Chapter 6 : Estimation

Dr. Salim El Rouayheb
Scribe: Serge Kas Hanna, Lu Liu

1 Estimation Based On Single Observation

Suppose we wish to estimate the a values of a RV X by observing the values of another random variable Y. This estimate is represented by \hat{X} and the estimation error is given by $\epsilon=X-\hat{X}$. A popular approach for determining \hat{X} the estimate of X given Y, is by minimizing the conditional MSE (mean squared error):

$$
M S E=E\left[\epsilon^{2} \mid Y\right]=E\left[(X-\hat{X})^{2} \mid Y\right] .
$$

Theorem 1. The MMSE (minimum mean squared estimate) of X given Y is $\hat{X}_{M M S E}=E[X \mid Y]$.
In other words, the theorem states that $\hat{X}_{M M S E}=E[X \mid Y]$ minimizes the conditional MSE $E[(X-$ $\left.\hat{X})^{2} \mid Y\right]$.

Proof.

$$
E\left[(X-\hat{X})^{2} \mid Y\right]=\int_{-\infty}^{+\infty}(x-\hat{X})^{2} f_{X \mid Y}(x \mid y) d x
$$

To minimize this conditional MSE, we determine \hat{X} such that the derivative of the MSE is zero.

$$
\begin{gathered}
\frac{\partial}{\partial \hat{X}} E\left[(X-\hat{X})^{2} \mid Y\right]=-2 \int_{-\infty}^{+\infty}(x-\hat{X}) f_{X \mid Y}(x \mid y) d x \\
\frac{\partial}{\partial \hat{X}} E\left[(X-\hat{X})^{2} \mid Y\right]=0 \Rightarrow-2 \int_{-\infty}^{+\infty}(x-\hat{X}) f_{X \mid Y}(x \mid y) d x=0 .
\end{gathered}
$$

Therefore,

$$
\hat{X} \int_{-\infty}^{+\infty} f_{X \mid Y}(x \mid y) d x=\int_{-\infty}^{+\infty} x f_{X \mid Y}(x \mid y) d x \Rightarrow \hat{X}_{M M S E}=E[X \mid Y]
$$

Corollary 1. The conditional MSE corresponding to $\hat{X}_{M M S E}$ is $E\left[\left(X-\hat{X}_{M M S E}\right)^{2} \mid Y\right]=\sigma_{X \mid Y}^{2}$.
Proof. The proof directly follows from the definition of the variance.

$$
E\left[\left(X-\hat{X}_{M M S E}\right)^{2} \mid Y\right]=E\left[(X-E[X \mid Y])^{2} \mid Y\right]=\operatorname{Var}[X \mid Y]=\sigma_{X \mid Y}^{2}
$$

Sometimes $E[X \mid Y]$ is difficult to find and a linear MMSE (LMMSE) is used instead, i.e. $\hat{X}_{L M M S E}=$ $\alpha Y+\beta$.

Theorem 2. The LMMSE (linear minimum mean squared estimate) of X given Y that minimize the conditional MSE is given by

$$
\hat{X}_{L M M S E}=\frac{\operatorname{cov}(X, Y)}{\sigma_{Y}^{2}}\left(Y-\mu_{Y}\right)+\mu_{X}
$$

Remark 1. (Orthogonality Principle) The \hat{X} that minimizes the $M S E$ is given by $\hat{X} \perp \epsilon$, i.e., $\hat{X} \perp(X-\hat{X})$.

Proof. (sketch) Assume WLOG that random variables X and Y are zero mean.

Denote by \hat{X} the estimate of X given Y. In order to minimize $E\left[\epsilon^{2}\right]=\|\epsilon\|^{2}=E\left[\|X-\hat{X}\|^{2}\right]$, the error ϵ should be orthogonal to the observation Y as shown in the figure above. $\epsilon \perp Y$, therefore,

$$
\begin{aligned}
E[(X-\hat{X}) Y] & =0 . \\
E[(X-\alpha Y) Y] & =0, \\
E[X Y]-\alpha E\left[Y^{2}\right] & =0 .
\end{aligned}
$$

Hence,

$$
\alpha=\frac{E[X Y]}{E\left[Y^{2}\right]}=\frac{\operatorname{cov}(X, Y)}{\sigma_{Y}^{2}} .
$$

Therefore,

$$
\hat{X}_{L M M S E}=\frac{\operatorname{cov}(X, Y)}{\sigma_{Y}^{2}} Y
$$

The result above is for any two zero mean random variables. The general result, i.e. when $\mu_{X}, \mu_{Y} \neq$ 0 , can be obtained by the same reasoning and is given by,

$$
\hat{X}_{L M M S E}=\frac{\operatorname{cov}(X, Y)}{\sigma_{Y}^{2}}\left(Y-\mu_{Y}\right)+\mu_{X} .
$$

Example 1. Suppose that in a room the temperature is given by a $R V X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$. A sensor in this room observes $Y=X+W$, where W is the additive noise given by $N\left(0, \sigma_{W}^{2}\right)$. Assume X and W are independent.

