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1 Random sequence

Definition 1. An infinite sequence Xn, n = 1, 2, . . . , of random variables is called a random
sequence.

2 Convergence of a random sequence

Example 1. Consider the sequence of real numbers

Xn =
n

n+ 1
, n = 0, 1, 2, . . .

This sequence converges to the limit l = 1. We write

lim
n→∞

Xn = l = 1.

This means that in any neighbourhood around 1 we can trap the sequence, i.e.,

∀ε > 0, ∃ n0(ε) s.t. for n ≥ n0(ε) |Xn − l| ≤ ε.

We can pick ε to be very small and make sure that the sequence will be trapped after reaching n0(ε).
Therefore as ε decreases n0(ε) will increase. For example, in the considered sequence:

ε =
1

2
, n0(ε) = 2,

ε =
1

1000
, n0(ε) = 1001.

2.1 Almost sure convergence

Definition 2. A random sequence Xn, n = 0, 1, 2, 3, . . . , converges almost surely, or with proba-
bility one, to the random variable X iff

P ( lim
n→∞

Xn = X) = 1.

We write
Xn

a.s.−−→ X.
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Example 2. Let ω be a random variable that is uniformly distributed on [0, 1]. Define the random
sequence Xn as Xn = ωn.

So X0 = 1, X1 = ω, X2 = ω2, X3 = ω3, . . .

Let us take specific values of ω. For instance, if ω = 1
2

X0 = 1, X1 =
1

2
, X2 =

1

4
, X3 =

1

8
, . . .

We can think of it as an urn containing sequences, and at each time we draw a value of ω, we get
a sequence of fixed numbers. In the example of tossing a coin, the output will be either heads or
tails. Whereas, in this case the output of the experiment is a random sequence, i.e., each outcome
is a sequence of infinite numbers.

Question: Does this sequence of random variables converge?

Answer: This sequence converges to

X =

{
0 if ω 6= 1 with probability 1 = P (ω 6= 1)

1 if ω = 1 with probability 0 = P (ω = 1)

Since the pdf is continuous, the probability P (ω = a) = 0 for any constant a. Notice that the
convergence of the sequence to 1 is possible but happens with probability 0.

Therefore, we say that Xn converges almost surely to 0, i.e., Xn
a.s.−−→ 0.

Example 3. Consider a random variable ω ∈ Ω = [0, 1] uniformly distributed on [a, b], 0 ≤ a ≤
b ≤ 1, and the sequence Xn(ω), n = 1, 2, . . ., defined by:

Xn(ω) =

{
1 if 0 ≤ ω < n+1

2n ,

0 otherwise.

Also, define the random variable X defined by:

X(ω) =

{
1 if 0 ≤ ω < 1

2 ,

0 otherwise.

Show that Xn
a.s.−−→ X.

Solution: Define the set A as follows:

A = {ω ∈ Ω : lim
n→+∞

Xn(ω) = X(ω)}.

We need to prove that P (A) = 1. Let’s first find A. Note that n+1
2n > 1

2 , so for any ω ∈ [0, 12 [, we
have

Xn(ω) = X(ω) = 1.
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Therefore, we conclude that [0, 0.5[⊂ A. Now, if ω > 1
2 , then

X(ω) = 0.

Also, since 2ω − 1 > 0, we can write

Xn(ω) = 0, ∀n > 1

2ω − 1
.

Therefore,

lim
n→+∞

Xn(ω) = X(ω) = 0, ∀ω > 1

2
.

We conclude ]0.5, 1] ⊂ Ω. You can check that ω = 0.5 /∈ A, since

Xn(0.5) = 1, ∀n,

while X(0.5) = 0. We conclude

A =

[
0,

1

2

[
∪
]

1

2
, 1

]
= Ω−

{
1

2

}
.

Since P (A) = 1, we conclude Xn
a.s.−−→ X.

Theorem 1. Consider the sequence X1, X2, X3, . . .. For any ε > 0, define the set of events

Am = {|Xn −X| < ε, ∀n ≥ m}.

Then Xn
a.s.−−→ X if and only if for any ε > 0, we have

lim
m→+∞

P (Am) = 1.

Example 4. Let X1, X2, X3, . . . be independent random variables, where Xn ∼ Bernoulli
(
1
n

)
for

n = 2, 3, . . .. The goal here is to check whether Xn
a.s.−−→ 0.

