Chapter 4 : Expectation and Moments

Dr. Salim El Rouayheb
Scribe: Serge Kas Hanna, Lu Liu, Ghadir Ayache

1 Expected Value of a Random Variable

Example 1.

Definition 1. The expected or average value of a random variable X is defined by,

1. $E[X]=\mu_{X}=\sum_{i} x_{i} P_{X}\left(x_{i}\right)$, if X is discrete.
2. $E[X]=\int_{-\infty}^{+\infty} x f_{X}(x) d x$, if X is continuous.

Example 2. Let $X \sim \operatorname{Poisson}(\lambda)$. What is the expected value of X ?
The PMF of X is given by,

$$
\operatorname{Pr}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, k=0,1, \ldots,
$$

Therefore,

$$
\begin{aligned}
E[X] & =\sum_{k=0}^{+\infty} k e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& =\sum_{k=1}^{+\infty} k e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& =\lambda e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^{k-1}}{(k-1)!} \\
& =\lambda e^{-\lambda} e^{\lambda} \\
& =\lambda .
\end{aligned}
$$

Theorem 1. (Linearity of Expectation)
Let X and Y be any two random variables and let a and b be constants, then,

$$
E[a X+b Y]=a E[X]+b E[Y] .
$$

Example 3. Let $X \sim \operatorname{Binomial}(n, p)$. What is the expected value of X ?
The PMF of X is given by,

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, n .
$$

Therefore,

$$
E[X]=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

Rather than evaluating this sum, an easier way to calculate $E[X]$ is to express X as the sum of n independent Bernoulli random variables and apply Theorem 1. In fact,

$$
X=X_{1}+X_{2}+\ldots+X_{n} .
$$

Where $X_{i} \sim \operatorname{Bernoulli}(p)$, for all $i=1, \ldots, n$. Hence,

$$
\begin{gathered}
E[X]=E\left[X_{1}+\ldots+X_{n}\right] . \\
X_{i}= \begin{cases}1 & \text { with probability } p \\
0 & \text { with probability } 1-p .\end{cases}
\end{gathered}
$$

Therefore,

$$
E\left[X_{i}\right]=1 \times p+0 \times(1-p)=p
$$

By linearity of expectation (Theorem 1),

$$
\begin{aligned}
E[X] & =E\left[X_{1}\right]+\ldots+E\left[X_{n}\right] \\
& =n p .
\end{aligned}
$$

Theorem 2. (Expected value of a function of a $R V$)
Let X be a $R V$. For a function of a $R V$, that is, $Y=g(X)$, the expected value of Y can be computed from,

$$
E[Y]=\int_{-\infty}^{+\infty} g(x) f_{X}(x) d x
$$

Example 4. Let $X \sim N\left(\mu, \sigma^{2}\right)$ and $Y=X^{2}$. What is the expected value of Y ?
Rather than calculating the pdf of Y and afterwards computing $E[Y]$, we apply Theorem 2:

$$
\begin{aligned}
E[Y] & =\int_{-\infty}^{+\infty} \frac{x^{2}}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x \\
& =\mu^{2}+\sigma^{2} .
\end{aligned}
$$

2 Conditional Expectations

Definition 2. The conditional expectation of X given that the event B was observed is:
For X discrete: $E[X \mid B]=\sum_{i} x_{i} P_{X \mid B}\left(x_{i} \mid B\right)$.
For X continuous: $E[X \mid B]=\int_{-\infty}^{+\infty} x f_{X \mid B}(x \mid B) d x$..
Intuition: Think of $E[X \mid Y=y]$ as the best estimate (guess) of X given that you observed Y.
Example 5. A fair die is tossed twice. Let X be the number observed after the first toss, and Y be the number observed after the second toss.
Let $Z=X+Y$.

1. Calculate $E[X]$.

$$
E[X]=\frac{1+2+3+4+5+6}{6}=3.5 .
$$

2. Calculate $E[X \mid Y=3]$.

$$
E[X \mid Y=3]=E[X]=3.5
$$

3. Calculate $E[X \mid Z]$.

Z	$\operatorname{Pr}(\mathrm{Z}=2)$	$\mathrm{E}[\mathrm{X} / \mathrm{Z}]$
2	$1 / 36$	1
3	$2 / 36$	1.5
4	$3 / 36$	2
5	$4 / 36$	2.5
6	$5 / 36$	3
7	$6 / 36$	3.5
8	$5 / 35$	4
9	$4 / 36$	4.5
10	$3 / 36$	5
11	$2 / 36$	5.5
12	$1 / 36$	6

Observation: $E[X \mid Z]$ is a random variable.

