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1 Estimation Based On Single Observation

Suppose we wish to estimate the a values of a RV X by observing the values of another random
variable Y. This estimate is represented by X and the estimation error is given by e = X — X. A
popular approach for determining X the estimate of X given Y, is by minimizing the conditional
MSE (mean squared error):

MSE = E[}|Y] = E[(X — X)?|Y].
Theorem 1. The MMSE (minimum mean squared estimate) of X given'Y is Xyrse = E[X|Y].
In other words, the theorem states that X755 = E[X|Y] minimizes the conditional MSE E[(X —
XY,

Proof.
A +Oo A
Bl(X — X)?|v] = / (2 — X fxpy (aly)da.
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To minimize this conditional MSE, we determine X such that the derivative of the MSE is zero.

o R +o00 .
SBIX - 2P y) = -2 / o= D) el
~ +w A~
8§E[(X ~X)?lY]=0= -2 /OO (z — X) fxpy (z|y)dr = 0.

Therefore,

R +oo +oo R
X Ixy (zly)dx —/ cfxy(xly)de = Xymse = E[X|Y].
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Corollary 1. The conditional MSE corresponding to XmMsE 8 E[(X — X'MMSE)Q\Y] = U§(|Y.

Proof. The proof directly follows from the definition of the variance.

E[(X ~ Xararse)’|Y] = BI(X — EIX[Y)2IY] = Var[X[V] = 0%y



Sometimes E[X|Y] is difficult to find and a linear MMSE (LMMSE) is used instead, i.e. Xpaas8 =
aY + 5.

Theorem 2. The LMMSE (linear minimum mean squared estimate) of X given Y that minimize
the conditional MSE is given by

. cov(X,Y
XLMMSE = 22 )(Y —py) + px.
%

PA{emark 1. (Orthogonality Principle) The X that minimizes the MSE is given by X L €, i.e.,
X 1L (X-X).

Proof. (sketch) Assume WLOG that random variables X and Y are zero mean.
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Denote by X the estimate of X given Y. In order to minimize E[e2] = ||¢||2 = E[||X — X|?], the
error € should be orthogonal to the observation Y as shown in the figure above. € L Y, therefore,

E[(X - X)Y]=0.
E[(X —aY)Y] =0,
E[XY] - aE[Y?] =0.
Hence,
_ EXY]  cov(X,Y)
 ElY?Y o2
Therefore,
A cov(X,Y
XLMMSE = %Y-
Oy
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The result above is for any two zero mean random variables. The general result, i.e. when ux, uy #
0, can be obtained by the same reasoning and is given by,

. cov(X,Y
XLMMSE = 572 )(Y — py ) + px.
Y

Example 1. Suppose that in a room the temperature is given by a RV X ~ N(ux, ag(). A sensor
in this room observes Y = X + W, where W is the additive noise given by N (0, O‘IQ/V). Assume X
and W are independent.

1. Find the MMSE of X given Y . R
Xuvuse = E[X|Y].



 fxy () Ifx(@)fyix(yle)
fxy(zly) = = :
fy () fy ()
Since Y is the sum of two independent gaussian RVs X and W, we know from homework 3
that,

Y ~ N(ux,o% +oiy).

Furthermore,
E[Y|X]=E[X +W|X] =X + E[W] = X.
Var[Y|X] = E[Y?|X] - E[Y|X]?
= E[X% 4+ 2XW + W?|X] - X?
= E[X?|X] + 2E[XW|X] + E[W?X] — X?
= X2 4+ 0+0% — X2
= ol
Therefore,
1 —z)?
frix(ole) = ———exp |- 225,
1/27’(0"24/ w
Therefore,
_ 1 (r—px)* (y—2)?°  (y—px)
fX\Y($’y) - ey exp |: 20_§( 20‘2/{/ 2(03( n UIQ/V)
2 0.2 +0’2
X w
1 (z —p')?
= o7 exp | — 2572 .
Where,
o2 — 33(012/12 .
ox + oy

We are interested in,
Xumse = E[X|Y] =y

To determine p' take x = 0:

