ECE541: Stochastic Signals and Systems

Chapter 7: Convergence of Random Sequences Dr. Salim El Rouayheb

Scribe: Abhay Ashutosh Donel, Qinbo Zhang, Peiwen Tian, Pengzhe Wang, Lu Liu

1 Random sequence

Definition 1. An infinite sequence $X_{n}, n=1,2, \ldots$, of random variables is called a random sequence.

2 Convergence of a random sequence

Example 1. Consider the sequence of real numbers

$$
X_{n}=\frac{n}{n+1}, n=0,1,2, \ldots
$$

This sequence converges to the limit $l=1$. We write

$$
\lim _{n \rightarrow \infty} X_{n}=l=1 .
$$

This means that in any neighbourhood around 1 we can trap the sequence, i.e.,

$$
\forall \epsilon>0, \quad \exists n_{0}(\epsilon) \quad \text { s.t. } \quad \text { for } n \geq n_{0}(\epsilon) \quad\left|X_{n}-l\right| \leq \epsilon .
$$

We can pick ϵ to be very small and make sure that the sequence will be trapped after reaching $n_{0}(\epsilon)$. Therefore as ϵ decreases $n_{0}(\epsilon)$ will increase. For example, in the considered sequence:

$$
\begin{array}{ll}
\epsilon=\frac{1}{2}, & n_{0}(\epsilon)=2, \\
\epsilon=\frac{1}{1000}, & n_{0}(\epsilon)=1001 .
\end{array}
$$

2.1 Almost sure convergence

Definition 2. A random sequence $X_{n}, n=0,1,2,3, \ldots$, converges almost surely, or with probability one, to the random variable X iff

$$
P\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1
$$

We write

$$
X_{n} \xrightarrow{\text { a.s. }} X .
$$

Example 2. Let ω be a random variable that is uniformly distributed on $[0,1]$. Define the random sequence X_{n} as $X_{n}=\omega^{n}$.

$$
\text { So } X_{0}=1, X_{1}=\omega, X_{2}=\omega^{2}, \quad X_{3}=\omega^{3}, \ldots
$$

Let us take specific values of ω. For instance, if $\omega=\frac{1}{2}$

$$
X_{0}=1, X_{1}=\frac{1}{2}, X_{2}=\frac{1}{4}, X_{3}=\frac{1}{8}, \ldots
$$

We can think of it as an urn containing sequences, and at each time we draw a value of ω, we get a sequence of fixed numbers. In the example of tossing a coin, the output will be either heads or tails. Whereas, in this case the output of the experiment is a random sequence, i.e., each outcome is a sequence of infinite numbers.

Question: Does this sequence of random variables converge?

Answer: This sequence converges to

$$
X= \begin{cases}0 & \text { if } \omega \neq 1 \text { with probability } 1=P(\omega \neq 1) \\ 1 & \text { if } \omega=1 \text { with probability } 0=P(\omega=1)\end{cases}
$$

Since the pdf is continuous, the probability $P(\omega=a)=0$ for any constant a. Notice that the convergence of the sequence to 1 is possible but happens with probability 0 .

Therefore, we say that X_{n} converges almost surely to 0 , i.e., $X_{n} \xrightarrow{\text { a.s. }} 0$.
Example 3. Consider a random variable $\omega \in \Omega=[0,1]$ uniformly distributed on $[a, b], 0 \leq a \leq$ $b \leq 1$, and the sequence $X_{n}(\omega), n=1,2, \ldots$, defined by:

$$
X_{n}(\omega)= \begin{cases}1 & \text { if } 0 \leq \omega<\frac{n+1}{2 n} \\ 0 \quad \text { otherwise }\end{cases}
$$

Also, define the random variable X defined by:

$$
X(\omega)= \begin{cases}1 & \text { if } 0 \leq \omega<\frac{1}{2} \\ 0 \quad \text { otherwise }\end{cases}
$$

Show that $X_{n} \xrightarrow{\text { a.s. }} X$.