Theorem 3. (Towering Property of Conditional Expectation)
Let X and Y be two random variables, then,

$$
E_{Y}\left[E_{X}[X \mid Y]\right]=E_{X}[X] .
$$

Proof:

$$
\begin{aligned}
E_{Y}\left[E_{X}[X / Y]\right] & =\sum_{Z=z} P(Z=z) \sum_{X=x} x \cdot P(X=x / Z=z) \\
& =\sum_{Z=z} \sum_{X=x} x P(Z=z) P(X=x / Z=z) \\
& =\sum_{X=x} \sum_{Z=z} x P(X=x, Z=z) \\
& =\sum_{X=x} x \sum_{Z=z} P(X=x, Z=z) \\
& =\sum_{X=x} x P(X=x) \\
& =E[X]
\end{aligned}
$$

Example 6. Let X and Y be two zero mean jointly gaussian random variables, that is,

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma^{2} \sqrt{1-\rho^{2}}} \exp \left[-\frac{x^{2}+y^{2}-2 \rho x y}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right]
$$

Where $|\rho| \leq 1$. Calculate $E[X \mid Y=y]$.

$$
\begin{aligned}
E[X \mid Y=y] & =\int_{-\infty}^{+\infty} x f_{X \mid Y}(x \mid Y=y) d x \\
f_{X \mid Y}(X \mid Y=y) & =\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \\
& =\frac{\frac{1}{2 \pi \sigma^{2} \sqrt{1-\rho^{2}}} \exp \left[-\frac{x^{2}+y^{2}-2 \rho x y}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right]}{\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{y^{2}}{2 \sigma^{2}}\right]} \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}\left(1-\rho^{2}\right)}} \exp \left[-\frac{x^{2}+y^{2}-2 \rho x y-\left(1-\rho^{2}\right) y^{2}}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right] \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}\left(1-\rho^{2}\right)}} \exp \left[-\frac{(x-\rho y)^{2}}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right]
\end{aligned}
$$

Hence,

$$
\begin{aligned}
E[X \mid Y=y] & =\int_{-\infty}^{+\infty} \frac{x}{\sqrt{2 \pi \sigma^{2}\left(1-\rho^{2}\right)}} \exp \left[-\frac{(x-\rho y)^{2}}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right] d x \\
& =\rho y
\end{aligned}
$$

Remark 1. If $\rho=0 \Rightarrow X$ and Y are independent,

$$
E[X \mid Y=y]=E[X]=0
$$

Remark 2. For gaussian random variables,

$$
\begin{aligned}
E[X \mid Y] & =\rho Y \\
E[Y \mid X] & =\rho X
\end{aligned}
$$

Example 7. A movie, of size N bits, is downloaded through a binary erasure channel. Where $N \sim \operatorname{Poisson}(\lambda)$. Let K be the number of received bits.

Figure 1: Binary Erasure Channel

1. Calculate $E[K]$.

Intuitively $E[K]=\lambda(1-\epsilon)$. Now we will prove it mathematically by conditioning on N as a first step. For a given number of bits $N=n, K$ is a binomial random variable ($K \sim$ Binomial($n, 1-\epsilon)$). Therefore,

$$
\begin{aligned}
E[K \mid N=n] & =n(1-\epsilon) \\
E[K \mid N] & =N(1-\epsilon)
\end{aligned}
$$

Applying the towering property of conditional expectation,

$$
\begin{aligned}
E[K] & =E[E[K \mid N]] \\
& =E[N(1-\epsilon)] \\
& =(1-\epsilon) E[N] \\
& =\lambda(1-\epsilon) .
\end{aligned}
$$

