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1 Random Vector

Definition 1. A random vector
¯
X = (X1, X2, . . . , Xn)T, is a vector of random variables Xi,

i = 1, . . . , n.

Definition 2. The mean vector of
¯
X, denoted by

¯
µ, is

¯
µ = (µ1, µ2, . . . , µn)T where µi =

E [Xi] , i = 1, . . . , n.

Definition 3. The covariance matrix KXX or K, of
¯
X is an n× n matrix defined as

KXX
∆
= E

[(
¯
X −

¯
µ
) (

¯
X −

¯
µ
)T]

.

KXX = E




X1 − µ1

X2 − µ2
...

Xn − µn

( X1 − µ1 X2 − µ2 . . . Xn − µn
)T
 ,

= E


(X1 − µ1)2 (X1 − µ1)(X2 − µ2) · · · (X1 − µ1)(Xn − µn)

(X2 − µ2)(X1 − µ1) (X2 − µ2)2 · · · (X2 − µ2)(Xn − µn)
...

...
. . .

...
(Xn − µn)(X1 − µ1) (Xn − µn)(X2 − µ2) · · · (Xn − µn)2

 ,

=


σ2

1 K12 · · · K1n

K21 σ2
2 · · · K2n

...
...

. . .
...

Kn1 Kn2 · · · σ2
n

 .
Remark: The matrixKXX is real symmetric andKij = Kji = cov (Xi, Xj) = E [(Xi − µi) (Xj − µj)] =
K, and σ2

i = V (Xi).

Definition 4. The correlation matrix RXX , or R, is defined as R = E
[
¯
X

¯
XT
]
.

Corollary 1. K = R−
¯
µ

¯
µT .

Example 1.
¯
X = (X1, X2) ,

Cov (X1, X2) = E [X1, X2]− µ1µ2,

KXX =

[
σ2
X1

cov (X1, X2)

cov (X1, X2) σ2
X2

]
=

[
E
[
X2

1

]
E [X1X2]

E [X1X2] E
[
X2

2

] ]
−
[

µ2
1 µ1µ2

µ1µ2 µ2
2

]
.

1



Definition 5. For any random vectors
¯
X and

¯
Y of same length.

1. If the cross-covariance matrix KXY = E
[(

¯
X −

¯
µX
) (

¯
Y −

¯
µY
)]

= E
[
¯
X

¯
Y T
]
−

¯
µX

¯
µTY = 0 ⇒

we say that
¯
X and

¯
Y are uncorrelated.

2. If E
[
¯
X

¯
Y T
]

= 0⇒ we say that
¯
X and

¯
Y are orthogonal.

2 Properties of Covariance Matrices

Can any n× n real symmetric matrix be a covariance matrix? Answer : No.

Example 2. M =

[
2 0
0 −2

]
, can it be covariance matrix of a vector

¯
X =

(
X1

X2

)
?

No. Because V [X2] = −2 < 0.

Example 3. Consider matrix M =

[
2 3
3 2

]
, can it be a covariance matrix?

Take Y = X1 −X2,

V (Y ) = V (X1 −X2)

= V (X1) + V (X2)− 2cov(X1, X2)

= 2 + 2− 2× 3

= −2

So M cannot be covariance matrix.

Therefore we want for any linear combination of
¯
X = (X1, . . . , Xn), say

¯
Y = a1X1 + . . . ,+anXn,

to have V (Y ) ≥ 0.

V (Y ) = E(Y 2)− (E(Y ))2

E(Y ) = E[
¯
aT

¯
X] =

¯
aT

¯
µX

E[Y 2] = E[(
¯
aT

¯
X)(

¯
aT

¯
X)] = E[

¯
aT

¯
X ·

¯
XT

¯
a]

=
¯
aTE[

¯
X ·

¯
XT ]

¯
a

=⇒ V (Y ) =
¯
aTE[

¯
X ·

¯
XT ]

¯
a−

¯
aT

¯
µX

¯
µTX¯

a

=
¯
aTKXX

¯
a should be ≥ 0

So we want M to satisfy
¯
aTM

¯
a ≥ 0, for any

¯
a.

