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1 Estimation Based On Single Observation

Suppose we wish to estimate the a values of a RV X by observing the values of another random
variable Y . This estimate is represented by X̂ and the estimation error is given by ε = X − X̂. A
popular approach for determining X̂ the estimate of X given Y , is by minimizing the conditional
MSE (mean squared error):

MSE = E[ε2|Y ] = E[(X − X̂)2|Y ].

Theorem 1. The MMSE (minimum mean squared estimate) of X given Y is X̂MMSE = E[X|Y ].

In other words, the theorem states that X̂MMSE = E[X|Y ] minimizes the conditional MSE E[(X−
X̂)2|Y ].

Proof.

E[(X − X̂)2
∣∣Y ] =

∫ +∞

−∞
(x− X̂)2fX|Y (x|y)dx.

To minimize this conditional MSE, we determine X̂ such that the derivative of the MSE is zero.

∂

∂X̂
E[(X − X̂)2

∣∣Y ] = −2

∫ +∞

−∞
(x− X̂)fX|Y (x|y)dx.

∂

∂X̂
E[(X − X̂)2

∣∣Y ] = 0⇒ −2

∫ +∞

−∞
(x− X̂)fX|Y (x|y)dx = 0.

Therefore,

X̂

∫ +∞

−∞
fX|Y (x|y)dx =

∫ +∞

−∞
xfX|Y (x|y)dx ⇒ X̂MMSE = E[X|Y ].

Corollary 1. The conditional MSE corresponding to X̂MMSE is E[(X − X̂MMSE)2|Y ] = σ2X|Y .

Proof. The proof directly follows from the definition of the variance.

E[(X − X̂MMSE)2|Y ] = E[(X − E[X|Y ])2|Y ] = V ar[X|Y ] = σ2X|Y .
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Sometimes E[X|Y ] is difficult to find and a linear MMSE (LMMSE) is used instead, i.e. X̂LMMSE =
αY + β.

Theorem 2. The LMMSE (linear minimum mean squared estimate) of X given Y that minimize
the conditional MSE is given by

X̂LMMSE =
cov(X,Y )

σ2Y
(Y − µY ) + µX .

Remark 1. (Orthogonality Principle) The X̂ that minimizes the MSE is given by X̂ ⊥ ε, i.e.,
X̂ ⊥ (X − X̂).

Proof. (sketch) Assume WLOG that random variables X and Y are zero mean.

ε

X

Y
X̂

Denote by X̂ the estimate of X given Y . In order to minimize E[ε2] = ||ε||2 = E[||X − X̂||2], the
error ε should be orthogonal to the observation Y as shown in the figure above. ε ⊥ Y , therefore,

E[(X − X̂)Y ] = 0.

E[(X − αY )Y ] = 0,

E[XY ]− αE[Y 2] = 0.

Hence,

α =
E[XY ]

E[Y 2]
=
cov(X,Y )

σ2Y
.

Therefore,

X̂LMMSE =
cov(X,Y )

σ2Y
Y.

The result above is for any two zero mean random variables. The general result, i.e. when µX , µY 6=
0, can be obtained by the same reasoning and is given by,

X̂LMMSE =
cov(X,Y )

σ2Y
(Y − µY ) + µX .

Example 1. Suppose that in a room the temperature is given by a RV X ∼ N(µX , σ
2
X). A sensor

in this room observes Y = X + W , where W is the additive noise given by N(0, σ2W ). Assume X
and W are independent.

1. Find the MMSE of X given Y .
X̂MMSE = E[X|Y ].
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fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=
fX(x)fY |X(y|x)

fY (y)
.

Since Y is the sum of two independent gaussian RVs X and W , we know from homework 3
that,

Y ∼ N(µX , σ
2
X + σ2W ).

Furthermore,

E[Y |X] = E[X +W |X] = X + E[W ] = X.

V ar[Y |X] = E[Y 2|X]− E[Y |X]2

= E[X2 + 2XW +W 2|X]−X2

= E[X2|X] + 2E[XW |X] + E[W 2|X]−X2

= X2 + 0 + σ2W −X2

= σ2W .

Therefore,

fY |X(y|x) =
1√

2πσ2W

exp

[
−(y − x)2

2σ2W

]
.

Therefore,

fX|Y (x|y) =
1√

2π
σ2
Xσ

2
W

σ2
X+σ2

W

exp

[
−(x− µX)2

2σ2X
− (y − x)2

2σ2W
+

(y − µX)2

2(σ2X + σ2W )

]

=
1√

2πσ′2
exp

[
−(x− µ′)2

2σ′2

]
.

Where,

σ′2 =
σ2Xσ

2
W

σ2X + σ2W
.

We are interested in,
X̂MMSE = E[X|Y ] = µ′.

To determine µ′ take x = 0:

−µ′2

2
σ2
Xσ

2
W

σ2
X+σ2

W

=
−µ2X
2σ2X

− y2

2σ2W
+

(y − µX)2

2(σ2X + σ2W )

µ′2 =
σ2Wµ

2
X

σ2X + σ2W
+

σ2Xy
2

σ2X + σ2W
−
σ2Xσ

2
W (y − µX)2

(σ2X + σ2W )2

=
σ4Xy

2 + 2µXσ
2
Xσ

2
W y + σ4Wµ

2
X

(σ2X + σ2W )2

=

(
σ2Xy + σ2WµX
σ2X + σ2W

)2

.