1. Find the MMSE of X given Y.

$$
\hat{X}_{M M S E}=E[X \mid Y] .
$$

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{f_{X}(x) f_{Y \mid X}(y \mid x)}{f_{Y}(y)} .
$$

Since Y is the sum of two independent gaussian RVs X and W, we know from homework 3 that,

$$
Y \sim N\left(\mu_{X}, \sigma_{X}^{2}+\sigma_{W}^{2}\right)
$$

Furthermore,

$$
\begin{aligned}
E[Y \mid X] & =E[X+W \mid X]=X+E[W]=X . \\
\operatorname{Var}[Y \mid X] & =E\left[Y^{2} \mid X\right]-E[Y \mid X]^{2} \\
& =E\left[X^{2}+2 X W+W^{2} \mid X\right]-X^{2} \\
& =E\left[X^{2} \mid X\right]+2 E[X W \mid X]+E\left[W^{2} \mid X\right]-X^{2} \\
& =X^{2}+0+\sigma_{W}^{2}-X^{2} \\
& =\sigma_{W}^{2} .
\end{aligned}
$$

Therefore,

$$
f_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi \sigma_{W}^{2}}} \exp \left[-\frac{(y-x)^{2}}{2 \sigma_{W}^{2}}\right] .
$$

Therefore,

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =\frac{1}{\sqrt{2 \pi \frac{\sigma_{X}^{2} \sigma_{W}^{2}}{\sigma_{X}^{2}+\sigma_{W}^{2}}}} \exp \left[-\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma_{X}^{2}}-\frac{(y-x)^{2}}{2 \sigma_{W}^{2}}+\frac{\left(y-\mu_{X}\right)^{2}}{2\left(\sigma_{X}^{2}+\sigma_{W}^{2}\right)}\right] \\
& =\frac{1}{\sqrt{2 \pi \sigma^{\prime 2}}} \exp \left[-\frac{\left(x-\mu^{\prime}\right)^{2}}{2 \sigma^{\prime 2}}\right] .
\end{aligned}
$$

Where,

$$
\sigma^{\prime 2}=\frac{\sigma_{X}^{2} \sigma_{W}^{2}}{\sigma_{X}^{2}+\sigma_{W}^{2}}
$$

We are interested in,

$$
\hat{X}_{M M S E}=E[X \mid Y]=\mu^{\prime} .
$$

To determine μ^{\prime} take $x=0$:

$$
\begin{aligned}
\frac{-\mu^{\prime 2}}{2 \frac{\sigma_{X}^{2} \sigma_{W}^{2}}{\sigma_{X}^{2}+\sigma_{W}^{2}}} & =\frac{-\mu_{X}^{2}}{2 \sigma_{X}^{2}}-\frac{y^{2}}{2 \sigma_{W}^{2}}+\frac{\left(y-\mu_{X}\right)^{2}}{2\left(\sigma_{X}^{2}+\sigma_{W}^{2}\right)} \\
\mu^{\prime 2} & =\frac{\sigma_{W}^{2} \mu_{X}^{2}}{\sigma_{X}^{2}+\sigma_{W}^{2}}+\frac{\sigma_{X}^{2} y^{2}}{\sigma_{X}^{2}+\sigma_{W}^{2}}-\frac{\sigma_{X}^{2} \sigma_{W}^{2}\left(y-\mu_{X}\right)^{2}}{\left(\sigma_{X}^{2}+\sigma_{W}^{2}\right)^{2}} \\
& =\frac{\sigma_{X}^{4} y^{2}+2 \mu_{X} \sigma_{X}^{2} \sigma_{W}^{2} y+\sigma_{W}^{4} \mu_{X}^{2}}{\left(\sigma_{X}^{2}+\sigma_{W}^{2}\right)^{2}} \\
& =\left(\frac{\sigma_{X}^{2} y+\sigma_{W}^{2} \mu_{X}}{\sigma_{X}^{2}+\sigma_{W}^{2}}\right)^{2}
\end{aligned}
$$