Definition 6. A matrix M is positive semi-definite (P.S.D) if

¯
XTM

¯
X ≥ 0 ∀

¯
X ∈ Rn (we say M � 0).

Example 4. The identity matrix I is P.S.D. because for any
¯
X = (X1, X2)T ,

¯
XT I

¯
X =

(
X1 X2

) [ 1 0
0 1

](
X1

X2

)
,

= ||
¯
X||2 ≥ 0.

Similarly, any diagonal matrix with all non-negative diagonal entries is psd.
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Example 5. Consider the same matrix M of example 3,

(
1 −1

) [ 2 3
3 2

](
1
−1

)
=
(
−1 1

)( 1
−1

)
= −2 < 0.

Thus, this matrix is not P.S.D.

Theorem 1. Any covariance matrix K is P.S.D.

Proof. Let
¯
X = (X1, X2, . . . , Xn)T be a a zero-mean random vector, i.e., E [

¯
X] = (0, 0, · · · , 0)T ,

and let
K = E

[
¯
X

¯
XT
]
.

Our goal is to prove that K � 0, which means that if we pick
¯
Z = (Z1, Z2, · · · , Zn)T we need to

show that
¯
ZTK

¯
Z ≥ 0.

¯
ZTK

¯
Z =

¯
ZTE

[
¯
X

¯
XT
]

¯
Z, (1)

= E
[
¯
ZT

¯
X

¯
XT

¯
Z
]
, (2)

= E
[(

¯
ZT

¯
X
) (

¯
ZT

¯
X
)T ]

, (3)

= E
[
Y 2
]
≥ 0. (4)

(5)

Where equation (2) is a result of the linearity of expectations and equation (3) results from

(ABT ) = BTAT ,

and in equation (4) Y =
¯
ZT

¯
X is a single random variable.

Definition 7. The eigenvalues of a matrix M are the scalars λ such that

∃
¯
Φ 6= 0,M

¯
Φ = λ

¯
Φ. (6)

The vectors
¯
Φ are called eigenvectors. Typically we choose φi such that ||φi|| = 1.

Theorem 2. A real symmetric matrix M is P.S.D if and only if all its eigenvalues are non-negative.

Theorem 3. Let M be a real symmetric matrix then M has n mutually orthogonal unit eigenvectors
φ1, . . . , φn.

Proof. From linear Algebra or in the textbook.

Example 6. Find the eigenvalues and eigenvectors of the matrix M =

[
4 2
2 4

]
.

1. Eigenvalues :

det

([
4− λ 2

2 4− λ

])
= 16 + λ2 − 8λ− 4 = 0,

λ1 = 6 and λ2 = 2 therefore M � 0.
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2. Eigenvectors :

For λ1 = 2 set
¯
Φ1 =

[
Φ11 Φ21

]T
such that[

4 2
2 4

] [
Φ11

Φ12

]
= 2

[
Φ11

Φ12

]
.

4Φ11 + 2Φ12 = 2Φ11

2Φ11 + 4Φ12 = 2Φ12

}
⇒ Φ11 = −Φ21 ⇒

¯
Φ1 =

[
1 −1

]T
.

For λ2 = 6: we repeat the same steps and get

¯
Φ2 =

[
1√
2

1√
2

]T
.

Claim 1. (Eigenvalue Decomposition) The matrix M having
¯
Φ1,

¯
Φ2 as eigenvectors can be ex-

pressed as
M = UΛUT,

Where

U =
[

¯
Φ1

¯
Φ2

]
=

1√
2

[
1 1
−1 1

]
,

Λ =

[
λ1 0
0 λ2

]
=

[
2 0
0 6

]
.