-u? ek v (y—px)?
9 ‘?f%g 20% 203, 2(c% +o%)
IXTow
W% = T 1 oy’ oxow(y — px)?
ok tofy ok +oy (0% +ofy)?

o%y? +2uxok oy + op ik
@+

2
_ ag(y—l—agvux
U§(+Ui2/V '
Therefore,
2 2
~ (o} owhx
Xymse = EX|Y] =y = 525V + G0
ox T oy ox + oy



2. Find the linear MMSFE of X given Y .

cov(X,Y) = E[XY] — E[X]E[Y]

Applying the general formula of LMMSE,

- cov(X,Y
XIMMSE = ETQ)(Y —py) + px
Y
o%
= IX (v —ux)+
0'%( +012/I/( MX) nx
_ U§< U%/[/MX
o% + o, o% + o,

Remark 2. Notice that XLMMSE = XMMSE; in fact this is always the case if the random
variable to estimate X, and the observation Y, are jointly gaussian.

3. Find the MSE.

Method 1: (Orthogonality principle)

= |E[e(X - X)]|
0
= |BfeX] -~ BleX]|
= |EleX]]
- E[XX]—E[XQ]‘
= E{UE(XY—FWX} — 0% — 12
U%—I—a%, J§(+JIQ/V X X
_ oX (0% + %) | owrk g2 2
0% +o%, | oh+o3, XX
__oxoly
U_%(—i—a‘z/v'



Method 2: (Towering property + Corollary 1)

El@]=E

EY]
E[(X — Xmuse)’|Y]]
ag( | (corollary 1)
?] (part 2)
B
03( + JIQ/V
0% oy
Ug( + U‘Q/V.
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2 MMSE Based on Vector Observation

Theorem 3. The Linear Minimum Mean-Square Estimate LMMSE XLMMSE of X given an ob-
served random vector Y = (Y1,...,Y,)T is given by

Xoumse = Kxy Kyv (Y — py) + px,
where,

px = B[X],
py = (EW], E[Ya], ..., E[Y]),
Kyy = EYY"] = pyu,
and Kxy = (Cov[XY1], Cov[XYa],...,Cov[XY,])T,

where Kyy is the covariance matriz of Y.

Proof. First, let us assume that py = 0 and gy = 0. Then, we can write

XLMMSE =a1Y] + a2Y2 + -4+ anYn
=d'Y.

By the orthogonality principle: (X — XLMMSE) 1Y, i=1,2,....n,
Eld'Y - Y] = E[XY;] i=1,2,...,n,

E[(a1Y1 + asYs + -+ a,Y,)Yi] = E[XY;] i=1,2,...,n

So, we get the following n x n linear system with n unknowns, ai, ..., ay:
a1 B[Y?] + aaE[Y1Ya] + - - + a, E[V1Yy,] = E[XY1],

a E[Y2Y1] 4+ as E[YZ] + - - - 4 an E[Y2Y,] = E[XYa],

a1 E[Y, Y1) + a2 E[Y, Ya] + -+ - + an E[Y2] = E[XY,,].



In matrix form, this can be written as

t t
aKyy = Kxy,

t_ gt -1
a = KxyKyy.

Where,
E[Y?] EMZY3] EMW1Y,]
ElY2v1]  B[Y7] E[Y2Y,]
Kyy = : : : !
E[Y,Y1] E[Y,Y2] E[Y?]
and,
COU[XYl] E[XYl]
ot | Cov[X Y] E[XY5]
Kxy = : - :
Cov[XY,] E[XY,]
So,

o T -1
Xivmmse = Kxy Ky Y.

In general, if px # 0 and py # 0,
Apply the same method above to X' = X — ux and Y’ =Y — py, then we get

Ximmse = K&y Ky (Y

—py) + px.

Example 2. Multiple Antenna Receiver

Assume 2 antennas receive signals independently.

X ~ N(0,2),

Yi=X+N, Yo=X+ Ny,

Ny, Ny ~ N(0,1). Assume they are all independent.