Therefore,

$$
\hat{X}_{M M S E}=E[X \mid Y]=\mu^{\prime}=\frac{\sigma_{X}^{2}}{\sigma_{X}^{2}+\sigma_{W}^{2}} Y+\frac{\sigma_{W}^{2} \mu_{X}}{\sigma_{X}^{2}+\sigma_{W}^{2}}
$$

2. Find the linear MMSE of X given Y.

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E[X Y]-E[X] E[Y] \\
& =E[X(X+W)]-E[X] E[X+W] \\
& =E\left[X^{2}\right]+E[X W]-\mu_{X}^{2} \\
& =\sigma_{X}^{2}+\mu_{X}^{2}+0-\mu_{X}^{2} \\
& =\sigma_{X}^{2} .
\end{aligned}
$$

Applying the general formula of LMMSE,

$$
\begin{aligned}
\hat{X}_{L M M S E} & =\frac{\operatorname{cov}(X, Y)}{\sigma_{Y}^{2}}\left(Y-\mu_{Y}\right)+\mu_{X} \\
& =\frac{\sigma_{X}^{2}}{\sigma_{X}^{2}+\sigma_{W}^{2}}\left(Y-\mu_{X}\right)+\mu_{X} \\
& =\frac{\sigma_{X}^{2}}{\sigma_{X}^{2}+\sigma_{W}^{2}} Y+\frac{\sigma_{W}^{2} \mu_{X}}{\sigma_{X}^{2}+\sigma_{W}^{2}}
\end{aligned}
$$

Remark 2. Notice that $\hat{X}_{L M M S E}=\hat{X}_{M M S E}$, in fact this is always the case if the random variable to estimate X, and the observation Y, are jointly gaussian.
3. Find the MSE.

Method 1: (Orthogonality principle)

$$
\begin{aligned}
E\left[\epsilon^{2}\right] & =E\left[(\hat{X}-X)^{2}\right] \\
& =|E[\epsilon(\hat{X}-X)]| \\
& =|E[\epsilon \hat{X}]-E[\epsilon X]| \\
& =|E[\epsilon X]| \\
& =\left|E[\hat{X} X]-E\left[X^{2}\right]\right| \\
& =\left|E\left[\frac{\sigma_{X}^{2}}{\sigma_{X}^{2}+\sigma_{W}^{2}} X Y+\frac{\sigma_{W}^{2} \mu_{X}}{\sigma_{X}^{2}+\sigma_{W}^{2}} X\right]-\sigma_{X}^{2}-\mu_{X}^{2}\right| \\
& =\left|\frac{\sigma_{X}^{2}\left(\sigma_{X}^{2}+\mu_{X}^{2}\right)}{\sigma_{X}^{2}+\sigma_{W}^{2}}+\frac{\sigma_{W}^{2} \mu_{X}^{2}}{\sigma_{X}^{2}+\sigma_{W}^{2}}-\sigma_{X}^{2}-\mu_{X}^{2}\right| \\
& =\frac{\sigma_{X}^{2} \sigma_{W}^{2}}{\sigma_{X}^{2}+\sigma_{W}^{2}} .
\end{aligned}
$$

Method 2: (Towering property + Corollary 1)

$$
\begin{aligned}
E\left[\epsilon^{2}\right] & =E\left[E\left[\epsilon^{2} \mid Y\right]\right] \\
& =E\left[E\left[\left(X-\hat{X}_{M M S E}\right)^{2} \mid Y\right]\right] \\
& =E\left[\sigma_{X \mid Y}^{2}\right] \quad(\text { corollary 1) } \\
& =E\left[\sigma^{\prime 2}\right] \quad \text { part 2) } \\
& =E\left[\frac{\sigma_{X}^{2} \sigma_{W}^{2}}{\sigma_{X}^{2}+\sigma_{W}^{2}}\right] \\
& =\frac{\sigma_{X}^{2} \sigma_{W}^{2}}{\sigma_{X}^{2}+\sigma_{W}^{2}} .
\end{aligned}
$$