Check:

UΛUT =
1√
2

1√
2

[
1 1
−1 1

] [
2 0
0 6

] [
1 −1
1 1

]
,

=
1

2

[
2 6
−2 6

] [
1 −1
1 1

]
,

=

[
4 2
2 4

]
,

= M.

Theorem 4. (Eigenvalue Decomposition Theorem) Let M be a real symmetric matrix with eigen-
values λ1, λ2, . . . , λn and corresponding eigenvectors

¯
Φ1,

¯
Φ2, . . . ,

¯
Φn then

UTMU = Λ,

With :

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .
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Proof. We can write from equation (6) :

MU = UΛ and U =

 | |

¯
Φ1 · · ·

¯
Φn

| |

 ,
U−1MU = Λ,

Since U is a real symmetric matrix :

UT = U−1 ⇒ Λ = UTMU,

and

M = (UT)−1ΛU−1,

= UΛUT.

Other way to prove it:

Starting with the fact that the covariance matrix is a real symmetric matrix, then its eigenvectors
are orthogonal. If U = [U1, U2, .., UN ], then UTU = I.

UTAU =


UT1
UT2

UTN

A [U1, U2, .., UN ]

=


UT1 AU1 UT1 AU2 UT1 AU3

UT2 AU1 UT2 AU2

UT3 AU1



=


UT1 λ1U1 UT1 λ2U2 UT1 λ3U3

UT2 λ1U1 UT2 λ2U2

UT3 λ1U1



=


λ1 0 0
0 λ2

0 λ3


= Λ

Example 7. Let
¯
X = (X1, X2)T and K =

[
4 2
2 4

]
.

Suppose X1 and X2 are correlated with cov (X1, X2) = 2.
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Question: Find A such that
¯
Y = A

¯
X,

¯
Y = (Y1, Y2)T and Y1 & Y2 are uncorrelated.

Solution: Let

A =

[
a11 a12

a21 a22

]
¯
Y =

(
Y1 Y2

)T
⇒ Y1 = a11X1 + a12X2,

Y2 = a21X1 + a22X2.

We know that
¯
X ∼ N(0, 1) and

¯
Y ∼ N(0, 1), we need KY Y to be

KY Y =

[
σ2
Y1

0

0 σ2
Y2

]
.

Recall that
¯
Y = A

¯
X. Hence,

¯
µY = E [

¯
Y ] ,

= E [A
¯
X] ,

= AE [
¯
X] ,

= A
¯
µX .

By definition, the covariance matrix KY Y is

KY Y = E
[
(
¯
Y − µY ) (

¯
Y − µY )T

]
,

= E
[
A (

¯
X − µX)

(
A (

¯
X − µX)T

)]
,

= AE
[
(
¯
X − µX)

(
A (

¯
X − µX)T

)]
,

= AKXXA
T.

By theorem 4 (Eigenvalue Decomposition Theorem) we have:

Λ = UTMU.

Therefore, we need to pick the matrix A such that A = UT for KY Y to be a diagonal matrix.

A =
1√
2

[
1 −1
1 1

]
.

This leads to the final result

Y1 =
1√
2

(X1 −X2),

Y2 =
1√
2

(X1 +X2).
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3 Multidimensional Jointly Gaussian Distribution

Recall that if two random variables are jointly Gaussian, then the marginal distributions are also
Gaussian, but the converse is not necessarily true.

Definition 8. A vector
¯
X = (X1, X2, . . . , Xn)T with E(

¯
X) =

¯
µ = (µ1, µ2, . . . , µn)T is called jointly

Gaussian if

f
¯
X(

¯
x) =

1

(2π)n/2
√
|KXX |

exp

[
−1

2
(
¯
X −

¯
µ)TK−1

XX(
¯
X −

¯
µ)

]
,

where, |KXX | = det(KXX).

Example 8. For n = 1,

f
¯
X(

¯
x) =

1

(2π)1/2σ
exp

[
−1

2
(
¯
X −

¯
µ)T

1

σ2
(
¯
X −

¯
µ)

]
.