2. Calculate $E[N \mid K]$.

Intuitively $E[N \mid K]=k+\lambda \epsilon$. Now we will prove it mathematically,

$$
\begin{aligned}
E[N \mid K=k] & =\sum_{n=0}^{+\infty} n \operatorname{Pr}(N \mid K=k) \\
\operatorname{Pr}(N \mid K=k) & =\frac{\operatorname{Pr}(N=n, K=k)}{\operatorname{Pr}(K=k)} \\
& =\frac{\operatorname{Pr}(N=n) \operatorname{Pr}(K=k \mid N=n)}{\operatorname{Pr}(K=k)} \\
\operatorname{Pr}(N=n) & =\frac{\lambda^{n} e^{-\lambda}}{n!} . \\
\operatorname{Pr}(K=k \mid N=n) & =\binom{n}{k}(1-\epsilon)^{k} \epsilon^{n-k} \\
\operatorname{Pr}(K=k) & =\sum_{n=k}^{+\infty} \operatorname{Pr}(N=n) \operatorname{Pr}(K=k \mid N=n) \\
& =\sum_{n=k}^{+\infty} \frac{e^{-\lambda} \lambda^{n}}{n!}\binom{n}{k}(1-\epsilon)^{k} \epsilon^{n-k}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}(N=n \mid K=k) & =\frac{\frac{e^{-\lambda} \lambda^{n}}{n!} \frac{n!}{k!(n-k)!}(1-\epsilon)^{k} \epsilon^{n-k}}{\sum_{n=k}^{+\infty} \frac{e^{-\lambda \lambda} n^{n}}{n!} \frac{n!}{k!(n-k)!}(1-\epsilon)^{k} \epsilon^{n-k}} \\
& =\frac{\frac{\lambda^{n} \epsilon^{n}}{(n-k)!}}{\lambda \epsilon \sum_{n=k}^{+\infty} \frac{(\lambda \epsilon)^{n-k}}{(n-k)!}} \\
& =\frac{(\lambda \epsilon)^{n}}{(n-k)!} \frac{1}{(\lambda \epsilon)^{k} e^{\lambda \epsilon}} \\
& =\frac{(\lambda \epsilon)^{n-k} e^{-\lambda \epsilon}}{(n-k)!} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
E[N \mid K=k] & =\sum_{n=k}^{+\infty} n \frac{(\lambda \epsilon)^{n-k} e^{-\lambda \epsilon}}{(n-k)!} \\
& =\sum_{n=k}^{+\infty}(n-k+k) \frac{(\lambda \epsilon)^{n-k} e^{-\lambda \epsilon}}{(n-k)!} \\
& =\underbrace{\sum_{n=k}^{+\infty} \frac{(n-k)(\lambda \epsilon)^{n-k} e^{-\lambda \epsilon}}{(n-k)!}}_{\lambda \epsilon}+k \underbrace{\sum_{n=k}^{+\infty} \frac{(\lambda \epsilon)^{n-k} e^{-\lambda \epsilon}}{(n-k)!}}_{1} \\
& =k+\lambda \epsilon .
\end{aligned}
$$

3 Moments of Random Variables

Definition 3. The $r^{\text {th }}$ moment, $r=0,1, \ldots$, of a $R V X$ is defined by,

1. $E\left[X^{r}\right]=m_{r}=\sum_{i} x_{i}^{r} P_{X}\left(x_{i}\right)$, if X is discrete.
2. $E\left[X^{r}\right]=m_{r}=\int_{-\infty}^{+\infty} x^{r} f_{X}(x) d x$, if X is continuous.

Remark 3. Note that $m_{0}=1$ for any X, and $m_{1}=E[X]=\mu$ (the mean).
Definition 4. The $r^{\text {th }}$ central moment, $r=0,1, \ldots$, of a $R V X$ is defined as,

1. $E\left[(X-\mu)^{r}\right]=c_{r}=\sum_{i}\left(x_{i}-\mu\right)^{r} P_{X}\left(x_{i}\right)$, if X is discrete.
2. $E\left[(X-\mu)^{r}\right]=c_{r}=\int_{-\infty}^{+\infty}(x-\mu)^{r} f_{X}(x) d x$, if X is continuous.