2 MMSE Based on Vector Observation

Theorem 3. The Linear Minimum Mean-Square Estimate LMMSE $\hat{X}_{L M M S E}$ of X given an observed random vector $\underline{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ is given by

$$
\hat{X}_{L M M S E}=K_{X Y}^{T} K_{Y Y}^{-1}\left(\underline{Y}-\underline{\mu}_{Y}\right)+\mu_{X}
$$

where,

$$
\begin{aligned}
\mu_{X} & =E[X], \\
\underline{\mu}_{Y} & =\left(E\left[Y_{1}\right], E\left[Y_{2}\right], \ldots, E\left[Y_{n}\right]\right), \\
K_{Y Y} & =E\left[\underline{Y} \underline{Y}^{T}\right]-\mu_{Y} \mu_{Y}^{T}, \\
\text { and } K_{X Y} & =\left(\operatorname{Cov}\left[X Y_{1}\right], \operatorname{Cov}\left[X Y_{2}\right], \ldots, \operatorname{Cov}\left[X Y_{n}\right]\right)^{T},
\end{aligned}
$$

where $K_{Y Y}$ is the covariance matrix of Y.
Proof. First, let us assume that $\mu_{X}=0$ and $\underline{\mu}_{Y}=\underline{0}$. Then, we can write

$$
\begin{aligned}
\hat{X}_{L M M S E} & =a_{1} Y_{1}+a_{2} Y_{2}+\cdots+a_{n} Y_{n} \\
& =\underline{a}^{t} \underline{\underline{Y}} .
\end{aligned}
$$

By the orthogonality principle: $\left(X-\hat{X}_{L M M S E}\right) \perp Y_{i} \quad i=1,2, \ldots, n$,

$$
\begin{gathered}
E\left[\underline{a}^{t} \underline{Y} \cdot Y_{i}\right]=E\left[X Y_{i}\right] \quad i=1,2, \ldots, n, \\
E\left[\left(a_{1} Y_{1}+a_{2} Y_{2}+\cdots+a_{n} Y_{n}\right) Y_{i}\right]=E\left[X Y_{i}\right] \quad i=1,2, \ldots, n .
\end{gathered}
$$

So, we get the following $n \times n$ linear system with n unknowns, a_{1}, \ldots, a_{n} :

$$
\begin{gathered}
a_{1} E\left[Y_{1}^{2}\right]+a_{2} E\left[Y_{1} Y_{2}\right]+\cdots+a_{n} E\left[Y_{1} Y_{n}\right]=E\left[X Y_{1}\right], \\
a_{1} E\left[Y_{2} Y_{1}\right]+a_{2} E\left[Y_{2}^{2}\right]+\cdots+a_{n} E\left[Y_{2} Y_{n}\right]=E\left[X Y_{2}\right] \\
\vdots \\
a_{1} E\left[Y_{n} Y_{1}\right]+a_{2} E\left[Y_{n} Y_{2}\right]+\cdots+a_{n} E\left[Y_{n}^{2}\right]=E\left[X Y_{n}\right] .
\end{gathered}
$$

In matrix form, this can be written as

$$
\begin{aligned}
& \underline{a}^{t} K_{Y Y}=K_{X Y}^{t}, \\
& \underline{a}^{t}=K_{X Y}^{t} K_{Y Y}^{-1} .
\end{aligned}
$$

Where,

$$
K_{Y Y}=\left[\begin{array}{cccc}
E\left[Y_{1}^{2}\right] & E\left[Y_{1} Y_{2}\right] & \ldots & E\left[Y_{1} Y_{n}\right] \\
E\left[Y_{2} Y_{1}\right] & E\left[Y_{2}^{2}\right] & \ldots & E\left[Y_{2} Y_{n}\right] \\
\vdots & \vdots & & \vdots \\
E\left[Y_{n} Y_{1}\right] & E\left[Y_{n} Y_{2}\right] & \ldots & E\left[Y_{n}^{2}\right]
\end{array}\right]
$$

and,

$$
K_{X Y} \stackrel{\text { def }}{=}\left[\begin{array}{c}
\operatorname{Cov}\left[X Y_{1}\right] \\
\operatorname{Cov}\left[X Y_{2}\right] \\
\vdots \\
\operatorname{Cov}\left[X Y_{n}\right]
\end{array}\right]=\left[\begin{array}{c}
E\left[X Y_{1}\right] \\
E\left[X Y_{2}\right] \\
\vdots \\
E\left[X Y_{n}\right]
\end{array}\right] .
$$

So,

$$
\hat{X}_{L M M S E}=K_{X Y}^{T} K_{Y Y}^{-1} \underline{\underline{Y}} .
$$

In general, if $\mu_{X} \neq 0$ and $\underline{\mu}_{Y} \neq \underline{0}$,
Apply the same method above to $X^{\prime}=X-\mu_{X}$ and $\underline{Y}^{\prime}=\underline{Y}-\underline{\mu}_{Y}$, then we get

$$
\hat{X}_{L M M S E}=K_{X Y}^{T} K_{Y Y}^{-1}\left(\underline{Y}-\underline{\mu}_{Y}\right)+\mu_{X} .
$$

Example 2. Multiple Antenna Receiver
Assume 2 antennas receive signals independently. $\quad Y_{1}=X+N_{1}, \quad Y_{2}=X+N_{2}$, $X \sim N(0,2), \quad N_{1}, N_{2} \sim N(0,1)$. Assume they are all independent.