Example 9. For n = 2,
¯
X = (X1, X2)T and the covariance matrix KXX is defined by

KXX =

[
σ2
X1

Cov(X1, X2)

Cov(X1, X2) σ2
X2

]
,

=

[
σ2
X1

ρσX1σX2

ρσX1σX2 σ2
X2

]
.

And,

det(KXX) = σ2
X1
σ2
X2
− ρ2σ2

X1
σ2
X2
,

= (1− ρ2)σ2
X1
σ2
X2
.

Hence,

fX1X2(x1, x2) =
1

(2π)σX1σX2

√
1− ρ2

exp

[
−1

2(1− ρ2)
β

]
,

Where,

β =

(
(xX1 − µX1)2

σX1

− 2ρ

(
xX1 − µX1

σX1

)(
xX2 − µµX2

σX2

)
+

(xX2 − µX2)2

σX2

)
.

Example 10. Assume
¯
X is jointly Gaussian and Xi’s are uncorrelated. Prove that Xi’s are

independent.

Proof. Assume
¯
µ =

¯
0 (E(Xi) = 0), KXX = I (σ2

Xi
= 1).

f
¯
X(

¯
X) =

1

(2π)n/2
exp(−1

2 ¯
XT I

¯
X)

=
1

(
√

2π)n
exp

(
−1

2
(x2
X1

+ x2
X2

+ · · ·+ x2
Xn

)

)
=

n∏
i=1

1√
2π
e−

x2Xi
2
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Each 1√
2π
e−

x2Xi
2 is equal to fXi(Xi), therefore Xi’s are independent.

Example 11. Let X, Y, Z be three jointly Gaussian random variables with µX = µY = µZ = 0.

K =

 1 0.2 0.3
0.2 1 0.3
0.3 0.2 1

 ,
Question: Find the pdf fX,Z(x, z).

Answer: From the given information, X and Z are jointly Gaussian and

KXZ =

[
1 0.3

0.3 1

]
.

From KXZ we know that:
σX = σZ = 1

Cov[XZ] = 0.3

}
⇒ ρ =

0.3

1
= 0.3.

Therefore,

fXZ(x, z) =
1

(2π)
√

0.91
exp

[
−1

2(0.91)

(
x2 − 0.6xz + z2

)]
.

Theorem 5. Let
¯
X be jointly Gaussian, A be an invertible matrix and,

¯
Y = A

¯
X.

Then,
¯
Y is jointly Gaussian.

Proof. From Chapter 3, fY (y) = fX(x)
|A| but,

¯
X = A−1

¯
Y,

Therefore,

f
¯
Y (Y ) =

1

|A|
f

¯
X

(
A−1Y

)
,

f
¯
Y (Y ) =

1

(2π)n/2
√
|KXX ||A|︸ ︷︷ ︸

β

exp

[
−1

2

((
A−1

¯
Y −

¯
µX
)T
K−1
XY (A−1

¯
Y −

¯
µX)

)]
︸ ︷︷ ︸

α

.

Recall that

¯
µY = E[

¯
Y ], (7)

= AE[
¯
X], (8)

= A
¯
µX , (9)

⇒
¯
µX = A−1

¯
µY . (10)
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In addition, from last lecture we have,

KY Y = E[
¯
Y

¯
Y T ]−

¯
µY

¯
µTY ,

= AKXXA
T .

Hence,

α =
−1

2
(A−1

¯
Y −

¯
µX)TK−1

XY (A−1

¯
Y −

¯
µX), (11)

=
−1

2
A−1(

¯
Y −

¯
µY )TK−1

XYA
−1(

¯
Y −

¯
µY ), (12)

=
−1

2
(
¯
Y −

¯
µY )T A−1TK−1

XYA
−1︸ ︷︷ ︸

KY Y

(
¯
Y −

¯
µY ). (13)

Where, equation (12) result by substituting
¯
µX by A−1

¯
µY (from equation (10)). We still need to

show that β =
√
|KY Y |.

det(KY Y ) = det(AKXXA
T ),

= det(A) det(KXX) det(AT ),

= det2(A) det(KXX),

⇒
√
|KY Y | = |A|

√
|KXX |.

