigma^2}{2} & k = l, \\ \frac{\sigma^2}{4} & k = l \pm 1, \\ 0 & \text{otherwise.} \end{cases}$$

Figure 2: A possible realization of the random walk process

Example 2. Random walk process Let $W_0 = X_0 = constant$, and W_1, W_2, \ldots be i.i.d. random process with the following distribution

$$W_i = \begin{cases} 1 & p, \\ -1 & 1-p. \end{cases}$$

The random walk process X_n , n = 1, 2, ... is then defined as

$$X_n = W_0 + W_1 + W_2 + \dots + W_n.$$

Questions:

- 1. What is the pdf of X_n ?
- 2. Find the mean function of X_n .
- 3. Find the variance of X_n .

Answers:

1. X_n is a Binomial r.v. since it is the summation of Bernoulli r.v. So to find the pdf of X_n is the same as finding $P(X_n = h)$. Let U be the number of steps "up", i.e., the corresponding $W_i = 1$; and let D be the number of steps "down", i.e., the corresponding $W_i = -1$,

$$\left. \begin{array}{c} U - D = h - X_0 \\ U + D = n \end{array} \right\} \Rightarrow U = \frac{n + h - X_0}{2}$$

Then,

$$P(X_n = h) = {\binom{n}{U}} p^U (1-p)^{n-U},$$

= ${\binom{n}{\frac{n+h-X_0}{2}}} p^{\frac{n+h-X_0}{2}} (1-p)^{\frac{n-h+X_0}{2}}$

Remark 1. if $n \gg (n \text{ is big enough})$, $X_n \sim N(.,.)$ by CLT.

2.

$$E[X_n] = E[X_0] + E[W_1] + \dots + E[W_n],$$

= X₀ + n (1 × p + (-1)(1 - p)),
= X₀ + (2p - 1)n.

Leading to the following for different values of p:

if
$$p = \frac{1}{2}$$
, $E[X_n] = X_0$,
if $p > \frac{1}{2}$, $E[X_n] \xrightarrow[n \to \infty]{} +\infty$,
if $p < \frac{1}{2}$, $E[X_n] \xrightarrow[n \to \infty]{} -\infty$.

3.

$$V[X_n] = V[X_0] + V[W_1] + \dots + V[W_n], \qquad (6)$$

$$= 0 + 4np(1-p), (7)$$

$$=4np(1-p).$$
(8)

Where equation (6) is applicable because W(n), n = 1, 2, ..., are i.i.d.

Remark 2. By CLT, when $n \to \infty$,

$$\lim_{n \to \infty} F_{X_n}(x_n) = \int_{-\infty}^{x_n} \frac{\exp\left(-\frac{(x_n - (x_0 + (2p-1)n))^2}{2(4np(1-p))}\right)}{\sqrt{2\pi}\sqrt{4np(1-p)}} dx_n,$$
$$= \int_{-\infty}^{x_n} \frac{\exp\left(-\frac{(x_n - x_0)^2}{2n}\right)}{\sqrt{2\pi n}} dx_n, \qquad (for \ p = \frac{1}{2}).$$

2 Brief review on the random walk process

Recall that the random walk process is a process that starts from a point $X_0 = h_0$. At each time instant n, $X_n = X_{n-1} \pm 1$ (c.f. fig. 3 for an example).

Figure 3: An example of the random walk process, $h_0 = 4$.

3 Independent Increments

Definition 3. A Random Process is said to have independent increments if for all $n_1 < n_2 < \cdots < n_T$,

$$X_{n_1}, X_{n_2} - X_{n_1}, \dots, X_{n_T} - X_{n_{T-1}},$$

are jointly independent for all T > 1.

Example 3. The random walk process is an independent increment process.

For T = 2 and $n_1 < n_2$,

$$X_{n_1} = W_0 + W_1 + \dots + W_{n_1},$$

$$X_{n_2} = W_0 + W_1 + \dots + W_{n_1} + W_{n_1+1} + \dots + W_{n_2}.$$

Hence,

$$X_{n_2} - X_{n_1} = W_{n_1+1} + W_{n_1+2} + \dots + W_{n_2},$$

is independent of X_{n_1} , because the W_i are i.i.d.

Example 4. Consider the random walk process X_n of last lecture where the W_i , i = 1, 2, ... are *i.i.d*, $W_0 = h_0$, for $i \ge 1$

$$W_{i} = \begin{cases} 1 & \text{with probability } p = P(W_{i} = +1), \\ -1 & \text{with probability } 1 - p = P(W_{i} = -1), \end{cases}$$

and $X_n = W_0 + W_1 + \dots + W_n$.

