Chapter 5: Random Vectors

Dr. Salim El Rouayheb
Scribe: H. Xie, L. Gan, W. Yi, Jaijo, R. Tajeddine, S. Jones, Y. Yang, L. Liu

1 Random Vector

Definition 1. A random vector $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\mathrm{T}}$, is a vector of random variables X_{i}, $i=1, \ldots, n$.

Definition 2. The mean vector of \underline{X}, denoted by $\underline{\mu}$, is $\underline{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{\mathrm{T}}$ where $\mu_{i}=$ $E\left[X_{i}\right], i=1, \ldots, n$.
Definition 3. The covariance matrix $K_{X X}$ or K, of \underline{X} is an $n \times n$ matrix defined as

$$
\begin{aligned}
K_{X X} \triangleq E\left[(\underline{X}-\underline{\mu})(\underline{X}-\underline{\mu})^{\mathrm{T}}\right]
\end{aligned} K_{K_{X X}}=E\left[\left(\begin{array}{c}
X_{1}-\mu_{1} \\
X_{2}-\mu_{2} \\
\vdots \\
X_{n}-\mu_{n}
\end{array}\right)\left(\begin{array}{llll}
X_{1}-\mu_{1} & X_{2}-\mu_{2} & \ldots & \left.X_{n}-\mu_{n}\right)^{\mathrm{T}}
\end{array}\right], ~\left(\begin{array}{cccc}
\left(X_{1}-\mu_{1}\right)^{2} & \left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right) & \cdots & \left(X_{1}-\mu_{1}\right)\left(X_{n}-\mu_{n}\right) \\
& =E\left[\begin{array}{cccc}
\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{2}-\mu_{2}\right)^{2} & \cdots & \left(X_{2}-\mu_{2}\right)\left(X_{n}-\mu_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\left(X_{n}-\mu_{n}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{n}-\mu_{n}\right)\left(X_{2}-\mu_{2}\right) & \cdots & \left(X_{n}-\mu_{n}\right)^{2}
\end{array}\right], \\
& =\left[\begin{array}{ccc}
K_{12}^{2} & \cdots & K_{1 n} \\
K_{21} & \sigma_{2}^{2} & \cdots \\
\vdots & \vdots & K_{2 n} \\
\vdots & \vdots \\
K_{n 1} & K_{n 2} & \cdots
\end{array}\right] .
\end{array}\right.\right.
$$

Remark: The matrix $K_{X X}$ is real symmetric and $K_{i j}=K_{j i}=\operatorname{cov}\left(X_{i}, X_{j}\right)=E\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]=$ K, and $\sigma_{i}^{2}=V\left(X_{i}\right)$.
Definition 4. The correlation matrix $R_{X X}$, or R, is defined as $R=E\left[\underline{X} \underline{X}^{T}\right]$.
Corollary 1. $K=R-\underline{\mu} \underline{\mu}^{T}$.
Example 1. $X=\left(X_{1}, X_{2}\right)$,

$$
\begin{gathered}
\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left[X_{1}, X_{2}\right]-\mu_{1} \mu_{2}, \\
K_{X X}=\left[\begin{array}{cc}
\sigma_{X_{1}}^{2} & \operatorname{cov}\left(X_{1}, X_{2}\right) \\
\operatorname{cov}\left(X_{1}, X_{2}\right) & \sigma_{X_{2}}^{2}
\end{array}\right]=\left[\begin{array}{cc}
E\left[X_{1}^{2}\right] & E\left[X_{1} X_{2}\right] \\
E\left[X_{1} X_{2}\right] & E\left[X_{2}^{2}\right]
\end{array}\right]-\left[\begin{array}{cc}
\mu_{1}^{2} & \mu_{1} \mu_{2} \\
\mu_{1} \mu_{2} & \mu_{2}^{2}
\end{array}\right] .
\end{gathered}
$$

Definition 5. For any random vectors \underline{X} and \underline{Y} of same length.

1. If the cross-covariance matrix $K_{X Y}=E\left[\left(\underline{X}-\underline{\mu}_{X}\right)\left(\underline{Y}-\underline{\mu}_{Y}\right)\right]=E\left[\underline{X}^{Y} \underline{Y}^{T}\right]-\underline{\mu}_{X} \underline{\mu}_{Y}^{T}=\mathbf{0} \Rightarrow$ we say that X and \underline{Y} are uncorrelated.
2. If $E\left[\underline{X} \underline{Y}^{T}\right]=0 \Rightarrow$ we say that \underline{X} and \underline{Y} are orthogonal.