Remark 4. Note that for any $R V X$,

1. $c_{0}=1$.
2. $c_{1}=E[X-\mu]=E[X]-\mu=\mu-\mu=0$.
3. $c_{2}=E\left[(X-\mu)^{2}\right]=\sigma^{2}=\operatorname{Var}[X]$ (the variance). In fact,

$$
\sigma^{2}=E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-\mu^{2} .
$$

σ is called the standard deviation.
Example 8. Let $X \sim \operatorname{Binomial}(n, p)$. What is the variance of X ?
The PMF of X is given by,

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, n
$$

$E[X]=n p$ (from Example 2). Therefore,

$$
\sigma^{2}=E\left[X^{2}\right]-E[X]^{2}=\sum_{k=0}^{n} k^{2}\binom{n}{k} p^{k}(1-p)^{n-k}-n^{2} p^{2}
$$

Check the textbook for the calculation of this sum. Here we will calculate σ^{2} using the same idea of Example 2, i.e. expressing X as the sum of n independent Bernoulli random variables. In fact,

$$
X=X_{1}+X_{2}+\ldots+X_{n} .
$$

Where $X_{i} \sim \operatorname{Bernoulli}(p)$, for all $i=1, \ldots, n$. Hence,

$$
\begin{aligned}
E\left[X^{2}\right] & =E\left[\left(X_{1}+\ldots+X_{n}\right)^{2}\right] \\
& =E\left[X_{1}^{2}+\ldots+X_{n}^{2}+\sum_{i} \sum_{\substack{j \\
j \neq i}} X_{i} X_{j}\right] \\
& =n E\left[X_{i}^{2}\right]+n(n-1) E\left[X_{i} X_{j}\right] \\
& =n E\left[X_{i}^{2}\right]+n(n-1) E\left[X_{i}\right]\left[X_{j}\right] .
\end{aligned}
$$

Where,

$$
\begin{aligned}
E\left[X_{i}\right] & =p \\
E\left[X_{i}^{2}\right] & =1^{2} \times p+0^{2} \times(1-p)=p
\end{aligned}
$$

Hence,

$$
E\left[X^{2}\right]=n p+n(n-1) p^{2}=n^{2} p^{2}-n p^{2}+n p .
$$

Therefore,

$$
\begin{aligned}
\sigma^{2} & =E\left[X^{2}\right]-E[X]^{2} \\
& =n^{2} p^{2}-n p^{2}+n p-n^{2} p^{2} \\
& =n p(1-p) .
\end{aligned}
$$

Example 9. Let $X \sim \operatorname{Geometric}(p)$. What is the variance of X ?
The PMF of X is given by,

$$
\operatorname{Pr}(X=k)=(1-p)^{k-1} p, k=1,2, \ldots
$$

The variance of X is given by,

$$
\sigma^{2}=E\left[X^{2}\right]-E[X]^{2} .
$$

$$
\begin{aligned}
E[X] & =\sum_{k=1}^{+\infty} k(1-p)^{k-1} p \\
E\left[X^{2}\right] & =\sum_{k=1}^{+\infty} k^{2}(1-p)^{k-1} p
\end{aligned}
$$

To calculate these sums we use the following facts, for $|x|<1$,

$$
\sum_{i=0}^{+\infty} x^{i}=\frac{1}{1-x}
$$

Deriving both sides with respect to x,

$$
\sum_{i=1}^{+\infty} i x^{i-1}=\frac{1}{(1-x)^{2}}
$$

Deriving both sides with respect to x,

$$
\sum_{i=2}^{+\infty} i(i-1) x^{i-2}=\frac{2}{(1-x)^{3}}
$$

Hence,

$$
\begin{aligned}
\sum_{i=2}^{+\infty} i^{2} x^{i-2}-\sum_{i=2}^{+\infty} i x^{i-2} & =\frac{2}{(1-x)^{3}} \\
\sum_{i=2}^{+\infty} i^{2} x^{i-2} & =\sum_{i=2}^{+\infty} i x^{i-2}+\frac{2}{(1-x)^{3}} \\
\sum_{i=1}^{+\infty}(i+1)^{2} x^{i-1} & =\sum_{i=1}^{+\infty}(i+1) x^{i-1}+\frac{2}{(1-x)^{3}} \\
\sum_{i=1}^{+\infty} i^{2} x^{i-1} & =\frac{2}{(1-x)^{3}}-\sum_{i=1}^{+\infty} i x^{i-1} \\
& =\frac{2}{(1-x)^{3}}-\frac{1}{(1-x)^{2}} .
\end{aligned}
$$