Questions:

- 1. Find the probability $P(X_5 = a, X_7 = b)$.
- 2. Find the autocorrelation function $R_{XX}(k,l)$ of X_n .

Answers:

1. Recall from example 2 of last lecture that we can compute $P(X_n = h)$ using the binomial formula derived there. The first method to answer this question is by using Bayes' rule:

$$P(X_5 = a, X_7 = b) = P(X_5 = a) P(X_7 = b | X_5 = a),$$

= $P(X_5 = a) P(X_7 - X_5 = b - a),$
= $P(X_5 = a) P(X_2 - X_0 = b - a),$
= $P(X_5 = a) P(X_2 = b - a + X_0),$

And the second method is by using the independent increment property of the random walk process as follows:

$$P(X_5 = a, X_7 = b) = P(X_5 = a, X_7 - X_5 = b - a),$$
(9)

$$= P(X_5 = a) P(X_7 - X_5 = b - a).$$
(10)

Equation (10) follows from the independent increment property.

2. Now we can use this to find the autocorrelation function, assuming without loss of generality that l > k.

$$R_{XX}(k,l) = E[x(k)^{2}],$$

$$= E\left[(W_{0} + W_{1} + \dots + W_{k})^{2}\right],$$

$$= E\left[W_{0}^{2} + W_{1}^{2} + \dots + W_{k}^{2} + 2\left(W_{0}W_{1} + \dots + W_{k}W_{k-1}\right)\right],$$

$$= E\left[W_{0}^{2}\right] + kE\left[W_{1}^{2}\right] + 2h_{0}\left(E\left[W_{1}\right] + \dots + E\left[W_{k}\right]\right) + 2E\left[W_{1}W_{2} + \dots + W_{k-1}W_{k}\right],$$

$$= h_{0}^{2} + k + 2h_{0}(2p - 1) + 2\frac{k(k - 1)}{2}(2p - 1)^{2}.$$

For $p = \frac{1}{2}$,

$$R_{XX}(k,l) = \begin{cases} h_0^2 + k & l > k, \\ h_0^2 + l & l < k. \end{cases}$$

 $\Rightarrow R_{XX}(k,l) = h_0^2 + \min(k,l).$

Practice 1. Try to find at home $R_{XX}(k,l)$ in a different way, i.e., using

$$R_{XX}(k,l) = [(W_1 + W_2 + \dots + W_k) (W_1 + W_2 + \dots + W_l)].$$

Definition 4. A random process X(t) is stationary if it has the same nth-order CDF as X(t+T), that is, the two n-dimensional functions

$$F_X(x_1, \dots, x_n; t_1, \dots, t_n) = F_X(x_1, \dots, x_n; t_1 + T, \dots, t_n + T)$$

are identically equal for all T, for all positive integers n, and for all t_1, \ldots, t_n .

Example 5. Consider the *i.i.d.* Gaussian r.p. W_1, W_2, \ldots from last lecture.

$$W_i \sim N(0, \sigma^2) \quad \forall i \ge 1$$

Figure 4: Plot of a stationary random process. The points having the same symbol, or any group of them, have the same distribution.

Question: Is this r.p. stationary?

Answer: This r.p. is stationary because:

- 1. All of the W_i , i = 1, 2, ... have the same pdf, i.e., same mean and same variance.
- 2. Any two groups of them have the same jointly Gaussian distribution (since they are i.i.d).

Example 6. Consider the averaging process, defined as

$$X_i = \frac{W_i + W_{i-1}}{2}$$

Where W_i , i = 0, 1, 2, ... are *i.i.d* Gaussian r.v.

Question: Is this r.p. stationary?

Answer:

- 1. The X_i , i = 1, 2, ... have the same pdf since the W_i , i = 0, 1, 2, ... are i.i.d.
- 2. Recall that we got the auto-correlation function in the previous lecture:

$$R_{XX}(k,l) = \begin{cases} \frac{\sigma^2}{2} & \text{if } k = l, \\ \frac{\sigma^2}{4} & \text{if } k = l \pm 1, \\ 0 & \text{if otherwise.} \end{cases}$$

It can be seen that there is correlation between X_i and X_j if and only if the distance between them is at most 1, i.e., j = i-1, i, i+1. For instance, consider $f_{X_1,X_4}(x_1, x_4)$, since $1 \neq 3, 4, 5$, thus X_1 and X_4 are independent and

$$f_{X_1,X_4}(x_1,x_4) = f_{X_1}(x_1) f_{X_4}(x_4),$$

= $f_{X_{11},X_{14}}(x_{11},x_{14}),$
= $f_{X_{11}}(x_{11}) f_{X_{14}}(x_{14})$

Moreover, even though X_1 and X_2 are correlated we can still say

$$f_{X_1,X_2}(x_1,x_2) = f_{X_{11},X_{12}}(x_{11},x_{12}),$$

because they are both jointly Gaussian r.v. and have the same covariance matrices. Therefore, the averaging process is stationary.