1. Check that
∑+∞

n=1 P (|Xn| > ε) = +∞.

2. Show that the sequence X1, X2, . . . does not converge to 0 almost surely using Theorem 1.

Solution:

1. We first note that for 0 < ε < 1, we have

+∞∑
n=1

P (|Xn| > ε) =

+∞∑
n=1

P (|Xn| > ε) =

+∞∑
n=1

1

n
= +∞.

2. To use Theorem 1, we define

Am = {|Xn| < ε, ∀n ≥ m}.
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Note that for 0 < ε < 1, we have

Am = {Xn = 0, ∀n ≥ m}.

According to Theorem 1, it suffices to show that

lim
m→+∞

P (Am) < 1.

We can in fact show that lim→+∞ P (Am) = 0. To show this, we will prove P (Am) = 0, for
every m ≥ 2. For 0 < ε < 1, we have

P (Am) = P ({Xn = 0, ∀n ≥ m})
≤ P ({Xn = 0, ∀n = m,m+ 1, . . . , N}) (for every positive integer N ≥ m)

= P (Xm = 0)P (Xm+1 = 0) . . . P (XN = 0) (since the X ′is are independent)

=
m− 1

m
· m

m+ 1
. . .

N − 1

N

=
m− 1

N
.

Thus, by choosing N large enough, we can show that P (Am) is less than any positive number.
Therefore, P (Am) = 0, for all m ≥ 2. We conclude that limm→+∞ P (Am) = 0. Thus,
according to Theorem 1, the sequence X1, X2, . . . does not converge to 0 almost surely.

Theorem 2. Strong law of large numbers

Let X1, X2, X3, . . . , Xi be iid random variables. E [Xi] = µ, ∀i. Let

Sn =
X1 +X2 + ...+Xn

n
.

Then
P
[

lim
n→∞

|Sn − µ| ≥ ε
]

= 0.

Using the language of this chapter:
Sn

a.s.−−→ µ.

2.2 Convergence in probability

Definition 3. A random sequence Xn converges to the random variable X in probability if

∀ε > 0 lim
n→∞

Pr {|Xn −X| ≥ ε} = 0.

We write :
Xn

p−→ X.

Example 5. Consider a random variable ω uniformly distributed on [0, 1] and the sequence Xn

given in Figure ??. Notice that only X2 or X3 can be equal to 1 for the same value of ω. Similarly,
only one of X4, X5, X6 and X7 can be equal to 1 for the same value of ω and so on and so forth.

Question: Does this sequence converge?
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Figure 1: Plot of the distribution of Xn(ω)

Answer: Intuitively, the sequence will converge to 0. Let us take some examples to see how the
sequence behave.

for ω = 0 : 1
n=1

10
n=2

1000
n=3

10000000
n=4

. . .

for ω =
1

3
: 1

n=1

10
n=2

0100
n=3

00100000
n=4

. . .

From a calculus point of view, these sequences never converge to zero because there is always a
“jump” showing up no matter how many zeros are preceding (Fig. ??); for any ω : Xn(ω) does
not converge in the “calculus” sense. Which means also that Xn does not converge to zero almost
surely (a.s.).
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Figure 2: Plot of the sequence for ω = 0

This sequence converges in probability since

lim
n→∞

P (|Xn − 0| ≥ 0) = 0 ∀ε > 0.

Remark 1. The observed sequence may not converge in “calculus” sense because of the intermittent
“jumps”; however the frequency of those “jumps” goes to zero when n goes to infinity.

Example 6. Consider a random variable ω uniformly distributed over [0, 1], and the sequence
Xn(ω) defined as:

Xn(ω) =

{
1 for ω ≤ 1

n

0 otherwise

Question: Does this sequence converge a.s.? in probability?

Solution:

1. First, we will use Theorem 1 to show that the sequence does not converge a.s.. Let

Am = {|Xn| < ε, ∀n ≥ m}.

Note that for 0 < ε < 1, we have

Am = {Xn = 0, ∀n ≥ m}.
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P (Am) = P ({Xn = 0, ∀n ≥ m})
≤ P ({Xn = 0, ∀n = m,m+ 1, . . . , N}) (for every positive integer N ≥ m)

= P (Xm = 0)P (Xm+1 = 0) . . . P (XN = 0) (since the X ′is are independent)

= P (w >
1

m
)P (w >

1

m+ 1
) . . . P (w >

1

N
)

=
m− 1

m
· m

m+ 1
. . .