2 Properties of Covariance Matrices

Can any $n \times n$ real symmetric matrix be a covariance matrix? Answer : No.
Example 2. $M=\left[\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right]$, can it be covariance matrix of a vector $\underline{X}=\binom{X_{1}}{X_{2}}$?
No. Because $V\left[X_{2}\right]=-2<0$.
Example 3. Consider matrix $M=\left[\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right]$, can it be a covariance matrix?
Take $Y=X_{1}-X_{2}$,

$$
\begin{aligned}
V(Y) & =V\left(X_{1}-X_{2}\right) \\
& =V\left(X_{1}\right)+V\left(X_{2}\right)-2 \operatorname{cov}\left(X_{1}, X_{2}\right) \\
& =2+2-2 \times 3 \\
& =-2
\end{aligned}
$$

So M cannot be covariance matrix.
Therefore we want for any linear combination of $X=\left(X_{1}, \ldots, X_{n}\right)$, say $\underline{Y}=a_{1} X_{1}+\ldots,+a_{n} X_{n}$, to have $V(Y) \geq 0$.

$$
\begin{aligned}
V(Y) & =E\left(Y^{2}\right)-(E(Y))^{2} \\
E(Y) & =E\left[\underline{a}^{T} \underline{X}\right]=\underline{a}^{T} \underline{\mu}_{X} \\
E\left[Y^{2}\right] & =E\left[\left(\underline{a}^{T} \underline{X}\right)\left(\underline{a}^{T} \underline{X}\right)\right]=E\left[\underline{a}^{T} \underline{X} \cdot \underline{X}^{T} \underline{a}\right] \\
& =\underline{a}^{T} E\left[\underline{X} \cdot \underline{X}^{T}\right] \underline{a} \\
\Longrightarrow V(Y) & =\underline{a}^{T} E\left[\underline{X} \cdot \underline{X}^{T}\right] \underline{a}-\underline{a}^{T} \underline{\mu}_{X} \underline{\mu}_{X}^{T} \underline{a} \\
& =\underline{a}^{T} K_{X X} \underline{a} \quad \text { should be } \geq 0
\end{aligned}
$$

So we want M to satisfy $\underline{a}^{T} M \underline{a} \geq 0$, for any \underline{a}.
Definition 6. A matrix M is positive semi-definite (P.S.D) if

$$
\underline{X}^{T} M \underline{X} \geq 0 \quad \forall \underline{X} \in \mathbb{R}^{n}(\text { we say } M \succeq 0)
$$

Example 4. The identity matrix I is P.S.D. because for any $X=\left(X_{1}, X_{2}\right)^{T}$,

$$
\begin{aligned}
\underline{X}^{T} I \underline{X} & =\left(\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\binom{X_{1}}{X_{2}} \\
& =\|\underline{X}\|^{2} \geq 0
\end{aligned}
$$

Similarly, any diagonal matrix with all non-negative diagonal entries is psd.

Example 5. Consider the same matrix M of example 3,

$$
\left(\begin{array}{ll}
1 & -1
\end{array}\right)\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right]\binom{1}{-1}=\left(\begin{array}{ll}
-1 & 1
\end{array}\right)\binom{1}{-1}=-2<0 .
$$

Thus, this matrix is not P.S.D.
Theorem 1. Any covariance matrix K is P.S.D.
Proof. Let $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ be a a zero-mean random vector, i.e., $E[\underline{X}]=(0,0, \cdots, 0)^{T}$, and let

$$
K=E\left[\underline{X} \underline{X}^{T}\right] .
$$

Our goal is to prove that $K \succeq 0$, which means that if we pick $Z=\left(Z_{1}, Z_{2}, \cdots, Z_{n}\right)^{T}$ we need to show that $\underline{Z}^{T} K \underline{Z} \geq 0$.

$$
\begin{align*}
\underline{Z}^{T} K \underline{Z} & =\underline{Z}^{T} E\left[\underline{X} \underline{X}^{T}\right] \underline{Z}, \tag{1}\\
& =E\left[\underline{Z}^{T} \underline{X} \underline{X}^{T} \underline{Z}\right], \tag{2}\\
& =E\left[\left(\underline{Z}^{T} \underline{X}\right)\left(\underline{Z}^{T} \underline{X}\right)^{T}\right], \tag{3}\\
& =E\left[Y^{2}\right] \geq 0 . \tag{4}
\end{align*}
$$