Therefore,

X̂MMSE = E[X|Y ] = µ′ =
σ2X

σ2X + σ2W
Y +

σ2WµX
σ2X + σ2W

.
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2. Find the linear MMSE of X given Y .

cov(X,Y ) = E[XY ]− E[X]E[Y ]

= E[X(X +W )]− E[X]E[X +W ]

= E[X2] + E[XW ]− µ2X
= σ2X + µ2X + 0− µ2X
= σ2X .

Applying the general formula of LMMSE,

X̂LMMSE =
cov(X,Y )

σ2Y
(Y − µY ) + µX

=
σ2X

σ2X + σ2W
(Y − µX) + µX

=
σ2X

σ2X + σ2W
Y +

σ2WµX
σ2X + σ2W

.

Remark 2. Notice that X̂LMMSE = X̂MMSE, in fact this is always the case if the random
variable to estimate X, and the observation Y , are jointly gaussian.

3. Find the MSE.

Method 1: (Orthogonality principle)

E[ε2] = E[(X̂ −X)2]

= |E[ε(X̂ −X)]|

= |��
��*

0
E[εX̂] − E[εX]|

= |E[εX]|

=
∣∣∣E[X̂X]− E[X2]

∣∣∣
=

∣∣∣∣E [ σ2X
σ2X + σ2W

XY +
σ2WµX
σ2X + σ2W

X

]
− σ2X − µ2X

∣∣∣∣
=

∣∣∣∣σ2X(σ2X + µ2X)

σ2X + σ2W
+

σ2Wµ
2
X

σ2X + σ2W
− σ2X − µ2X

∣∣∣∣
=

σ2Xσ
2
W

σ2X + σ2W
.
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Method 2: (Towering property + Corollary 1)

E[ε2] = E[E[ε2|Y ]]

= E[E[(X − X̂MMSE)2|Y ]]

= E[σ2X|Y ] (corollary 1)

= E[σ′2] (part 2)

= E

[
σ2Xσ

2
W

σ2X + σ2W

]
=

σ2Xσ
2
W

σ2X + σ2W
.

2 MMSE Based on Vector Observation

Theorem 3. The Linear Minimum Mean-Square Estimate LMMSE X̂LMMSE of X given an ob-
served random vector

¯
Y = (Y1, . . . , Yn)T is given by

X̂LMMSE = KT
XYK

−1
Y Y (

¯
Y −

¯
µY ) + µX ,

where,

µX = E[X],

¯
µY = (E[Y1], E[Y2], . . . , E[Yn]),

KY Y = E[
¯
Y

¯
Y T ]− µY µTY ,

and KXY = (Cov[XY1], Cov[XY2], . . . , Cov[XYn])T ,

where KY Y is the covariance matrix of Y.

Proof. First, let us assume that µX = 0 and
¯
µY =

¯
0. Then, we can write

X̂LMMSE = a1Y1 + a2Y2 + · · ·+ anYn

=
¯
at

¯
Y.

By the orthogonality principle: (X − X̂LMMSE) ⊥ Yi i = 1, 2, . . . , n ,

E[
¯
at

¯
Y · Yi] = E[XYi] i = 1, 2, . . . , n,

E[(a1Y1 + a2Y2 + · · ·+ anYn)Yi] = E[XYi] i = 1, 2, . . . , n.

So, we get the following n× n linear system with n unknowns, a1, . . . , an:

a1E[Y 2
1 ] + a2E[Y1Y2] + · · ·+ anE[Y1Yn] = E[XY1],

a1E[Y2Y1] + a2E[Y 2
2 ] + · · ·+ anE[Y2Yn] = E[XY2],

...

a1E[YnY1] + a2E[YnY2] + · · ·+ anE[Y 2
n ] = E[XYn].
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In matrix form, this can be written as

¯
atKY Y = Kt

XY ,

¯
at = Kt

XYK
−1
Y Y .

Where,

KY Y =


E[Y 2

1 ] E[Y1Y2] . . . E[Y1Yn]
E[Y2Y1] E[Y 2

2 ] . . . E[Y2Yn]
...

...
...

E[YnY1] E[YnY2] . . . E[Y 2
n ]

 ,
and,

KXY
def
=


Cov[XY1]
Cov[XY2]

...
Cov[XYn]

 =


E[XY1]
E[XY2]

...
E[XYn]

 .
So,

X̂LMMSE = KT
XYK

−1
Y Y ¯
Y.

In general, if µX 6= 0 and
¯
µY 6=

¯
0,

Apply the same method above to X ′ = X − µX and
¯
Y ′ =

¯
Y −

¯
µY , then we get

X̂LMMSE = KT
XYK

−1
Y Y (

¯
Y −

¯
µY ) + µX .