Solution: Define the set A as follows:

$$
A=\left\{\omega \in \Omega: \lim _{n \rightarrow+\infty} X_{n}(\omega)=X(\omega)\right\}
$$

We need to prove that $P(A)=1$. Let's first find A. Note that $\frac{n+1}{2 n}>\frac{1}{2}$, so for any $\omega \in\left[0, \frac{1}{2}[\right.$, we have

$$
X_{n}(\omega)=X(\omega)=1
$$

Therefore, we conclude that $\left[0,0.5\left[\subset A\right.\right.$. Now, if $\omega>\frac{1}{2}$, then

$$
X(\omega)=0 .
$$

Also, since $2 \omega-1>0$, we can write

$$
X_{n}(\omega)=0, \quad \forall n>\frac{1}{2 \omega-1} .
$$

Therefore,

$$
\lim _{n \rightarrow+\infty} X_{n}(\omega)=X(\omega)=0, \quad \forall \omega>\frac{1}{2}
$$

We conclude $] 0.5,1] \subset \Omega$. You can check that $\omega=0.5 \notin A$, since

$$
X_{n}(0.5)=1, \quad \forall n,
$$

while $X(0.5)=0$. We conclude

$$
A=\left[0, \frac{1}{2}[\cup] \frac{1}{2}, 1\right]=\Omega-\left\{\frac{1}{2}\right\} .
$$

Since $P(A)=1$, we conclude $X_{n} \xrightarrow{\text { a.s. }} X$.
Theorem 1. Consider the sequence $X_{1}, X_{2}, X_{3}, \ldots$ For any $\epsilon>0$, define the set of events

$$
A_{m}=\left\{\left|X_{n}-X\right|<\epsilon, \forall n \geq m\right\} .
$$

Then $X_{n} \xrightarrow{\text { a.s. }} X$ if and only if for any $\epsilon>0$, we have

$$
\lim _{m \rightarrow+\infty} P\left(A_{m}\right)=1
$$

Example 4. Let $X_{1}, X_{2}, X_{3}, \ldots$ be independent random variables, where $X_{n} \sim \operatorname{Bernoulli}\left(\frac{1}{n}\right)$ for $n=2,3, \ldots$. The goal here is to check whether $X_{n} \xrightarrow{\text { a.s. }} 0$.

1. Check that $\sum_{n=1}^{+\infty} P\left(\left|X_{n}\right|>\epsilon\right)=+\infty$.
2. Show that the sequence X_{1}, X_{2}, \ldots does not converge to 0 almost surely using Theorem 1.

Solution:

1. We first note that for $0<\epsilon<1$, we have

$$
\sum_{n=1}^{+\infty} P\left(\left|X_{n}\right|>\epsilon\right)=\sum_{n=1}^{+\infty} P\left(\left|X_{n}\right|>\epsilon\right)=\sum_{n=1}^{+\infty} \frac{1}{n}=+\infty
$$

2. To use Theorem 1, we define

$$
A_{m}=\left\{\left|X_{n}\right|<\epsilon, \forall n \geq m\right\} .
$$

Note that for $0<\epsilon<1$, we have

$$
A_{m}=\left\{X_{n}=0, \forall n \geq m\right\} .
$$

According to Theorem 1, it suffices to show that

$$
\lim _{m \rightarrow+\infty} P\left(A_{m}\right)<1
$$

We can in fact show that $\lim _{\rightarrow+\infty} P\left(A_{m}\right)=0$. To show this, we will prove $P\left(A_{m}\right)=0$, for every $m \geq 2$. For $0<\epsilon<1$, we have

$$
\begin{aligned}
P\left(A_{m}\right) & =P\left(\left\{X_{n}=0, \forall n \geq m\right\}\right) \\
& \leq P\left(\left\{X_{n}=0, \forall n=m, m+1, \ldots, N\right\}\right) \quad \text { (for every positive integer } N \geq m \text {) } \\
& =P\left(X_{m}=0\right) P\left(X_{m+1}=0\right) \ldots P\left(X_{N}=0\right) \text { (since the } X_{i}^{\prime} \text { s are independent) } \\
& =\frac{m-1}{m} \cdot \frac{m}{m+1} \ldots \frac{N-1}{N} \\
& =\frac{m-1}{N} .
\end{aligned}
$$

Thus, by choosing N large enough, we can show that $P\left(A_{m}\right)$ is less than any positive number. Therefore, $P\left(A_{m}\right)=0$, for all $m \geq 2$. We conclude that $\lim _{m \rightarrow+\infty} P\left(A_{m}\right)=0$. Thus, according to Theorem 1, the sequence X_{1}, X_{2}, \ldots does not converge to 0 almost surely.