Hence,

$$
\sum_{i=1}^{+\infty} i^{2} x^{i-1}=\frac{1+x}{(1-x)^{3}}
$$

Therefore,

$$
\begin{aligned}
E[X] & =\frac{p}{(1-(1-p))^{2}}=\frac{1}{p} \\
E\left[X^{2}\right] & =\frac{p(1+(1-p))}{(1-(1-p))^{3}}=\frac{2-p}{p^{2}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sigma^{2} & =E\left[X^{2}\right]-E[X]^{2} \\
& =\frac{2-p}{p^{2}}-\frac{1}{p^{2}} \\
& =\frac{1-p}{p^{2}} .
\end{aligned}
$$

Definition 5. The covariance of two random variables X and Y is defined by,

$$
\operatorname{cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E[X Y]-\mu_{X} \mu_{Y} .
$$

Definition 6. The correlation coefficient of two random variables X and Y is defined by,

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}} .
$$

If $\rho_{X, Y}=0$, then $\operatorname{cov}(X, Y)=0$ and X and Y are said to be uncorrelated.
Lemma 1. If X and Y are independent $\Rightarrow X$ and Y are uncorrelated.
Remark 5. There could be two RVs which are uncorrelated but dependent.
Example 10. (discrete case: uncorrelated \nRightarrow independent)
Consider two random variables X and Y with joint $\operatorname{PMF} P_{X, Y}\left(x_{i}, y_{j}\right)$ as shown.

	$x_{1}=-1$	$x_{2}=0$	$x_{3}=+1$
$y_{1}=0$	0	$\frac{1}{3}$	0
$y_{2}=1$	$\frac{1}{3}$	0	$\frac{1}{3}$

Figure 2: Values of $P_{X, Y}\left(x_{i}, y_{j}\right)$.

$$
\begin{aligned}
& \mu_{X}=-1 \times \frac{1}{3}+0 \times \frac{1}{3}+1 \times \frac{1}{3}=0 \\
& \mu_{Y}=0 \times \frac{1}{3}+1 \times \frac{2}{3}=\frac{2}{3} \\
& X Y=\left\{\begin{array}{cl}
-1 & \text { with probability } 1 / 3 \\
0 & \text { with probability } 1 / 3 \\
1 & \text { with probability } 1 / 3
\end{array}\right.
\end{aligned}
$$

Hence,

$$
E[X Y]=-1 \times \frac{1}{3}+0 \times \frac{1}{3}+1 \times \frac{1}{3}=0 .
$$

Therefore,

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E[X Y]-\mu_{X} \mu_{Y}}{\sigma_{X} \sigma_{Y}}=\frac{0}{\sigma_{X} \sigma_{Y}}=0 \Rightarrow X \text { and } Y \text { are uncorrelated. }
$$

However, X and Y are dependent. For example $P(X=-1 \mid Y=0)=0 \neq P(X=-1)=1 / 3$.

Example 11. (continuous case: uncorrelated \nRightarrow independent)
Consider a $R V \Theta$ uniformly distributed on $[0,2 \pi]$. Let $X=\cos \Theta$ and $Y=\sin \Theta$.
X and Y are obviously dependent, in fact,

$$
\begin{gathered}
X^{2}+Y^{2}=1 \\
E[X]=E[\cos \Theta]=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos \theta d \theta=0 \\
E[Y]=E[\sin \Theta]=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin \theta d \theta=0 \\
E[X Y]=E[\sin \Theta \cos \Theta]=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin \theta \cos \theta d \theta=\frac{1}{4 \pi} \int_{0}^{2 \pi} \sin 2 \theta d \theta=0
\end{gathered}
$$

Hence,

$$
\rho_{X, Y}=\operatorname{cov}(X, Y)=0
$$

Therefore, X and Y are uncorrelated although they are dependent.
Theorem 4. Given two random variables X and $Y,\left|\rho_{X, Y}\right| \leq 1$.