1. Find the LMMSE of X given Y_{1}.

$$
\begin{gathered}
\hat{X}_{L M M S E}=\frac{\operatorname{Cov}\left(X Y_{1}\right)}{V\left(Y_{1}\right)} Y_{1} . \\
\operatorname{Cov}\left(X Y_{1}\right)=E\left[X Y_{1}\right]-E[X] E\left[Y_{1}\right] \quad \text { Note that } E[X] E\left[Y_{1}\right]=0 \\
=E\left[X\left(X+N_{2}\right)\right] \\
=E\left[X^{2}\right]+E\left[X N_{1}\right]=2+0=2 . \\
\\
V\left(Y_{1}\right)=V(X)+V\left(N_{1}\right)=2+1=3 .
\end{gathered}
$$

Therefore, $\hat{X}_{L M M S E}=\frac{2}{3} Y_{1}$
2. Find the LMMSE of X given Y_{1} and Y_{2}.

Usually, we want to find that $\hat{X}=a_{1} Y_{1}+a_{2} Y_{2}+C$.
In this case, $C=0$.
While $\quad X-\hat{X} \perp Y_{1}, \quad$ and $\quad X-\hat{X} \perp Y_{2}$,
we can obtain,

$$
\begin{aligned}
& E\left[\left(X-a Y_{1}-a_{2} Y_{2}\right) Y_{1}\right]=0 . \\
& E\left[\left(X-a Y_{1}-a_{2} Y_{2}\right) Y_{2}\right]=0 . \\
& a_{1} E\left[Y_{1}^{2}\right]+a_{2} E\left[Y_{1} Y_{2}\right]=E\left[X Y_{1}\right] . \\
& a_{1} E\left[Y_{1} Y_{2}\right]+a_{2} E\left[Y_{2}^{2}\right]=E\left[X Y_{2}\right] . \\
& K_{Y_{1} Y_{2}}\left[\begin{array}{c}
a_{1} \\
a_{2}
\end{array}\right]=K_{X Y} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
{\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=K_{Y_{1} Y_{2}}^{-1} K_{X Y} } & =\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \\
2
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
3 & -2 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right]
\end{aligned}
$$

$\Longrightarrow \quad \hat{X}_{L M M S E}=\frac{2}{5}\left(Y_{1}+Y_{2}\right)$.
3. Compare the MSE of part 1 and part 2

From part 1 we have $\hat{X}_{1}=\frac{2}{3} Y_{1}$, then

$$
\begin{aligned}
M S E_{1} & =E\left[(X-\hat{X})^{2}\right] \\
& =E\left[X^{2}\right]-2 E[X \hat{X}]+E\left[\hat{X}^{2}\right] \\
& =2-(2) \frac{2}{3} E\left[X Y_{1}\right]+\frac{4}{9} E\left[Y_{1}^{2}\right] \\
& =2-\frac{4}{3}(2)+\frac{4}{9}(3) \\
& =\frac{2}{3} \\
& =0.66 .
\end{aligned}
$$

From part 2 we have $\hat{X}_{2}=\frac{2}{5}\left(Y_{1}+Y_{2}\right)$, then

$$
\begin{aligned}
M S E_{2} & =E\left[X^{2}\right]-2 E[X \hat{X}]+E\left[\hat{X}^{2}\right] \\
& =2-(2) \frac{2}{5}\left(E\left[X Y_{1}\right]+E\left[X Y_{2}\right]\right)+\frac{4}{25}\left(E\left[Y_{1}^{2}\right]+2 E\left[Y_{1} Y_{2}\right]+E\left[Y_{2}^{2}\right]\right) \\
& =2-\frac{4}{5}(2+2)+\frac{4}{25}(3+2(2)+3) \\
& =\frac{2}{5}=0.4
\end{aligned}
$$

Therefore, $M S E_{2}<M S E_{1}$, which is intuitive since in part 2 we can benefit from the additional observation Y_{2} to improve our estimation.