Where equation (2) is a result of the linearity of expectations and equation (3) results from

$$
\left(A B^{T}\right)=B^{T} A^{T}
$$

and in equation (4) $Y=\underline{Z}^{T} X$ is a single random variable.
Definition 7. The eigenvalues of a matrix M are the scalars λ such that

$$
\begin{equation*}
\exists \underline{\Phi} \neq 0, M \underline{\Phi}=\lambda \underline{\Phi} . \tag{6}
\end{equation*}
$$

The vectors Φ are called eigenvectors. Typically we choose ϕ_{i} such that $\left\|\phi_{i}\right\|=1$.
Theorem 2. A real symmetric matrix M is P.S.D if and only if all its eigenvalues are non-negative.
Theorem 3. Let M be a real symmetric matrix then M has n mutually orthogonal unit eigenvectors $\phi_{1}, \ldots, \phi_{n}$.

Proof. From linear Algebra or in the textbook.
Example 6. Find the eigenvalues and eigenvectors of the matrix $M=\left[\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right]$.

1. Eigenvalues:

$$
\operatorname{det}\left(\left[\begin{array}{cc}
4-\lambda & 2 \\
2 & 4-\lambda
\end{array}\right]\right)=16+\lambda^{2}-8 \lambda-4=0
$$

$\lambda_{1}=6$ and $\lambda_{2}=2$ therefore $M \succ 0$.
2. Eigenvectors :

For $\lambda_{1}=2$ set $\Phi_{1}=\left[\begin{array}{ll}\Phi_{11} & \Phi_{21}\end{array}\right]^{T}$ such that

$$
\begin{aligned}
& {\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
\Phi_{11} \\
\Phi_{12}
\end{array}\right]=2\left[\begin{array}{l}
\Phi_{11} \\
\Phi_{12}
\end{array}\right] .} \\
& \left.\begin{array}{l}
4 \Phi_{11}+2 \Phi_{12}=2 \Phi_{11} \\
2 \Phi_{11}+4 \Phi_{12}=2 \Phi_{12}
\end{array}\right\} \Rightarrow \Phi_{11}=-\Phi_{21} \Rightarrow \Phi_{1}=\left[\begin{array}{ll}
1 & -1
\end{array}\right]^{T} .
\end{aligned}
$$

For $\lambda_{2}=6$: we repeat the same steps and get

$$
\Phi_{2}=\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]^{T} .
$$

Claim 1. (Eigenvalue Decomposition) The matrix M having Φ_{1}, Φ_{2} as eigenvectors can be expressed as

$$
M=U \Lambda U^{\mathrm{T}},
$$

Where

$$
\begin{aligned}
& U=\left[\begin{array}{ll}
\Phi_{1} & \Phi_{2}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right], \\
& \Lambda=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & 6
\end{array}\right] .
\end{aligned}
$$

Check:

$$
\begin{aligned}
U \Lambda U^{\mathrm{T}} & =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & 6
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right], \\
& =\frac{1}{2}\left[\begin{array}{cc}
2 & 6 \\
-2 & 6
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right], \\
& =\left[\begin{array}{cc}
4 & 2 \\
2 & 4
\end{array}\right], \\
& =M
\end{aligned}
$$

Theorem 4. (Eigenvalue Decomposition Theorem) Let M be a real symmetric matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and corresponding eigenvectors $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}$ then

$$
U^{\mathrm{T}} M U=\Lambda,
$$

With :

$$
\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Proof. We can write from equation (6) :

$$
\begin{gathered}
M U=U \Lambda \text { and } U=\left[\begin{array}{ccc}
\mid & & \mid \\
\underline{\Phi}_{1} & \cdots & \underline{\Phi}_{n} \\
\mid & & \mid
\end{array}\right], \\
U^{-1} M U=\Lambda
\end{gathered}
$$

Since U is a real symmetric matrix :

$$
U^{\mathrm{T}}=U^{-1} \Rightarrow \Lambda=U^{\mathrm{T}} M U,
$$

and

$$
\begin{aligned}
M & =\left(U^{\mathrm{T}}\right)^{-1} \Lambda U^{-1}, \\
& =U \Lambda U^{\mathrm{T}} .
\end{aligned}
$$