N − 1

N

=
m− 1

N
.

We conclude that limm→+∞ P (Am) = 0. Thus, according to Theorem 1, the sequence
X1, X2, . . . does not converge to 0 almost surely.

2. Now we check for convergence in probability.

Pr(Xn ≥ ε) = Pr(Xn = 1) = Pr(w ≤ 1

n
) =

1

n
.

Hence,

lim
n→+∞

Pr(Xn ≥ ε) = lim
n→+∞

1

n
= 0.

Therefore, Xn
p.−→ 0.

Theorem 3. Weak law of large numbers

Let X1, X2, X3, . . . , Xi be iid random variables. E [Xi] = µ, ∀i. Let

Sn =
X1 +X2 + ...+Xn

n
.

Then
P [|Sn − µ| ≥ ε] −−−→

n→∞
0.

Using the language of this chapter:
Sn

p.−→ µ.

2.3 Convergence in mean square

Definition 4. A random sequence Xn converges to a random variable X in mean square sense if

lim
n→∞

E
[
|X −Xn|2

]
= 0.

We write:
Xn

m.s.−−→ X.

Remark 2. In mean square convergence, not only the frequency of the “jumps” goes to zero when
n goes to infinity; but also the “energy” in the jump should go to zero.

Example 6. (Revisited) Does Xn converge in m.s.?
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Answer:

E
[
|Xn − 0|2

]
= 1 · P (w ≤ 1

n
) + 0 · P (w >

1

n
) =

1

n
.

lim
n→∞

E
[
|Xn − 0|2

]
= lim

n→∞

1

n
= 0.

Therefore, Xn
m.s.−−→ 0.

In the next example, we replace 1 by
√
n in Example 5.

Example 7. Consider a random variable ω uniformly distributed over [0, 1], and the sequence
Xn(ω) defined as:

Xn(ω) =

{√
n for ω ≤ 1

n

0 otherwise

Note that P (Xn = an) = 1
n and P (Xn = 0) = 1− 1

n .

Question: Does this sequence converge a.s.? in probability? in m.s.?

Answer:

1. Almost sure convergence: Xn does not converge a.s. for the same reasons as Example 5.

2. Convergence in probability: Xn
p.−→ 0 for the same reasons as Example 5. Namely,

lim
n→+∞

Pr(Xn ≥ ε) = lim
n→+∞

Pr(Xn =
√
n) = lim

n→+∞

1

n
= 0.

(Flash Forward: almost sure convergence ⇒ convergence in probability, but convergence in
probability 6=⇒ almost sure convergence.)

3. Mean Square Convergence:

E
[
|Xn − 0|2

]
= n · P

(
w ≤ 1

n

)
+ 0 · P

(
w >

1

n

)
= n · 1

n
= 1.

Hence,

lim
n→∞

E
[
|Xn − 0|2

]
= 1⇒ Xn does not converge in m.s. to 0.

2.4 Convergence in distribution

Definition 5. (First attempt) A random sequence Xn converges to X in distribution if when n
goes to infinity, the values of the sequence are distributed according to a known distribution. We
say

Xn
d.−→ X.

Example 8. Consider the sequence Xn defined as:

Xn =

{
Xi ∼ B(12) for i = 1

(Xi−1 + 1) mod 2 = X ⊕ 1 for i > 1
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Question: In which sense, if any, does this sequence converge?

Answer: This sequence has two outcomes depending on the value of X1:

X1 = 1, Xn : 101010101010 . . .

X1 = 0, Xn : 010101010101 . . .

1. Almost sure convergence: Xn does not converge almost surely because the probability of every
jump is always equal to 1

2 .

2. Convergence in probability: Xn does not converge in probability because the frequency of the
jumps is constant equal to 1

2 .

3. Convergence in mean square: Xn does not converge to 1
2 in mean square sense because

lim
n→∞

E

[
|Xn −

1

2
|2
]

= E

[
X2

n −Xn +
1

4

]
,

= E[X2
n]− E[Xn] +

1

4
,

= 12
1

2
+ 02

1

2
− 0 +

1

4
,

=
1

2
.