Theorem 2. Strong law of large numbers
Let $X_{1}, X_{2}, X_{3}, \ldots, X_{i}$ be iid random variables. $E\left[X_{i}\right]=\mu, \forall i$. Let

$$
S_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n} .
$$

Then

$$
P\left[\lim _{n \rightarrow \infty}\left|S_{n}-\mu\right| \geq \epsilon\right]=0
$$

Using the language of this chapter:

$$
S_{n} \xrightarrow{\text { a.s. }} \mu .
$$

2.2 Convergence in probability

Definition 3. A random sequence X_{n} converges to the random variable X in probability if

$$
\forall \epsilon>0 \quad \lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\left|X_{n}-X\right| \geq \epsilon\right\}=0
$$

We write :

$$
X_{n} \xrightarrow{p} X .
$$

Example 5. Consider a random variable ω uniformly distributed on $[0,1]$ and the sequence X_{n} given in Figure ??. Notice that only X_{2} or X_{3} can be equal to 1 for the same value of ω. Similarly, only one of X_{4}, X_{5}, X_{6} and X_{7} can be equal to 1 for the same value of ω and so on and so forth.

Question: Does this sequence converge?

$\begin{array}{ll} \frac{3}{3} & 1 \\ 0.5 \\ 0 \end{array}$									
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

Figure 1: Plot of the distribution of $X_{n}(\omega)$

Answer: Intuitively, the sequence will converge to 0 . Let us take some examples to see how the sequence behave.

$$
\begin{aligned}
& \text { for } \omega=0 \text { : } \quad \underset{n=1}{1} \underset{n=2}{10}{\underset{n}{n=3}}_{1000}^{10000000} \underset{n=4}{10} \cdots \\
& \text { for } \omega=\frac{1}{3} \text { : }{\underset{n=1}{1}{\underset{n}{n=2}}_{10}^{\underbrace{0}_{n=3}} \underbrace{0100}_{n=4} \underbrace{00100000}_{n} \cdots \cdot}^{n}
\end{aligned}
$$

From a calculus point of view, these sequences never converge to zero because there is always a "jump" showing up no matter how many zeros are preceding (Fig. ??); for any $\omega: X_{n}(\omega)$ does not converge in the "calculus" sense. Which means also that X_{n} does not converge to zero almost surely (a.s.).

Figure 2: Plot of the sequence for $\omega=0$

This sequence converges in probability since

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-0\right| \geq 0\right)=0 \quad \forall \epsilon>0
$$

Remark 1. The observed sequence may not converge in "calculus" sense because of the intermittent "jumps"; however the frequency of those "jumps" goes to zero when n goes to infinity.

Example 6. Consider a random variable ω uniformly distributed over $[0,1]$, and the sequence $X_{n}(\omega)$ defined as:

$$
X_{n}(\omega)= \begin{cases}1 & \text { for } \omega \leq \frac{1}{n} \\ 0 & \text { otherwise }\end{cases}
$$

Question: Does this sequence converge a.s.? in probability?

Solution:

1. First, we will use Theorem 1 to show that the sequence does not converge a.s.. Let

$$
A_{m}=\left\{\left|X_{n}\right|<\epsilon, \forall n \geq m\right\} .
$$

Note that for $0<\epsilon<1$, we have

$$
A_{m}=\left\{X_{n}=0, \forall n \geq m\right\} .
$$

$$
\begin{aligned}
P\left(A_{m}\right) & =P\left(\left\{X_{n}=0, \forall n \geq m\right\}\right) \\
& \left.\leq P\left(\left\{X_{n}=0, \forall n=m, m+1, \ldots, N\right\}\right) \text { (for every positive integer } N \geq m\right) \\
& =P\left(X_{m}=0\right) P\left(X_{m+1}=0\right) \ldots P\left(X_{N}=0\right) \text { (since the } X_{i}^{\prime} s \text { are independent) } \\
& =P\left(w>\frac{1}{m}\right) P\left(w>\frac{1}{m+1}\right) \ldots P\left(w>\frac{1}{N}\right) \\
& =\frac{m-1}{m} \cdot \frac{m}{m+1} \ldots \frac{N-1}{N} \\
& =\frac{m-1}{N} .
\end{aligned}
$$

We conclude that $\lim _{m \rightarrow+\infty} P\left(A_{m}\right)=0$. Thus, according to Theorem 1, the sequence X_{1}, X_{2}, \ldots does not converge to 0 almost surely.
2. Now we check for convergence in probability

$$
\operatorname{Pr}\left(X_{n} \geq \epsilon\right)=\operatorname{Pr}\left(X_{n}=1\right)=\operatorname{Pr}\left(w \leq \frac{1}{n}\right)=\frac{1}{n} .
$$