Hence,
¯
Y is jointly Gaussian with

¯
µY = A

¯
µX and KY Y = AKXXA

T .

Example 12. Transform
¯
X (jointly Gaussian) into

¯
Y = (Y1, . . . , Yn) where Yi are iid.

Since for
¯
Y to be iid,

KY Y =


σ2
Y1

0 · · · 0

0 σ2
Y1
· · · 0

...
...

. . .
...

0 0 · · · σ2
Yn

 ,
where the covariance is zero and uncorrelated jointly Gaussian random variables are independent.
Pick random vector

¯
Y = A

¯
X, where A is to be chosen such that:

KY Y = AKXXA
T .

Since KXX is symmetric, from the Eigenvalue Decomposition Theorem (see previous lecture) we
have,

UTKXXU = Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 . . . λn

 ,
where λn are the eigenvalues of KXX and U = [

¯
Φ1,

¯
Φ2, . . . ,

¯
Φn] is the eigenvector matrix. Hence,

A = UT (Hint: Use the “eig” function in Matlab to generate the matrices).
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Lemma 1. If X1, X2, . . . , Xn are jointly Gaussian random variables, then

Z1 = a1X1 + a2X2 + · · ·+ anXn,

is a Gaussian random variable ∀ai such that ∃ i for which ai 6= 0.

Remark 1. When asked to find the pdf fZ1(Z1), all we have to do is find E[Z1] and V (Z1).

Let
¯
a = (a1, . . . , an)T , Z1 can be written as Z1 =

¯
aT

¯
X and

E[Z1] =
¯
aT

¯
µX .

However, since X1, X2, . . . , Xn might be dependent,

V (Z1) 6= a2
1V (X1) + · · ·+ a2

nV (Xn) .

For example for n = 2 and
¯
µX =

¯
0,

V (Z1) = E
[
(a1X1 + a2X2)2

]
,

= E
[
a2

1X
2
1 + a2

2X
2
2 + 2a1a2X1X2

]
,

= a2
1σ

2
X1

+ a2
2σ

2
X1

+ 2a1a2Cov (X1, X2) .

In general:

V ar (Z1) = E [Z1]2 − µ2
Z1
,

= E
[
Z1Z

T
1

]
− µZ1µ

T
Z1
,

= E
[
¯
aT

¯
X

¯
XT

¯
a
]
−

¯
aT

¯
µX

¯
µTX¯

a,

=
¯
aT
(
E
[
¯
X

¯
XT
]
− µXµTX

)
¯
a,

=
¯
aTKXX

¯
a ∈ R.

Proof. (of lemma 1) Let, [
Y1

Y2

]
=

[
1 1
3 2

] [
X1

X2

]
=

[
X1 +X2

3X1 + 2X2

]
.

Y1 = X1 +X2 & Y2 = 3X1 +2X2 are Gaussian (theorem 5). We can think of Z1 being a component
of

¯
Z = (Z1, Z2, . . . , Zn)T where,

Z1

Z2

. . .
Zn

 =


a1 a2 · · · an
0 1 . . . 0
...

...
. . .

...
0 0 · · · 1


︸ ︷︷ ︸

A


X1

X2
...
Xn

 =


a1X1 + a2X2 + · · ·+ anXn

X2
...
Xn

 .

We know that A is invertible (full rank) which means that
¯
Z is jointly Gaussian (theorem 5). Thus,

each component of
¯
Z is Gaussian, in particular Z1.

Remark 2. Any linear combination of the components of a jointly Gaussian random vector is a
Gaussian random variable.
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