4. Convergence in distribution: At infinity, since we do not know the value of X1, each value
of Xn can be either 0 or 1 with probability 1

2 . Hence, any number Xn is a random variable
∼ B(12). We say, Xn converges in distribution to Bernoulli(12) and we denote it by:

Xn
d−→ Ber(

1

2
).

Example 9. (Central Limit Theorem)Consider the zero-mean, unit-variance, independent random
variables X1, X2, . . . , Xn and define the sequence Sn as follows:

Sn =
X1 +X2 + ....+Xn√

n
.

The CLT states that Sn converges in distribution to N(0, 1), i.e.,

Sn
d−→ N(0, 1).

Theorem 4.

Almost sure convergence

Convergence in mean square

}
⇒ Convergence in probability⇒ convergence in distribution.

Note:

• There is no relation between Almost Sure and Mean Square Convergence.

• The relation is unidirectional, i.e., convergence in distribution does not imply convergence in
probability neither almost sure convergence nor mean square convergence.
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3 Convergence of a random sequence

Example 1: Let the random variable U be uniformly distributed on [0, 1]. Consider the sequence
defined as:

X(n) =
(−1)nU

n
.

Question: Does this sequence converge? if yes, in what sense(s)?

Answer:

1. Almost sure convergence: Suppose
U = a.

The sequence becomes

X1 = −a,

X2 =
a

2
,

X3 = −a
3
,

X4 =
a

4
,

...

In fact, for any a ∈ [0, 1]
lim
n→∞

Xn = 0,

therefore, Xn
a.s.−−→ 0.

Remark 3. Xn
a.s.−−→ 0 because, by definition, a random sequence converges almost surely to

the random variable X if the sequence of functions Xn converges for all values of U except
for a set of values that has a probability zero.

2. Convergence in probability: Does Xn
p.−→ 0? Recall from theorem 13 of lecture 17:

a.s.

m.s.

}
⇒ p.⇒ d.

which means that by proving almost-sure convergence, we get directly the convergence in
probability and in distribution. However, for completeness we will formally prove that Xn

converges to 0 in probability. To do so, we have to prove that

lim
n→∞

P (|X − 0| ≥ ε) = 0 ∀ε > 0,

⇒ lim
n→∞

P (|Xn| ≥ ε) = 0 ∀ε > 0.
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By definition,

|Xn| =
U

n
≤ 1

n
.

Thus,

lim
n→∞

P
(
|Xn| ≥ ε

)
= lim

n→∞
P

(
U

n
≥ ε
)
, (1)

= lim
n→∞

P (U ≥ nε) , (2)

= 0. (3)

Where equation 3 follows from the fact that finding U ∈ [0, 1].

3. Convergence in mean square sense: Does Xn converge to 0 in the mean square sense?

In order to answer this question, we need to prove that

lim
n→∞

E
[
|Xn − 0|2

]
= 0.

We know that,

lim
n→∞

E
[
|Xn − 0|2

]
= lim

n→∞
E
[
X2

n

]
,

= lim
n→∞

E

[
U2

n2

]
,

= lim
n→∞

1

n2
E
[
U2
]
,

= lim
n→∞

1

n2

∫ 1

0
u2du,

= lim
n→∞

1

n2
u3

3

]1
0

,

= lim
n→∞

1

3n2
,

= 0.

Hence, Xn
m.s.−−→ 0.

4. Convergence in distribution: Does Xn converge to 0 in distribution? The formal definition of
convergence in distribution is the following:

Xn
d.−→ X ⇒ lim

n→∞
FXn(x) = FX(x).

Hereafter, we want to prove that Xn
d.−→ 0.

Recall that the limit r.v. X is the constant 0 and therefore has the following CDF :

Since Xn = (−1)nU
n , the distribution of the Xi can be derived as following:
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Figure 3: Plot of the CDF of 0

Remark 4. At 0 the CDF of Xn will be flip-flopping between 0 (if n is even) and 1 (if n is
odd) (c.f. figure 2) which implies that there is a discontinuity at that point. Therefore, we
say that Xn converges in distribution to a CDF FX(x) except at points where FX(x) is not
continuous.