Hence,

$$
\lim _{n \rightarrow+\infty} \operatorname{Pr}\left(X_{n} \geq \epsilon\right)=\lim _{n \rightarrow+\infty} \frac{1}{n}=0
$$

Therefore, $X_{n} \xrightarrow{p .} 0$.
Theorem 3. Weak law of large numbers
Let $X_{1}, X_{2}, X_{3}, \ldots, X_{i}$ be iid random variables. $E\left[X_{i}\right]=\mu, \forall i$. Let

$$
S_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n} .
$$

Then

$$
P\left[\left|S_{n}-\mu\right| \geq \epsilon\right] \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Using the language of this chapter:

$$
S_{n} \xrightarrow{p .} \mu .
$$

2.3 Convergence in mean square

Definition 4. A random sequence X_{n} converges to a random variable X in mean square sense if

$$
\lim _{n \rightarrow \infty} E\left[\left|X-X_{n}\right|^{2}\right]=0
$$

We write:

$$
X_{n} \xrightarrow{\text { m.s. }} X .
$$

Remark 2. In mean square convergence, not only the frequency of the "jumps" goes to zero when n goes to infinity; but also the "energy" in the jump should go to zero.

Example 6. (Revisited) Does X_{n} converge in m.s.?

Answer:

$$
\begin{gathered}
E\left[\left|X_{n}-0\right|^{2}\right]=1 \cdot P\left(w \leq \frac{1}{n}\right)+0 \cdot P\left(w>\frac{1}{n}\right)=\frac{1}{n} . \\
\lim _{n \rightarrow \infty} E\left[\left|X_{n}-0\right|^{2}\right]=\lim _{n \rightarrow \infty} \frac{1}{n}=0 .
\end{gathered}
$$

Therefore, $X_{n} \xrightarrow{\text { m.s. }} 0$.
In the next example, we replace 1 by \sqrt{n} in Example 5 .
Example 7. Consider a random variable ω uniformly distributed over $[0,1]$, and the sequence $X_{n}(\omega)$ defined as:

$$
X_{n}(\omega)=\left\{\begin{array}{cc}
\sqrt{n} & \text { for } \omega \leq \frac{1}{n} \\
0 & \text { otherwise }
\end{array}\right.
$$

Note that $P\left(X_{n}=a_{n}\right)=\frac{1}{n}$ and $P\left(X_{n}=0\right)=1-\frac{1}{n}$.

Question: Does this sequence converge a.s.? in probability? in m.s.?

Answer:

1. Almost sure convergence: X_{n} does not converge a.s. for the same reasons as Example 5 .
2. Convergence in probability: $X_{n} \xrightarrow{p .} 0$ for the same reasons as Example 5. Namely,

$$
\lim _{n \rightarrow+\infty} \operatorname{Pr}\left(X_{n} \geq \epsilon\right)=\lim _{n \rightarrow+\infty} \operatorname{Pr}\left(X_{n}=\sqrt{n}\right)=\lim _{n \rightarrow+\infty} \frac{1}{n}=0
$$

(Flash Forward: almost sure convergence \Rightarrow convergence in probability, but convergence in probability \nRightarrow almost sure convergence.)
3. Mean Square Convergence:

$$
E\left[\left|X_{n}-0\right|^{2}\right]=n \cdot P\left(w \leq \frac{1}{n}\right)+0 \cdot P\left(w>\frac{1}{n}\right)=n \cdot \frac{1}{n}=1 .
$$

Hence,

$$
\lim _{n \rightarrow \infty} E\left[\left|X_{n}-0\right|^{2}\right]=1 \Rightarrow X_{n} \text { does not converge in m.s. to } 0 .
$$

2.4 Convergence in distribution

Definition 5. (First attempt) A random sequence X_{n} converges to X in distribution if when n goes to infinity, the values of the sequence are distributed according to a known distribution. We say

$$
X_{n} \xrightarrow{d .} X .
$$

Example 8. Consider the sequence X_{n} defined as:

$$
X_{n}=\left\{\begin{array}{cc}
X_{i} \sim B\left(\frac{1}{2}\right) & \text { for } i=1 \\
\left(X_{i-1}+1\right) & \bmod 2=X \oplus 1
\end{array} \text { for } i>1 .\right.
$$

Question: In which sense, if any, does this sequence converge?