Proof. We will prove this theorem using the Cauchy-Schwarz inequality by showing that, $|\operatorname{cov}(X, Y)| \leq \sigma_{X} \sigma_{Y}$.

$$
<u, v>=\|u\| \cdot\|v\| \cos \theta \Rightarrow|<u, v>| \leq\|u\| .\|v\|
$$

Using the same idea on random variables, let $Z=Y-a X$ where $a \in \mathbb{R}$. Assume that X and Y have zero mean. Consider the following 2 cases:

1. $Z \neq 0$ for all $a \in \mathbb{R}$. Hence,

$$
E\left[Z^{2}\right]=E\left[(Y-a X)^{2}\right]>0
$$

Where,

$$
E\left[(Y-a X)^{2}\right]=E\left[Y^{2}-2 a X Y+a^{2} X^{2}\right]=E\left[X^{2}\right] a^{2}-2 E[X Y] a+E\left[Y^{2}\right]
$$

Since $E\left[Z^{2}\right]>0$ and $a^{2} \geq 0$,

$$
\Delta=4 E[X Y]^{2}-4 E\left[X^{2}\right] E\left[Y^{2}\right]<0
$$

Hence,

$$
\begin{aligned}
E[X Y]^{2} & <E\left[X^{2}\right] E\left[Y^{2}\right]=\sigma_{X}^{2} \sigma_{Y}^{2} \\
|E[X Y]| & <\sigma_{X} \sigma_{Y}
\end{aligned}
$$

Therefore,

$$
|\operatorname{cov}(X, Y)|<\sigma_{X} \sigma_{Y}
$$

2. There exists $a_{0} \in \mathbb{R}$ such that $Z=Y-a_{0} X=0$. $Y=a_{0} X$, hence,

$$
\begin{aligned}
E[X Y] & =E\left[a_{0} X^{2}\right] \\
& =a_{0} E\left[X^{2}\right] \\
& =a_{0} \sigma_{X}^{2} . \\
\operatorname{Var}[Y] & =\operatorname{Var}\left[a_{0} X\right] \\
& =a_{0}^{2} \operatorname{Var}[X] \\
& =a_{0}^{2} \sigma_{X}^{2} \\
& =\sigma_{Y}^{2} .
\end{aligned}
$$

Therefore,

$$
E[X Y]=a_{0} \sigma_{X} \sigma_{X}=\sigma_{X} \sigma_{Y} .
$$

Therefore there is equality in this case,

$$
|\operatorname{cov}(X, Y)|=\sigma_{X} \sigma_{Y}
$$

Combining the results of the 2 cases,

$$
|\operatorname{cov}(X, Y)| \leq \sigma_{X} \sigma_{Y}
$$

And therefore,

$$
\left|\rho_{X, Y}\right| \leq 1 .
$$

Lemma 2. $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{cov}(X, Y)$.
Proof.

$$
\begin{aligned}
\operatorname{Var}[X+Y] & =E\left[(X+Y)^{2}\right]-E[(X+Y)]^{2} \\
& =E\left[(X+Y)^{2}\right]-(E[X]+E[Y])^{2} \\
& =E\left[X^{2}\right]+2 E[X Y]+E\left[Y^{2}\right]-E[X]^{2}-2 E[X] E[Y]-E[Y]^{2} \\
& =\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{cov}(X, Y) .
\end{aligned}
$$

Lemma 3. If X and Y are uncorrelated, then $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.

Proof. X and Y are correlated $\Longrightarrow \operatorname{cov}(X, Y)=0$. Result then follows for Lemma 2.

4 Jointly Gaussian Random Variables

Definition 7. Two random variable X and Y are jointly gaussian if,

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left[\frac{-1}{2\left(1-\rho^{2}\right)}\left(\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}-\frac{2 \rho\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}\right)\right] .
$$

Properties:

1. If X and Y are jointly gaussian random variables,

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d y=\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} e^{-\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma_{X}^{2}}} . \\
& f_{Y}(y)=\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d x=\frac{1}{\sqrt{2 \pi \sigma_{Y}^{2}}} e^{-\frac{\left(y-\mu_{y}\right)^{2}}{2 \sigma_{Y}^{2}}}
\end{aligned}
$$

2. If X and Y are jointly gaussian uncorrelated random variables $\Rightarrow X$ and Y are independent.
3. If X and Y are jointly gaussian random variables then any linear combination $Z=a X+b Y$ is a gaussian random variable.

Multivariate Normal Distribution

Figure 3: Two-variable joint gaussian distribution (from Wikipedia).