1. Find the LMMSE of X given Y.

Cov(XY)

Therefore, Xpypymse =

3

2Y1

Cov(XY7)

V(1) .

XLMMSE =

E[XY1] - E[X]E[Y1]
[X(X 4 Ny)]
[X?] + E[XN{]=2+0=2.

Note that E[X]E[Y1] =0

E
E

V) =V(X)+V(N)=2+1=3.



2. Find the LMMSE of X given Y7 and Y>.

Usually, we want to
In this case, C = 0.
While

we can obtain,

Therefore,

—  XpmumsE

From part 1 we have

From part 2 we have

MSE> =

=2-
2
5

X-X1v,

find that X = a1 +asYs + C.

and X -—X 1 Y5,

E[(X - aY1 - CLQYQ)Yl

E[(X — aY1 — CLQYQ) 2
(IlE[Yl ] + (IQE[Y1Y2

]
]
]
a1 E[Y1Ys] + aa B[Y3]

m
E[XY.

a
KY1Y2 [ a; :| = Kxy.

ay

|

%(Yl +Y5).

_ g1 _
a2 :| - KY1Y2KXY -

Compare the MSE of part 1 and part 2

Xl = %Yl, then

MSE;, = E[(X — X)?]

= E[X? — 2E[X X] + E[X?]

=2— )SE[XYl]
=232+ 50
2

-3

= 0.66.

XQ = %(Yl + }/2), then
E[X? — 2E[X X] + E[X?]

2~ (2)5 (B[X¥] + E[X¥3]) +

.p

—(2+2)+ %(3 +2(2) + 3)

ot

=04

i5 (E[Y?] + 2B[V1Ya] + E[YZ])



Therefore, M SFEs < MSEq, which is intuitive since in part 2 we can benefit from the addi-
tional observation Yo to improve our estimation.

3 Finding The MMSE Using The Orthogonality Principle

Theorem 4 (The Orthogonality Principle). The MMSE of X of X given Y, where X = g(Y), where
g(x) € T and (T* is all functions, linear functions, constants) , is found when X =min E[(X — g (Y))?] where

the minimization is over g () € . The MMSE = E[X?] — E[X'Q] In this case, X is unique and
the error is orthogonal to the observation (( X — X) LY ). The * indicates there are some technical
conditions on gamma but they are not discussed here.

Proof. Proof is omitted. O

Example 3. X = (X1, Xo, X3) are jointly Gaussian and, px = (0,0,0),

1 02 0.1
Kxx=Rxx=102 2 03
0.1 03 4

1. Find the LMMSE of X3 Given X1 and Xs.

Usually, we write X = a1Y1 + aoYa + ¢c. When u, = 0, we have ¢ = 0. Therefore, we write
X3 =a1X1 + asXe. By the Orthogonality Principle, the error L observation space, that is

(Xg — Xg)J_Xl — E[(Xg — Xg)Xl] =0
— a1 B[X?] 4+ aa E[X1 X)) = E[X1X3]
(Xg — Xg)J_XQ - E[(Xg — X3)X2] =0
— a1 B[X1Xo] + aaE[X3] = E[X2X3]
Denote Y = (X1, X2)T. In matriz form,

E[X?]  E[X1X)] ] [ a1 } _ [ E[X1Xj] ] . [ a

gl
E[X1Xy]  E[X3] as E[X5X3] as ] = Kyy Kxzy

[ 102 S [ 10204 —0.102
Byy = [ } = Ryy = [ ~0.102 05102 ]

K%,y = [Cov(X3X1) Cov(X3X,)]=[0.1 0.3].

ar ] [ 00714
ag | | 0.1429

Therefore,

co



Hence,

X3 = 0.0714X; + 0.1429X5.

2. Find the MSE corresponding to Xs.

MSE = E[(X3 — X3)*] = E[X3] — E[X3]
=4 — E[(a1X1 + CLQXQ)Q]
=4 — a3E[X?] — a3E[X3] — 2a1a9E[ X1 X5)
= 3.95.