Answer: This sequence has two outcomes depending on the value of X_{1} :

$$
\begin{array}{ll}
X_{1}=1, & X_{n}: 101010101010 \ldots \\
X_{1}=0, & X_{n}: 010101010101 \ldots
\end{array}
$$

1. Almost sure convergence: X_{n} does not converge almost surely because the probability of every jump is always equal to $\frac{1}{2}$.
2. Convergence in probability: X_{n} does not converge in probability because the frequency of the jumps is constant equal to $\frac{1}{2}$.
3. Convergence in mean square: X_{n} does not converge to $\frac{1}{2}$ in mean square sense because

$$
\begin{aligned}
\lim _{n \rightarrow \infty} E\left[\left|X_{n}-\frac{1}{2}\right|^{2}\right] & =E\left[X_{n}^{2}-X_{n}+\frac{1}{4}\right] \\
& =E\left[X_{n}^{2}\right]-E\left[X_{n}\right]+\frac{1}{4} \\
& =1^{2} \frac{1}{2}+0^{2} \frac{1}{2}-0+\frac{1}{4} \\
& =\frac{1}{2}
\end{aligned}
$$

4. Convergence in distribution: At infinity, since we do not know the value of X_{1}, each value of X_{n} can be either 0 or 1 with probability $\frac{1}{2}$. Hence, any number X_{n} is a random variable $\sim B\left(\frac{1}{2}\right)$. We say, X_{n} converges in distribution to Bernoulli $\left(\frac{1}{2}\right)$ and we denote it by:

$$
X_{n} \xrightarrow{d} \operatorname{Ber}\left(\frac{1}{2}\right) .
$$

Example 9. (Central Limit Theorem)Consider the zero-mean, unit-variance, independent random variables $X_{1}, X_{2}, \ldots, X_{n}$ and define the sequence S_{n} as follows:

$$
S_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{\sqrt{n}} .
$$

The CLT states that S_{n} converges in distribution to $N(0,1)$, i.e.,

$$
S_{n} \xrightarrow{d} N(0,1) .
$$

Theorem 4.

$\left.\begin{array}{l}\text { Almost sure convergence } \\ \text { Convergence in mean square }\end{array}\right\} \Rightarrow$ Convergence in probability \Rightarrow convergence in distribution.
Note:

- There is no relation between Almost Sure and Mean Square Convergence.
- The relation is unidirectional, i.e., convergence in distribution does not imply convergence in probability neither almost sure convergence nor mean square convergence.

3 Convergence of a random sequence

Example 1: Let the random variable U be uniformly distributed on $[0,1]$. Consider the sequence defined as:

$$
X(n)=\frac{(-1)^{n} U}{n} .
$$

Question: Does this sequence converge? if yes, in what sense(s)?

Answer:

1. Almost sure convergence: Suppose

$$
U=a
$$

The sequence becomes

$$
\begin{aligned}
X_{1} & =-a, \\
X_{2} & =\frac{a}{2}, \\
X_{3} & =-\frac{a}{3}, \\
X_{4} & =\frac{a}{4},
\end{aligned}
$$

In fact, for any $a \in[0,1]$

$$
\lim _{n \rightarrow \infty} X_{n}=0
$$

therefore, $X_{n} \xrightarrow{\text { a.s. }} 0$.
Remark 3. $X_{n} \xrightarrow{\text { a.s. }} 0$ because, by definition, a random sequence converges almost surely to the random variable X if the sequence of functions X_{n} converges for all values of U except for a set of values that has a probability zero.
2. Convergence in probability: Does $X_{n} \xrightarrow{p .} 0$? Recall from theorem 13 of lecture 17 :

$$
\left.\begin{array}{l}
\text { a.s. } \\
\text { m.s. }
\end{array}\right\} \Rightarrow \text { p. } \Rightarrow \text { d. }
$$

which means that by proving almost-sure convergence, we get directly the convergence in probability and in distribution. However, for completeness we will formally prove that X_{n} converges to 0 in probability. To do so, we have to prove that

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty} P(|X-0| \geq \epsilon)=0 & \forall \epsilon>0, \\
\Rightarrow \lim _{n \rightarrow \infty} P\left(\left|X_{n}\right| \geq \epsilon\right)=0 & \forall \epsilon>0 .
\end{array}
$$