This leads us to a more interesting case: the stationarity of the random walk process.

Example 7. Consider the random walk process X(n) defined as

$$X_n = \begin{cases} h_0 & n = 0, \\ h_0 + W_1 + W_2 + \dots + W_n & n \ge 1. \end{cases}$$

Where $h_0 = W_0 = X_0 = constant$ and W_i , i = 1, 2, ... are Bernoulli r.v. that can take the values ± 1 with probability p and 1 - p.

Question: Is the random walk process stationary?

Answer: By simply looking at the mean of X_m for any m,

$$E[X_m] = (2p - 1)m + X_0,$$

we see that for $p \neq 0.5$, $E[X_n]$ is a function of m. This means that the mean of each r.v. varies with m. Thus, the pdf of two different points can not be the same. For p = 0.5, although the mean is the same, the variance $V(X_n) = 4np(1-p)$ is increasing with time, hence two different points have different distributions. Therefore, the random walk process is not stationary. Interpretation can be found in Figure 5.

Definition 5. X(n) is called wide sense stationary (WSS) process, iff:

- 1. $E[X(n)] = E[X(0)], \forall n \text{ (average does not change with time).}$
- 2. $R_{XX}(k,l) = R_{XX}(k+n,l+n) = R_X(k-l)$ (the autocorrelation function depends only on the time difference).

Example 8. Is a random walk process WSS?

In general, $E(X_n) = (2p-1)n + X_0$ changes with n. So, it does not satisfy the mean condition. Also, since $R_{XX} = h_0^2 + \min(k, l)$ changes with k and l, thus, it fails the auto-correlation condition either. Therefore, the random walk process is not WSS.

Figure 5

Lemma 1. If a random process X(n) is stationary, then it also is wide sense stationary.

X(n) stationary \Rightarrow X(n) is WSS.

Lemma 2. If X(n) is Gaussian r.p., then if X(n) is wide sense stationary, it is also stationary.

X(n) is Gaussian and WSS $\Leftrightarrow X(n)$ is stationary.

Example 9. Let Θ be a R.V. uniformly distributed on $[-\pi, \pi]$ and $X(n) = \cos(n\omega + \Theta)$, where ω is a constant.

Questions:

- 1. Is X(n) WSS?
- 2. Is X(n) stationary?

Answers:

1. To check the Mean Condition:

$$E[X(n)] = \int_{-\infty}^{+\infty} f_{\Theta}(\theta) \cos(n\omega + \theta) \, d\theta,$$

= $\frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(n\omega + \theta) \, d\theta,$
= 0.

It is equal to 0 because the cosine function is symmetric between $-\pi$ and π . E[X(n)] is constant for any n, then it satisfies the mean condition.

2. To check the Auto-Correlation Condition:

$$R_{XX}(k,l) = E[X(k)X(l)],$$
(11)

$$= \frac{1}{2\pi} \int_{-\pi}^{+\pi} \cos\left(k\omega + \theta\right) \cos\left(l\omega + \theta\right) d\theta, \tag{12}$$

$$=\frac{1}{2}\cos\left(\omega\left(k-l\right)\right),\tag{13}$$

$$=R_{XX}(k-l). (14)$$

(15)

Where equation (13) can be found after some trigonometric calculations beginning by

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos \left(\alpha - \beta \right) + \cos \left(\alpha + \beta \right) \right].$$

Thus, X(n) is WSS.

3. X(n) is stationary. We will not prove it rigourously, however we will give the main idea. Consider $\omega = \pi$,

$$X(n) = \cos(n\pi + \Theta),$$

$$X(1) = \cos(\pi + \Theta),$$

$$X(2) = \cos(2\pi + \Theta) = \cos(\Theta),$$

$$X(3) = \cos(3\pi + \Theta) = \cos(\pi + \Theta),$$

$$X(4) = \cos(4\pi + \Theta) = \cos(\Theta).$$

It is clear that any X_n is uniformly distributed on [-1, 1] because the cosine is symmetric on any interval of length 2π . in particular for $\Theta \sim U[-\pi, \pi]$ and $\Theta' = \Theta + \pi \sim U[0, 2\pi]$, $\cos(\Theta) \sim U[-1, 1]$ and $\cos(\Theta') \sim U[-1, 1]$. Therefore, the X_n have same distribution and X(n) is stationary.