Other way to prove it:
Starting with the fact that the covariance matrix is a real symmetric matrix, then its eigenvectors are orthogonal. If $U=\left[U_{1}, U_{2}, . ., U_{N}\right]$, then $U^{T} U=I$.

$$
\begin{aligned}
U^{T} A U & =\left[\begin{array}{c}
U_{1}^{T} \\
U_{2}^{T} \\
\\
U_{N}^{T}
\end{array}\right] A\left[U_{1}, U_{2}, . ., U_{N}\right] \\
& =\left[\begin{array}{ccc}
U_{1}^{T} A U_{1} & U_{1}^{T} A U_{2} & U_{1}^{T} A U_{3} \\
U_{2}^{T} A U_{1} & U_{2}^{T} A U_{2} & \\
U_{3}^{T} A U_{1} &
\end{array}\right] \\
& =\left[\begin{array}{ccc}
U_{1}^{T} \lambda_{1} U_{1} & U_{1}^{T} \lambda_{2} U_{2} & U_{1}^{T} \lambda_{3} U_{3} \\
U_{2}^{T} \lambda_{1} U_{1} & U_{2}^{T} \lambda_{2} U_{2} & \\
U_{3}^{T} \lambda_{1} U_{1} & \\
& \\
& =\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & \\
0 & \lambda_{3} \\
&
\end{array}\right] \\
& =\Lambda
\end{array}\right]
\end{aligned}
$$

Example 7. Let $X=\left(X_{1}, X_{2}\right)^{T}$ and $K=\left[\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right]$.
Suppose X_{1} and X_{2} are correlated with $\operatorname{cov}\left(X_{1}, X_{2}\right)=2$.

Question: Find A such that $\underline{Y}=A \underline{X}, \underline{Y}=\left(Y_{1}, Y_{2}\right)^{T}$ and $Y_{1} \& Y_{2}$ are uncorrelated.

Solution: Let

$$
\left.\begin{array}{l}
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
\underline{Y}=\left(\begin{array}{ll}
Y_{1} & Y_{2}
\end{array}\right)^{T}
\end{array}\right\} \Rightarrow \begin{aligned}
& Y_{1}=a_{11} X_{1}+a_{12} X_{2}, \\
& Y_{2}=a_{21} X_{1}+a_{22} X_{2} .
\end{aligned}
$$

We know that $\underline{X} \sim N(0,1)$ and $\underline{Y} \sim N(0,1)$, we need $K_{Y Y}$ to be

$$
K_{Y Y}=\left[\begin{array}{cc}
\sigma_{Y_{1}}^{2} & 0 \\
0 & \sigma_{Y_{2}}^{2}
\end{array}\right] .
$$

Recall that $\underline{Y}=A \underline{X}$. Hence,

$$
\begin{aligned}
\underline{\mu}_{Y} & =E[\underline{Y}], \\
& =E[A \underline{X}], \\
& =A E[\underline{X}], \\
& =A \underline{\mu}_{X} .
\end{aligned}
$$

By definition, the covariance matrix $K_{Y Y}$ is

$$
\begin{aligned}
K_{Y Y} & =E\left[\left(\underline{Y}-\mu_{Y}\right)\left(\underline{Y}-\mu_{Y}\right)^{\mathrm{T}}\right], \\
& =E\left[A\left(\underline{X}-\mu_{X}\right)\left(A\left(\underline{X}-\mu_{X}\right)^{\mathrm{T}}\right)\right], \\
& =A E\left[\left(\underline{X}-\mu_{X}\right)\left(A\left(\underline{X}-\mu_{X}\right)^{\mathrm{T}}\right)\right], \\
& =A K_{X X} A^{\mathrm{T}} .
\end{aligned}
$$

By theorem 4 (Eigenvalue Decomposition Theorem) we have:

$$
\Lambda=U^{\mathrm{T}} M U
$$

Therefore, we need to pick the matrix A such that $A=U^{\mathrm{T}}$ for $K_{Y Y}$ to be a diagonal matrix.