3 Finding The MMSE Using The Orthogonality Principle

Theorem 4 (The Orthogonality Principle). The MMSE of \hat{X} of X given Y, where $\hat{X}=g(Y)$, where $g(*) \in \Gamma$ and $\left(\Gamma^{*}\right.$ is all functions, linear functions, constants $)$, is found when $\hat{X}=\min E\left[(X-g(Y))^{2}\right]$ where the minimization is over $g(*) \in \Gamma$. The $M M S E=E\left[X^{2}\right]-E\left[\hat{X}^{2}\right]$. In this case, \hat{X} is unique and the error is orthogonal to the observation $((X-\hat{X}) \perp Y)$. The ${ }^{*}$ indicates there are some technical conditions on gamma but they are not discussed here.

Proof. Proof is omitted.

Example 3. $X=\left(X_{1}, X_{2}, X_{3}\right)$ are jointly Gaussian and, $\underline{\mu}_{X}=(0,0,0)$,

$$
K_{X X}=R_{X X}=\left[\begin{array}{ccc}
1 & 0.2 & 0.1 \\
0.2 & 2 & 0.3 \\
0.1 & 0.3 & 4
\end{array}\right]
$$

1. Find the LMMSE of X_{3} Given X_{1} and X_{2}.

Usually, we write $\hat{X}=a_{1} Y_{1}+a_{2} Y_{2}+c$. When $\mu_{x}=0$, we have $c=0$. Therefore, we write $\hat{X}_{3}=a_{1} X_{1}+a_{2} X_{2}$. By the Orthogonality Principle, the error \perp observation space, that is

$$
\begin{aligned}
\left(X_{3}-\hat{X}_{3}\right) \perp X_{1} & \Longrightarrow E\left[\left(X_{3}-\hat{X}_{3}\right) X_{1}\right]=0 \\
& \Longrightarrow a_{1} E\left[X_{1}^{2}\right]+a_{2} E\left[X_{1} X_{2}\right]=E\left[X_{1} X_{3}\right] \\
\left(X_{3}-\hat{X}_{3}\right) \perp X_{2} & \Longrightarrow E\left[\left(X_{3}-\hat{X}_{3}\right) X_{2}\right]=0 \\
& \Longrightarrow a_{1} E\left[X_{1} X_{2}\right]+a_{2} E\left[X_{2}^{2}\right]=E\left[X_{2} X_{3}\right]
\end{aligned}
$$

Denote $Y=\left(X_{1}, X_{2}\right)^{T}$. In matrix form,

$$
\begin{gathered}
{\left[\begin{array}{cc}
E\left[X_{1}^{2}\right] & E\left[X_{1} X_{2}\right] \\
E\left[X_{1} X_{2}\right] & E\left[X_{2}^{2}\right]
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
E\left[X_{1} X_{3}\right] \\
E\left[X_{2} X_{3}\right]
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=K_{Y Y}^{-1} K_{X_{3} Y}} \\
K_{Y Y}=\left[\begin{array}{cc}
1 & 0.2 \\
0.2 & 2
\end{array}\right] \Rightarrow K_{Y Y}^{-1}=\left[\begin{array}{cc}
1.0204 & -0.102 \\
-0.102 & 0.5102
\end{array}\right] \\
K_{X_{3} Y}^{T}=\left[\operatorname{Cov}\left(X_{3} X_{1}\right) \quad \operatorname{Cov}\left(X_{3} X_{2}\right)\right]=\left[\begin{array}{ll}
0.1 & 0.3
\end{array}\right]
\end{gathered}
$$

Therefore,

$$
\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
0.0714 \\
0.1429
\end{array}\right]
$$

Hence,

$$
\hat{X}_{3}=0.0714 X_{1}+0.1429 X_{2} .
$$

2. Find the $M S E$ corresponding to \hat{X}_{3}.

$$
\begin{aligned}
M S E & =E\left[\left(X_{3}-\hat{X}_{3}\right)^{2}\right]=E\left[X_{3}^{2}\right]-E\left[\hat{X}_{3}^{2}\right] \\
& =4-E\left[\left(a_{1} X_{1}+a_{2} X_{2}\right)^{2}\right] \\
& =4-a_{1}^{2} E\left[X_{1}^{2}\right]-a_{2}^{2} E\left[X_{2}^{2}\right]-2 a_{1} a_{2} E\left[X_{1} X_{2}\right] \\
& =3.95
\end{aligned}
$$