By definition,

$$
\left|X_{n}\right|=\frac{U}{n} \leq \frac{1}{n}
$$

Thus,

$$
\begin{align*}
\lim _{n \rightarrow \infty} P\left(\left|X_{n}\right| \geq \epsilon\right) & =\lim _{n \rightarrow \infty} P\left(\frac{U}{n} \geq \epsilon\right) \tag{1}\\
& =\lim _{n \rightarrow \infty} P(U \geq n \epsilon) \tag{2}\\
& =0 \tag{3}
\end{align*}
$$

Where equation 3 follows from the fact that finding $U \in[0,1]$.
3. Convergence in mean square sense: Does X_{n} converge to 0 in the mean square sense?

In order to answer this question, we need to prove that

$$
\lim _{n \rightarrow \infty} E\left[\left|X_{n}-0\right|^{2}\right]=0
$$

We know that,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} E\left[\left|X_{n}-0\right|^{2}\right] & =\lim _{n \rightarrow \infty} E\left[X_{n}^{2}\right] \\
& =\lim _{n \rightarrow \infty} E\left[\frac{U^{2}}{n^{2}}\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{2}} E\left[U^{2}\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \int_{0}^{1} u^{2} d u \\
& \left.=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \frac{u^{3}}{3}\right]_{0}^{1} \\
& =\lim _{n \rightarrow \infty} \frac{1}{3 n^{2}} \\
& =0
\end{aligned}
$$

Hence, $X_{n} \xrightarrow{\text { m.s. }} 0$.
4. Convergence in distribution: Does X_{n} converge to 0 in distribution? The formal definition of convergence in distribution is the following:

$$
X_{n} \xrightarrow{d .} X \Rightarrow \lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x) .
$$

Hereafter, we want to prove that $X_{n} \xrightarrow{d .} 0$.

Recall that the limit r.v. X is the constant 0 and therefore has the following CDF :
Since $X_{n}=\frac{(-1)^{n} U}{n}$, the distribution of the X_{i} can be derived as following:

Figure 3: Plot of the CDF of 0

Remark 4. At 0 the CDF of X_{n} will be flip-flopping between 0 (if n is even) and 1 (if n is odd) (c.f. figure 2) which implies that there is a discontinuity at that point. Therefore, we say that X_{n} converges in distribution to a CDF $F_{X}(x)$ except at points where $F_{X}(x)$ is not continuous.
Definition 6. X_{n} converges to X in distribution, i.e., $X[n] \xrightarrow{\text { d. }} X$ iff

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x) \quad \text { except at points where } F_{X}(x) \text { is not continuous. }
$$

Remark 5. It is clear here that

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{x}(x) \quad \text { except for } x=0 .
$$

Therefore, X_{n} converges to X in distribution. We could have deduced this directly from convergence in mean square sense or almost sure convergence.
Theorem 5. a) If $X_{n} \xrightarrow{\text { a.s. }} X \Rightarrow X_{n} \xrightarrow{\text { p. }} X$.
b) If $X_{n} \xrightarrow{\text { m.s. }} X \Rightarrow X_{n} \xrightarrow{p .} X$.
c) If $X_{n} \xrightarrow{p .} X \Rightarrow X_{n} \xrightarrow{\text { d. }} X$.
d) If $P\left\{\left|X_{n}\right| \leq Y\right\}=1$ for all n for a random variable Y with $E\left[Y^{2}\right]<\infty$, then

$$
X_{n} \xrightarrow{p .} X \Rightarrow X_{n} \xrightarrow{\text { m.s. }} X .
$$

Proof. The proof is omitted.
Remark 6. Convergence in probability allows the sequence, at ∞, to deviate from the mean for any value with a small probability; whereas, convergence in mean square limits the amplitude of this deviation when $n \rightarrow \infty$. (We can think of it as energy \Rightarrow we can not allow a big deviation from the mean).