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] .
$$

This leads to the final result

$$
\begin{aligned}
& Y_{1}=\frac{1}{\sqrt{2}}\left(X_{1}-X_{2}\right), \\
& Y_{2}=\frac{1}{\sqrt{2}}\left(X_{1}+X_{2}\right) .
\end{aligned}
$$

3 Multidimensional Jointly Gaussian Distribution

Recall that if two random variables are jointly Gaussian, then the marginal distributions are also Gaussian, but the converse is not necessarily true.
Definition 8. A vector $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ with $E(\underline{X})=\underline{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{T}$ is called jointly Gaussian if

$$
f_{\underline{X}}(\underline{x})=\frac{1}{(2 \pi)^{n / 2} \sqrt{\left|K_{X X}\right|}} \exp \left[\frac{-1}{2}(\underline{X}-\underline{\mu})^{T} K_{X X}^{-1}(\underline{X}-\underline{\mu})\right]
$$

where, $\left|K_{X X}\right|=\operatorname{det}\left(K_{X X}\right)$.
Example 8. For $n=1$,

$$
f_{\underline{X}}(\underline{x})=\frac{1}{(2 \pi)^{1 / 2} \sigma} \exp \left[\frac{-1}{2}(\underline{X}-\underline{\mu})^{T} \frac{1}{\sigma^{2}}(\underline{X}-\underline{\mu})\right] .
$$

Example 9. For $n=2, \underline{X}=\left(X_{1}, X_{2}\right)^{T}$ and the covariance matrix $K_{X X}$ is defined by

$$
\begin{aligned}
K_{X X} & =\left[\begin{array}{cc}
\sigma_{X_{1}}^{2} & \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) & \sigma_{X_{2}}^{2}
\end{array}\right], \\
& =\left[\begin{array}{cc}
\sigma_{X_{1}}^{2} & \rho \sigma_{X_{1}} \sigma_{X_{2}} \\
\rho \sigma_{X_{1}} \sigma_{X_{2}} & \sigma_{X_{2}}^{2}
\end{array}\right] .
\end{aligned}
$$

And,

$$
\begin{aligned}
\operatorname{det}\left(K_{X X}\right) & =\sigma_{X_{1}}^{2} \sigma_{X_{2}}^{2}-\rho^{2} \sigma_{X_{1}}^{2} \sigma_{X_{2}}^{2}, \\
& =\left(1-\rho^{2}\right) \sigma_{X_{1}}^{2} \sigma_{X_{2}}^{2} .
\end{aligned}
$$

Hence,

$$
f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{(2 \pi) \sigma_{X_{1}} \sigma_{X_{2}} \sqrt{1-\rho^{2}}} \exp \left[\frac{-1}{2\left(1-\rho^{2}\right)} \beta\right]
$$

Where,

$$
\beta=\left(\frac{\left(x_{X_{1}}-\mu_{X_{1}}\right)^{2}}{\sigma_{X_{1}}}-2 \rho\left(\frac{x_{X_{1}}-\mu_{X_{1}}}{\sigma_{X_{1}}}\right)\left(\frac{x_{X_{2}}-\mu_{\mu_{X_{2}}}}{\sigma_{X_{2}}}\right)+\frac{\left(x_{X_{2}}-\mu_{X_{2}}\right)^{2}}{\sigma_{X_{2}}}\right) .
$$

Example 10. Assume \underline{X} is jointly Gaussian and X_{i} 's are uncorrelated. Prove that X_{i} 's are independent.

Proof. Assume $\underline{\mu}=\underline{0}\left(E\left(X_{i}\right)=0\right), K_{X X}=I\left(\sigma_{X_{i}}^{2}=1\right)$.

$$
\begin{aligned}
f_{\underline{X}}(\underline{X}) & =\frac{1}{(2 \pi)^{n / 2}} \exp \left(-\frac{1}{2} \underline{X}^{T} I \underline{X}\right) \\
& =\frac{1}{(\sqrt{2 \pi})^{n}} \exp \left(-\frac{1}{2}\left(x_{X_{1}}^{2}+x_{X_{2}}^{2}+\cdots+x_{X_{n}}^{2}\right)\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x_{X_{i}}^{2}}{2}}
\end{aligned}
$$

Each $\frac{1}{\sqrt{2 \pi}} e^{-\frac{x_{X_{i}}^{2}}{2}}$ is equal to $f_{X_{i}}\left(X_{i}\right)$, therefore X_{i} 's are independent.
Example 11. Let X, Y, Z be three jointly Gaussian random variables with $\mu_{X}=\mu_{Y}=\mu_{Z}=0$.

$$
K=\left[\begin{array}{ccc}
1 & 0.2 & 0.3 \\
0.2 & 1 & 0.3 \\
0.3 & 0.2 & 1
\end{array}\right]
$$

Question: Find the pdf $f_{X, Z}(x, z)$.