5 Bounds

Theorem 5. (Chebyshev's Bound)
Let X be an arbitrary random variable with mean μ and finite variance σ^{2}. Then for any $\delta>0$,

$$
\operatorname{Pr}(|X-\mu| \geq \delta) \leq \frac{\sigma^{2}}{\delta^{2}}
$$

Proof.
$\sigma^{2}=\int_{-\infty}^{+\infty}(x-\mu)^{2} f_{X}(x) d x \geq \int_{|x-\mu| \geq \delta}(x-\mu)^{2} f_{X}(x) d x \geq \delta^{2} \int_{|x-\mu| \geq \delta} f_{X}(x) d x=\delta^{2} \operatorname{Pr}(|X-\mu| \geq \delta)$.

Corollary 1.

$$
\operatorname{Pr}(|X-\mu|<\delta) \geq 1-\frac{\sigma^{2}}{\delta^{2}}
$$

Corollary 2.

$$
\operatorname{Pr}(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

Example 12. A fair coin is flipped n times, let X be the number of heads observed. Determine a bound for $\operatorname{Pr}(X \geq 75 \% n)$.

$$
\begin{aligned}
& E[X]=n p=\frac{n}{2} \\
& V[X]=n p(1-p)=\frac{n}{4}
\end{aligned}
$$

By applying Chebyshev's inequality,

$$
\operatorname{Pr}\left(X \geq \frac{3}{4} n\right)=\operatorname{Pr}\left(X-\frac{n}{2} \geq \frac{n}{4}\right)=\frac{1}{2} \operatorname{Pr}\left(\left|X-\frac{n}{2}\right| \geq \frac{n}{4}\right) \leq \frac{1}{2} \frac{n / 4}{n^{2} / 4^{2}}=\frac{2}{n}
$$

Theorem 6. (Markov Inequality)
Consider a $R V X$ for which $f_{X}(x)=0$ for $x<0$. Then X is called a nonnegative $R V$ and the Markov inequality applies:

$$
\operatorname{Pr}(X \geq \delta) \leq \frac{E[X]}{\delta}
$$

Proof.

$$
E[X]=\int_{0}^{+\infty} x f_{X}(x) d x \geq \int_{\delta}^{+\infty} x f_{X}(x) d x \geq \delta \int_{\delta}^{+\infty} x f_{X}(x) d x=\delta \operatorname{Pr}(X \geq \delta)
$$

Example 13. Same setting as Example ??. According to Markov inequality,

$$
\operatorname{Pr}\left(X \geq \frac{3}{4} n\right) \leq \frac{n / 2}{3 n / 4}=\frac{2}{3}
$$

which is not dependent on n. The bound from Chebyshev's inequality is much tighter.

Theorem 7. (Law of Large Numbers)
Let $X_{1}, X_{2}, \ldots, X_{n}$ be n iid $R V$ s with mean μ and variance σ^{2}. Consider the sample mean:

$$
\begin{gathered}
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
\lim _{n \rightarrow+\infty} \operatorname{Pr}(|\hat{\mu}-\mu| \geq \delta)=0 \forall \delta>0
\end{gathered}
$$

We say that $\hat{\mu}$ converges in probability to μ,

$$
\hat{\mu} \xrightarrow{\text { in probability }} \mu
$$

Proof.

$$
E[\hat{\mu}]=E\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} E\left[X_{i}\right]=E\left[X_{i}\right]=\mu
$$

Since $X_{i}{ }^{\prime}$ s are iid,

$$
V[\hat{\mu}]=V\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} V\left[X_{i}\right]=\frac{1}{n} V\left[X_{i}\right]=\frac{\sigma^{2}}{n}
$$

Applying Chebyshev's inequality,

$$
\operatorname{Pr}(|\hat{\mu}-\mu| \geq \delta) \leq \frac{\sigma^{2}}{n \delta^{2}} \rightarrow 0 \text { as } n \rightarrow+\infty \text { for } \delta \leq \frac{1}{\sqrt{n}}
$$

6 Moment Generating Functions (MGF)

Definition 8. The moment-generating function (MGF), if it exists, of an $R V X$ is defined by

$$
\mathcal{M}(t) \triangleq E\left[e^{t X}\right]=\int_{-\infty}^{\infty} e^{t x} f_{X}(x) \mathrm{d} x
$$

where t is a complex variable.
For discrete $R V s$, we can define $\mathcal{M}(t)$ using the PMF as

$$
\mathcal{M}(t)=E\left[e^{t X}\right]=\sum_{i} e^{t x_{i}} P_{X}\left(x_{i}\right)
$$