Generally, since $\Theta \sim U[-\pi, \pi]$ and ω is a constant. The r.v. $n\omega + \Theta$ is uniformly distributed on $[n\omega - \pi, n\omega + \pi]$ which is an interval of length $2\pi \Rightarrow \cos(n\omega + \Theta) \sim U[-1, 1]$ for all n. Therefore, all the X_n have the same distribution and X(n) is stationary.

4 Continuous Time Random Process

Definition 6. A continuous time random process X(t), is a random process defined for any $t \in \mathbb{R}$.

We can redefine, in continuous time, everything defined in discrete time.

5 Poisson process

The Poisson process is a special case of a counting process. So first, we will start by defining a counting process.

5.1 Counting process

Definition 7 (Counting process). A counting process is a continuous random process $\{N(t), t \ge 0\}$ with values that are non-negative, integer, and non-decreasing:

- 1. $N(t) \ge 0$.
- 2. N(t) is an integer.
- 3. If $s \leq t$ then $N(s) \leq N(t)$.

Example 10 (Bernoulli process). Let X_i , i = 1, ..., n be iid Bernoulli random variables with parameter p. Define the Bernoulli process $S_n = X_1 + ... + X_n$. The Bernoulli process is a discrete counting process because it satisfies the three conditions in Definition 7. Namely,

- Since $X_i \in \{0, 1\}, i = 1, ..., n$, then $X_i \ge 0$ and X_i is an integer. Therefore, $S_n = X_1 + ... + X_n$ is a non-negative integer.
- For $m \leq n$, we have $S_n S_m = X_{m+1} + \ldots + X_n \geq 0$. Hence, if $m \leq n$ then $S_m \leq S_n$.

Now, we define the Poisson process.

Definition 8 (Poisson process). The Poisson process is a counting process $\{N(t), t \ge 0\}$ that satisfies the following three properties:

- 1. N(0) = 0.
- 2. N(t) has independent incerements, i.e., for $t_0 < t_1 < \ldots < t_n$, the random variables $(N(t_1) N(t_0)), (N(t_2) N(t_1)), \ldots, (N(t_n) N(t_{n-1}))$ are independent.
- 3. The total count in any interval of length t is a Poisson random variable with parameter (or mean) λt , i.e.,

$$P(N(t) = k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}, \ k = 0, 1, 2, \dots$$

It follows from the Definition 8 that

$$\mu_N(t) = E[N(t)] = \lambda t,$$
$$V(N(t)) = \lambda t.$$

Moreover, based on the independent increments property we have

$$P(N(t_1) = i, N(t_2) = j) = P(N(t_1) = i) P(N(t_2) = j | N(t_1) = i),$$

= $P(N(t_1) = i) P(N(t_2) - N(t_1) = j - i),$
= $P(N(t_i) = i) P(N(t_2 - t_1) = j - i),$
= $\frac{(t_1\lambda)^i e^{-t_1\lambda}}{i!} \frac{((t_2 - t_1)\lambda)^{j-i} e^{-(t_2 - t_1)\lambda}}{(j - i)!}.$

5.2 Interarrival times

We think of the Poisson process N(t) as a process that counts arrivals in a time interval of length t. For example, this process can be used to count the number customers that arrive to a certain store within t seconds. These customers arrive independently at a rate of λ customers/second. Let $S_i, i = 1, 2, \ldots$, be the random variable that represents the time of the i^{th} arrival, i.e.,

$$S_i \triangleq \inf\{t \ge 0 : N(t) = i\}, \ i = 1, 2, \dots$$

The interarrival times are given by

$$X_i = S_i - S_{i-1}, \quad i = 1, 2, \dots$$

Figure 6: A realization of the Poisson random process. The X_i 's represent the interarrival times. **Theorem 1.** The first arrival time $X_1 \sim \exp(\lambda)$.

Proof.

$$P(X_1 > t) = P(N(t) = 0) = \frac{(t\lambda)^0 e^{-t\lambda}}{0!} = e^{-t\lambda}.$$

Therefore,

$$F_{X_1}(t) = P(X_1 \le t) = 1 - e^{-\lambda t}.$$

This is the CDF of an $\exp(\lambda)$ random variable.

Theorem 2. All the interarrival times, X_i , i = 1, 2, ..., are iid and have a distribution $\exp(\lambda)$.