Answer: From the given information, X and Z are jointly Gaussian and

$$
K_{X Z}=\left[\begin{array}{cc}
1 & 0.3 \\
0.3 & 1
\end{array}\right] .
$$

From $K_{X Z}$ we know that:

$$
\left.\begin{array}{l}
\sigma_{X}=\sigma_{Z}=1 \\
\operatorname{Cov}[X Z]=0.3
\end{array}\right\} \Rightarrow \rho=\frac{0.3}{1}=0.3
$$

Therefore,

$$
f_{X Z}(x, z)=\frac{1}{(2 \pi) \sqrt{0.91}} \exp \left[\frac{-1}{2(0.91)}\left(x^{2}-0.6 x z+z^{2}\right)\right] .
$$

Theorem 5. Let \underline{X} be jointly Gaussian, A be an invertible matrix and,

$$
\underline{Y}=A \underline{X}
$$

Then, \underline{Y} is jointly Gaussian.
Proof. From Chapter 3, $f_{Y}(y)=\frac{f_{X}(x)}{|A|}$ but,

$$
\underline{X}=A^{-1} \underline{Y},
$$

Therefore,

$$
\begin{aligned}
& f_{\underline{Y}}(Y)=\frac{1}{|A|} f_{\underline{X}}\left(A^{-1} Y\right), \\
& f_{\underline{Y}}(Y)=\frac{1}{(2 \pi)^{n / 2} \underbrace{\sqrt{\left|K_{X X}\right|}|A|}_{\beta}} \exp \underbrace{\left[-\frac{1}{2}\left(\left(A^{-1} \underline{Y}-\underline{\mu}_{X}\right)^{T} K_{X Y}^{-1}\left(A^{-1} \underline{Y}-\underline{\mu}_{X}\right)\right)\right]}_{\alpha} .
\end{aligned}
$$

Recall that

$$
\begin{align*}
\underline{\mu}_{Y} & =E[\underline{Y}], \tag{7}\\
& =A E[\underline{X}], \tag{8}\\
& =A \underline{\mu}_{X}, \tag{9}\\
\Rightarrow \underline{\mu}_{X} & =A^{-1} \underline{\mu}_{Y} . \tag{10}
\end{align*}
$$

In addition, from last lecture we have,

$$
\begin{aligned}
K_{Y Y} & =E\left[\underline{Y} \underline{Y}^{T}\right]-\underline{\mu}_{Y} \underline{\mu}_{Y}^{T} \\
& =A K_{X X} A^{T}
\end{aligned}
$$

Hence,

$$
\begin{align*}
\alpha & =\frac{-1}{2}\left(A^{-1} \underline{Y}-\underline{\mu}_{X}\right)^{T} K_{X Y}^{-1}\left(A^{-1} \underline{Y}-\underline{\mu}_{X}\right) \tag{11}\\
& =\frac{-1}{2} A^{-1}\left(\underline{Y}-\underline{\mu}_{Y}\right)^{T} K_{X Y}^{-1} A^{-1}\left(\underline{Y}-\underline{\mu}_{Y}\right) \tag{12}\\
& =\frac{-1}{2}\left(\underline{Y}-\underline{\mu}_{Y}\right)^{T} \underbrace{A^{-1_{T}^{T}} K_{X Y}^{-1} A^{-1}}_{K_{Y Y}}\left(\underline{Y}-\underline{\mu}_{Y}\right) \tag{13}
\end{align*}
$$

Where, equation (12) result by substituting $\underline{\mu}_{X}$ by $A^{-1} \underline{\mu}_{Y}$ (from equation (10)). We still need to show that $\beta=\sqrt{\left|K_{Y Y}\right|}$.

$$
\begin{aligned}
\operatorname{det}\left(K_{Y Y}\right) & =\operatorname{det}\left(A K_{X X} A^{T}\right) \\
& =\operatorname{det}(A) \operatorname{det}\left(K_{X X}\right) \operatorname{det}\left(A^{T}\right) \\
& =\operatorname{det}^{2}(A) \operatorname{det}\left(K_{X X}\right) \\
\Rightarrow \sqrt{\left|K_{Y Y}\right|} & =|A| \sqrt{\left|K_{X X}\right|}
\end{aligned}
$$

Hence, \underline{Y} is jointly Gaussian with $\underline{\mu}_{Y}=A \underline{\mu}_{X}$ and $K_{Y Y}=A K_{X X} A^{T}$.
Example 12. Transform \underline{X} (jointly Gaussian) into $\underline{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ where Y_{i} are iid.