Figure 4: Plot of the CDF of U, X_{1}, X_{2} and X_{3}

4 Back to real analysis

Definition 7. A sequence $\left(x_{n}\right)_{n \geq 1}$ is Cauchy if for every ϵ, there exists a large number N s.t.

$$
\forall m, n>N,\left|x_{m}-x_{n}\right|<\epsilon \quad \Leftrightarrow \quad \lim _{n, m \rightarrow \infty}\left|x_{m}-x_{n}\right|=0 .
$$

Claim 1. Every Cauchy sequence is convergent.
Counter example 1. Consider the sequence $X_{n} \in \mathbb{Q}$ defined as $x_{0}=1, x_{n+1}=\frac{x_{n}+\frac{2}{x_{n}}}{2}$. The limit of this sequence is given by:

$$
\begin{aligned}
l & =\frac{l+\frac{2}{l}}{2}, \\
2 l^{2} & =l^{2}+2, \\
l & = \pm \sqrt{2} \notin \mathbb{Q} .
\end{aligned}
$$

This implies that the sequence does not converge in \mathbb{Q}.

Counter example 2. Consider the sequence $x_{n}=1 / n$ in $(0,1)$. Obviously it does not converge in $(0,1)$ since the limit $l=1 \notin(0,1)$.
Definition 8. A space where every sequence converges is called a complete space.
Theorem 6. \mathbb{R} is a complete space.
Proof. The proof is omitted.
Theorem 7. Cauchy criteria for convergence of a random sequence.
a) $X_{n} \xrightarrow{\text { a.s. }} X \Longleftrightarrow P\left[\lim _{m, n \rightarrow \infty}\left|x_{m}-x_{n}\right|=0\right]=1$.
b) $X_{n} \xrightarrow{\text { m.s. }} X \Longleftrightarrow \lim _{m, n \rightarrow \infty} E\left[\left|x_{m}-x_{n}\right|^{2}\right]=0$.
c) $X_{n} \xrightarrow{p .} X \Longleftrightarrow \lim _{m, n \rightarrow \infty} P\left[\left|x_{m}-x_{n}\right| \geq \varepsilon\right]=0 \quad \forall \epsilon$.

Proof. The proofs are omitted.
Example 10. Consider the sequence of example 11 from last lecture,

$$
X_{n}=\left\{\begin{array}{cc}
X_{i} \sim B\left(\frac{1}{2}\right) & \text { for } i=1 \\
\left(X_{i-1}+1\right) & \bmod 2=X \oplus 1
\end{array} \text { for } i>1 .\right.
$$

Goal: Our goal is to prove that this sequence does not converge in mean square using Cauchy criteria.

This sequence has two outcomes depending on the value of X_{1} :

$$
\begin{array}{ll}
X_{1}=1, & X_{n}: 101010101010 \ldots \\
X_{1}=0, & X_{n}: 010101010101 \ldots
\end{array}
$$

Therefore,

$$
\begin{aligned}
E\left[\left|X_{n}-X_{m}\right|^{2}\right] & =E\left[X_{n}^{2}\right]+E\left[X_{m}^{2}\right]-2 E\left[X_{m} X_{n}\right] \\
& =\frac{1}{2}+\frac{1}{2}-2 E\left[X_{m} X_{n}\right]
\end{aligned}
$$

Consider, without loss of generality, that $m>n$

$$
E\left[X_{n} X_{m}\right]=\left\{\begin{array}{cl}
E\left[X_{n} X_{m}\right]=0 & \text { if } m-n \text { is odd } \\
E\left[X_{n}^{2}\right]=\frac{1}{2} & \text { if } m-n \text { is even. }
\end{array}\right.
$$

Hence,

$$
\lim _{n, m \rightarrow \infty} E\left[\left|X_{n}-X_{m}\right|^{2}\right]= \begin{cases}1 & \text { if } m-n \text { is odd } \\ 0 & \text { if } m-n \text { is even }\end{cases}
$$

which implies that X_{n} does not converge in mean square by theorem $7 \sqrt[b]{ }$).

Lemma 1. Let X_{n} be a random sequence with $E\left[X_{n}^{2}\right]<\infty \forall n$.

$$
X_{n} \xrightarrow{\text { m.s. }} X \quad \text { iff } \lim _{m, n \rightarrow \infty} E\left[X_{m} X_{n}\right] \text { exists and is finite. }
$$

Theorem 8. Central limit theorem
Let $X_{1}, X_{2}, X_{3}, \ldots, X_{i}$ be iid random variables. $E\left[X_{i}\right]=0$, $\forall i$. Let

$$
Z_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{\sqrt{n}} .
$$

Then

$$
P\left[Z_{n} \leq z\right]=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z
$$

Using the language of this chapter:

$$
Z_{n} \xrightarrow{\text { d. }} N(0,1) .
$$