Proof.

$$P(X_{n+1} > t | X_1 = t_1, \dots, X_n = t_n) = P(X_{n+1} > t | S_1 = s_1, \dots, S_n = s_n),$$

where $s_i = t_1 + \ldots + t_i$, for $i = 1, \ldots, n$. Therefore,

$$P(X_{n+1} > t | X_1 = t_1, \dots, X_n = t_n) = P(X_{n+1} > t | S_1 = s_1, \dots, S_n = s_n)$$

= $P(S_{n+1} > t + s_n | S_n = s_n)$
= $P(N(t + s_n) - N(s_n) = 0 | S_n = s_n)$
= $P(N(t) = 0 | S_n = s_n)$ (independent increments)
= $P(N(t) = 0)$
= $e^{-\lambda t}$
= $Pr(X_1 > t)$.

Therefore, $X_i, i = 1, 2, ...$ are iid and have a distribution $\exp(\lambda)$.

5.3 Autocovariance and stationarity of Poisson process

Assume, without loss of generality, that $t_1 < t_2$.

$$K_{NN}(t_1, t_2) = E \left[(N(t_1) - \lambda t_1) (N(t_2) - \lambda t_2) \right],$$

= $E \left[(N(t_1) - \lambda t_1) (N(t_2) - N(t_1) - \lambda t_2 + \lambda t_1 + N(t_1) - \lambda t_1) \right],$
= $\underbrace{E \left[(N(t_1) - \lambda t_1) (N(t_2) - N(t_1)) - (\lambda t_2 - \lambda t_1) \right]}_{0} + E \left[(N(t_1) - \lambda t_1)^2 \right],$
= $\lambda t_1.$

If $t_2 \leq t_1$ then $K_{NN}(t_1, t_2) = \lambda t_2$. In general, $K_{NN}(t_1, t_2) = \lambda \min(t_1, t_2)$.

Question: Is N(t) WSS?

Answer:

- 1. $E[N(t)] = \lambda t$, depends on t.
- 2. $K_{NN}(t_1, t_2) = \lambda \min(t_1, t_2)$, depends on t.

Hence N(t) is not WSS.

6 Continuous Gaussian Random Process

Definition 9. X(t) is a Gaussian random process if $X(t_1), X(t_2), \ldots, X(t_k)$ are jointly Gaussian for any k, i.e.,

$$f_{X(t_1),X(t_2),\dots,X(t_k)} = \frac{1}{(2\pi)^{\frac{1}{2}} |K_{XX}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} \left(\underline{X} - \underline{\mu}_X\right)^T K_{XX}^{-1} \left(\underline{X} - \underline{\mu}_X\right)\right).$$

Example 11. Let X(t) be a Gaussian random process with $\mu_X(t) = 3t$ and $K_{XX} = 9e^{-2|t_1-t_2|}$.

Question: Find the pdf of X(3) and Y = X(1) + X(2).

Answer: We know that X(3) is a Gaussian r.v. (by definition of X(t)) and Y is also a Gaussian r.v. being a linear combination of two Gaussian r.v. Therefore, it is enough to find the mean and the variance of those variables in order to find their PDFs.

1. X(3): $\mu_X(3) = 9$ and $V[X(3)] = 9e^{-|3-3|} = 9$. Thus, $f_{X(3)}(x) = \frac{1}{3\sqrt{2\pi}}e^{-\frac{1}{2}\frac{(x-9)^2}{9}}.$

2. *Y*:

$$\begin{split} E\left[y\right] &= E\left[X(1)\right] + E\left[x(2)\right] = 3 + 6 = 9,\\ V\left[Y\right] &= V\left(X(1)\right) + V\left[X(2)\right] + 2cov\left(X(1), X(2)\right),\\ cov\left(X(1), X(2)\right) &= 9e^{-2|2-1|} = 9e^{-2},\\ V\left[Y\right] &= 9 + 9 + 9e^{-2} = 18 + 18e^{-2}. \end{split}$$

Another way to find the variance is the following:

$$\begin{split} V\left[Y\right] &= E\left[\left(X(1) + X(2)\right)^2\right] - \left(E\left[X(1)\right] + E\left[X(2)\right]\right)^2, \\ &= E\left[X(1)^2\right] + E\left[X(2)^2\right] + 2E\left[X(1)X(2)\right] - E^2\left[X(1)\right] - E^2\left[X(2)\right] - 2E\left[X(1)X(2)\right], \\ &= V\left(X(1)\right) + V\left(X(2)\right) + 2cov\left(X(1), X(2)\right), \\ &= 9 + 9 + 2 \times 9e^{-2}, \\ &= 18 + 18e^{-2}. \end{split}$$