Since for \underline{Y} to be iid,

$$
K_{Y Y}=\left[\begin{array}{cccc}
\sigma_{Y_{1}}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{Y_{1}}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{Y_{n}}^{2}
\end{array}\right]
$$

where the covariance is zero and uncorrelated jointly Gaussian random variables are independent. Pick random vector $\underline{Y}=A \underline{X}$, where A is to be chosen such that:

$$
K_{Y Y}=A K_{X X} A^{T}
$$

Since $K_{X X}$ is symmetric, from the Eigenvalue Decomposition Theorem (see previous lecture) we have,

$$
U^{T} K_{X X} U=\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

where λ_{n} are the eigenvalues of $K_{X X}$ and $U=\left[\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}\right]$ is the eigenvector matrix. Hence, $A=U^{T}$ (Hint: Use the "eig" function in Matlab to generate the matrices).

Lemma 1. If $X_{1}, X_{2}, \ldots, X_{n}$ are jointly Gaussian random variables, then

$$
Z_{1}=a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}
$$

is a Gaussian random variable $\forall a_{i}$ such that $\exists i$ for which $a_{i} \neq 0$.
Remark 1. When asked to find the pdf $f_{Z_{1}}\left(Z_{1}\right)$, all we have to do is find $E\left[Z_{1}\right]$ and $V\left(Z_{1}\right)$.
Let $\underline{a}=\left(a_{1}, \ldots, a_{n}\right)^{T}, Z_{1}$ can be written as $Z_{1}=\underline{a}^{T} \underline{X}$ and

$$
E\left[Z_{1}\right]=\underline{a}^{T} \underline{\mu}_{X} .
$$

However, since $X_{1}, X_{2}, \ldots, X_{n}$ might be dependent,

$$
V\left(Z_{1}\right) \neq a_{1}^{2} V\left(X_{1}\right)+\cdots+a_{n}^{2} V\left(X_{n}\right) .
$$

For example for $n=2$ and $\underline{\mu}_{X}=\underline{0}$,

$$
\begin{aligned}
V\left(Z_{1}\right) & =E\left[\left(a_{1} X_{1}+a_{2} X_{2}\right)^{2}\right] \\
& =E\left[a_{1}^{2} X_{1}^{2}+a_{2}^{2} X_{2}^{2}+2 a_{1} a_{2} X_{1} X_{2}\right] \\
& =a_{1}^{2} \sigma_{X_{1}}^{2}+a_{2}^{2} \sigma_{X_{1}}^{2}+2 a_{1} a_{2} \operatorname{Cov}\left(X_{1}, X_{2}\right) .
\end{aligned}
$$

In general:

$$
\begin{aligned}
\operatorname{Var}\left(Z_{1}\right) & =E\left[Z_{1}\right]^{2}-\mu_{Z_{1}}^{2}, \\
& =E\left[Z_{1} Z_{1}^{T}\right]-\mu_{Z_{1}} \mu_{Z_{1}}^{T}, \\
& =E\left[\underline{a}^{T} \underline{X}^{T} \underline{a}\right]-\underline{a}^{T} \underline{\mu}_{X} \underline{\mu}_{X}^{T} \underline{a}, \\
& =\underline{a}^{T}\left(E\left[\underline{X} \underline{X}^{T}\right]-\mu_{X} \mu_{X}^{T}\right) \underline{a}, \\
& =\underline{a}^{T} K_{X X} \underline{a} \in \mathbb{R} .
\end{aligned}
$$

Proof. (of lemma 1) Let,

$$
\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{c}
X_{1}+X_{2} \\
3 X_{1}+2 X_{2}
\end{array}\right] .
$$

$Y_{1}=X_{1}+X_{2} \& Y_{2}=3 X_{1}+2 X_{2}$ are Gaussian (theorem 5). We can think of Z_{1} being a component of $\underline{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)^{T}$ where,

$$
\left[\begin{array}{c}
Z_{1} \\
Z_{2} \\
\cdots \\
Z_{n}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{n} \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]}_{A}\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right]
$$

We know that A is invertible (full rank) which means that \underline{Z} is jointly Gaussian (theorem 5). Thus, each component of Z is Gaussian, in particular Z_{1}.

Remark 2. Any linear combination of the components of a jointly Gaussian random vector is a Gaussian random variable.