Example 2. Multiple Antenna Receiver

Assume 2 antennas receive signals independently. Y1 = X +N1, Y2 = X +N2,

X ∼ N(0, 2), N1, N2 ∼ N(0, 1). Assume they are all independent.

1. Find the LMMSE of X given Y1.

X̂LMMSE =
Cov(XY1)

V (Y1)
Y1.

Cov(XY1) = E[XY1]− E[X]E[Y1] Note that E[X]E[Y1] = 0

= E[X(X +N2)]

= E[X2] + E[XN1] = 2 + 0 = 2.

V (Y1) = V (X) + V (N1) = 2 + 1 = 3.

Therefore, X̂LMMSE = 2
3Y1
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2. Find the LMMSE of X given Y1 and Y2.

Usually, we want to find that X̂ = a1Y1 + a2Y2 + C.

In this case, C = 0.

While X − X̂ ⊥ Y1, and X − X̂ ⊥ Y2,

we can obtain,

E[(X − aY1 − a2Y2)Y1] = 0.

E[(X − aY1 − a2Y2)Y2] = 0.

a1E[Y 2
1 ] + a2E[Y1Y2] = E[XY1].

a1E[Y1Y2] + a2E[Y 2
2 ] = E[XY2].

KY1Y2

[
a1
a2

]
= KXY .

Therefore, [
a1
a2

]
= K−1Y1Y2KXY =

[
3 2
2 3

]−1 [
2
2

]
=

1

5

[
3 −2
−2 3

] [
2
2

]
=⇒ X̂LMMSE = 2

5(Y1 + Y2).

3. Compare the MSE of part 1 and part 2

From part 1 we have X̂1 = 2
3Y1, then

MSE1 = E[(X − X̂)2]

= E[X2]− 2E[XX̂] + E[X̂2]

= 2− (2)
2

3
E[XY1] +

4

9
E[Y 2

1 ]

= 2− 4

3
(2) +

4

9
(3)

=
2

3
= 0.66.

From part 2 we have X̂2 = 2
5(Y1 + Y2), then

MSE2 = E[X2]− 2E[XX̂] + E[X̂2]

= 2− (2)
2

5
(E[XY1] + E[XY2]) +

4

25

(
E[Y 2

1 ] + 2E[Y1Y2] + E[Y 2
2 ]
)

= 2− 4

5
(2 + 2) +

4

25
(3 + 2(2) + 3)

=
2

5
= 0.4
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Therefore, MSE2 < MSE1, which is intuitive since in part 2 we can benefit from the addi-
tional observation Y2 to improve our estimation.

3 Finding The MMSE Using The Orthogonality Principle

Theorem 4 (The Orthogonality Principle). The MMSE of X̂ of X given Y, where X̂ = g(Y ), where
g(∗) ∈ Γ and (Γ∗ is all functions, linear functions, constants) , is found when X̂ = minE[(X − g (Y ))2] where

the minimization is over g (∗) ∈ Γ. The MMSE = E[X2] − E[X̂
2
]. In this case, X̂ is unique and

the error is orthogonal to the observation (( X− X̂)⊥Y ). The * indicates there are some technical
conditions on gamma but they are not discussed here.

Proof. Proof is omitted.

Example 3. X = (X1, X2, X3) are jointly Gaussian and,
¯
µX = (0, 0, 0),

KXX = RXX =

 1 0.2 0.1
0.2 2 0.3
0.1 0.3 4

 .

1. Find the LMMSE of X3 Given X1 and X2.

Usually, we write X̂ = a1Y1 + a2Y2 + c. When µx = 0, we have c = 0. Therefore, we write
X̂3 = a1X1 + a2X2. By the Orthogonality Principle, the error ⊥ observation space, that is

(X3 − X̂3)⊥X1 =⇒ E[(X3 − X̂3)X1] = 0

=⇒ a1E[X2
1 ] + a2E[X1X2] = E[X1X3]

(X3 − X̂3)⊥X2 =⇒ E[(X3 − X̂3)X2] = 0

=⇒ a1E[X1X2] + a2E[X2
2 ] = E[X2X3]

Denote Y = (X1, X2)
T . In matrix form,[

E[X2
1 ] E[X1X2]

E[X1X2] E[X2
2 ]

] [
a1
a2

]
=

[
E[X1X3]
E[X2X3]

]
=⇒

[
a1
a2

]
= K−1Y YKX3Y

KY Y =

[
1 0.2

0.2 2

]
⇒ K−1Y Y =

[
1.0204 −0.102
−0.102 0.5102

]
.

KT
X3Y = [Cov(X3X1) Cov(X3X2)] = [0.1 0.3].

Therefore, [
a1
a2

]
=

[
0.0714
0.1429

]
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Hence,

X̂3 = 0.0714X1 + 0.1429X2.

2. Find the MSE corresponding to X̂3.

MSE = E[(X3 − X̂3)
2] = E[X2

3 ]− E[X̂2
3 ]

= 4− E[(a1X1 + a2X2)
2]

= 4− a21E[X2
1 ]− a22E[X2

2 ]− 2a1a2E[X1X2]

= 3.95.

9