Definition 6. Xn converges to X in distribution, i.e., X[n]
d.−→ X iff

lim
n→∞

FXn (x) = FX (x) except at points where FX (x) is not continuous.

Remark 5. It is clear here that

lim
n→∞

FXn(x) = Fx(x) except for x = 0.

Therefore, Xn converges to X in distribution. We could have deduced this directly from convergence
in mean square sense or almost sure convergence.

Theorem 5. a) If Xn
a.s.−−→ X ⇒ Xn

p.−→ X.

b) If Xn
m.s.−−→ X ⇒ Xn

p.−→ X.

c) If Xn
p.−→ X ⇒ Xn

d.−→ X.

d) If P {|Xn| ≤ Y } = 1 for all n for a random variable Y with E
[
Y 2
]
<∞, then

Xn
p.−→ X ⇒ Xn

m.s.−−→ X.

.

Proof. The proof is omitted.

Remark 6. Convergence in probability allows the sequence, at ∞, to deviate from the mean for
any value with a small probability; whereas, convergence in mean square limits the amplitude of this
deviation when n→∞. (We can think of it as energy ⇒ we can not allow a big deviation from the
mean).
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Figure 4: Plot of the CDF of U,X1, X2 and X3

4 Back to real analysis

Definition 7. A sequence (xn)n≥1 is Cauchy if for every ε, there exists a large number N s.t.

∀m,n > N, |xm − xn| < ε ⇔ lim
n,m→∞

|xm − xn| = 0.

Claim 1. Every Cauchy sequence is convergent.

Counter example 1. Consider the sequence Xn ∈ Q defined as x0 = 1, xn+1 =
xn+

2
xn

2 . The limit
of this sequence is given by:

l =
l + 2

l

2
,

2l2 = l2 + 2,

l = ±
√

2 /∈ Q.

This implies that the sequence does not converge in Q.
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Counter example 2. Consider the sequence xn = 1/n in (0, 1). Obviously it does not converge
in (0, 1) since the limit l = 1 /∈ (0, 1).

Definition 8. A space where every sequence converges is called a complete space.

Theorem 6. R is a complete space.

Proof. The proof is omitted.

Theorem 7. Cauchy criteria for convergence of a random sequence.

a) Xn
a.s.−−→ X ⇐⇒ P

[
lim

m,n→∞
|xm − xn| = 0

]
= 1.

b) Xn
m.s.−−→ X ⇐⇒ lim

m,n→∞
E
[
|xm − xn|2

]
= 0.

c) Xn
p.−→ X ⇐⇒ lim

m,n→∞
P [|xm − xn| ≥ ε] = 0 ∀ε.

Proof. The proofs are omitted.

Example 10. Consider the sequence of example 11 from last lecture,

Xn =

{
Xi ∼ B(12) for i = 1

(Xi−1 + 1) mod 2 = X ⊕ 1 for i > 1

Goal: Our goal is to prove that this sequence does not converge in mean square using Cauchy
criteria.

This sequence has two outcomes depending on the value of X1:

X1 = 1, Xn : 101010101010 . . .

X1 = 0, Xn : 010101010101 . . .

Therefore,

E
[
|Xn −Xm|2

]
= E

[
X2

n

]
+ E

[
X2

m

]
− 2E [XmXn] ,

=
1

2
+

1

2
− 2E [XmXn] .

Consider, without loss of generality, that m > n

E [XnXm] =

{
E [XnXm] = 0 if m− n is odd,

E
[
X2

n

]
= 1

2 if m− n is even.

Hence,

lim
n,m→∞

E
[
|Xn −Xm|2

]
=

{
1 if m− n is odd,

0 if m− n is even,

which implies that Xn does not converge in mean square by theorem 7-b).
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Lemma 1. Let Xn be a random sequence with E
[
X2

n

]
<∞ ∀n.

Xn
m.s.−−→ X iff lim

m,n→∞
E [XmXn] exists and is finite.

Theorem 8. Central limit theorem

Let X1, X2, X3, . . . , Xi be iid random variables. E [Xi] = 0, ∀i. Let

Zn =
X1 +X2 + ...+Xn√

n
.

Then

P [Zn ≤ z] =

∫ z

−∞

1√
2π
e−

z2

2 dz.

Using the language of this chapter:

Zn
d.−→ N(0, 1).
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