Example: Let $X \sim \operatorname{Poisson}(\lambda), P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, k=0,1,2, \ldots$

1. Find $\mathcal{M}_{x}(t)$.

$$
\begin{aligned}
& \mathcal{M}_{X}(t)=E\left(e^{t \lambda}\right)=\sum_{k=0}^{\infty} e^{t k} P(X=k) \\
& \mathcal{M}_{X}(t)=\sum_{k=0}^{\infty} e^{t k} e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{k}}{k!} \\
& \mathcal{M}_{X}(t)=e^{-\lambda} e^{\lambda e^{t}}
\end{aligned}
$$

2. Find $E(X)$ from $\mathcal{M}_{x}(t)$.

$$
E(X)=\left.\frac{\partial \mathcal{M}_{X}(t)}{\partial t}\right|_{t=0}=\left.\lambda e^{t} e^{\lambda\left(e^{t}-1\right)}\right|_{t=0}=\lambda .
$$

Example: Let $X \sim N\left(\mu, \sigma^{2}\right)$, find $\mathcal{M}_{x}(t)$.

$$
\begin{aligned}
\mathcal{M}_{X}(t) & =\int_{-\infty}^{\infty} e^{x t} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \mathrm{~d} x \\
& =\cdots=e^{\mu t+\frac{\sigma^{2} t^{2}}{2}}
\end{aligned}
$$

Lemma 4. If $\mathcal{M}(t)$ exists, moments $m_{k}=E\left[X^{k}\right]$ can be obtained by

$$
m_{k}=\mathcal{M}^{(k)}(0)=\left.\frac{d^{k}}{d t^{k}}(\mathcal{M}(t))\right|_{t=0}, \quad k=0,1, \ldots
$$

Proof.

$$
\begin{aligned}
\mathcal{M}_{X}(t)=E\left[e^{t X}\right] & =E\left[1+t X+\frac{(t X)^{2}}{2!}+\cdots+\frac{(t X)^{n}}{n!}+\cdots\right] \\
& =1+E[X]+\frac{t^{2}}{2!} E\left[X^{2}\right]+\cdots+\frac{t^{n}}{n!} E\left[X^{n}\right]+\ldots \\
m_{k}=E\left[X^{k}\right] & =\left.\frac{d^{k}}{d t^{k}}(\mathcal{M}(t))\right|_{t=0}
\end{aligned}
$$

Remark 6. The MGF doesn't always exist. It is the case of Cauchy distribution for example where there is no closed form solution for the integral

$$
f_{x}(x)=\frac{\alpha \cdot x}{\left(\alpha^{2}+x^{2}\right)}
$$

7 Chernoff Bound

In this section, we introduce the Chernoff bound. Recall that to use Markov's inequality X must be positive.

Theorem 8. (Chernoff's bound) For any RV X,

$$
P(X \geq a) \leq e^{-a t} \mathcal{M}_{X}(t) \forall t>0 .
$$

In particular,

$$
P(X \geq a) \leq \min _{t} e^{-a t} \mathcal{M}_{X}(t) .
$$

Proof. Apply Markov on $Y=e^{t X}$, but first recall that $P(X \geq a)=P\left(e^{t X} \geq e^{t a}\right)=P\left(Y \geq e^{t a}\right)$, by Markov we get

$$
\begin{aligned}
P\left(Y \geq e^{t a}\right) & \leq \frac{E(Y)}{e^{t a}}=e^{-t a} E(Y) \\
P(X \geq a) & \leq e^{-t a} \mathcal{M}_{X}(t)
\end{aligned}
$$

Example: Consider $X \sim N(\mu, \sigma)$ and try to bound $P(X \geq a)$ using Chernoff bound, this is an artificial example because we know the distribution of X.

From last lecture $\mathcal{M}_{X}(t)=e^{\mu t+\frac{\sigma^{2} t^{2}}{2}}$ hence

$$
P(X) \leq \min _{t} e^{-a t} e^{\mu t+\frac{\sigma^{2} t^{2}}{2}}=\min _{t} e^{(\mu-a) t+\frac{\sigma^{2} t^{2}}{2}}
$$

Remark: You can check at home how the parameter t can affect the outer bound. For example pick $\mu=0, \sigma=1$ and change t; for $t=0$ you will get the trivial bound $P \leq 1$ and for $t \rightarrow \infty$ you will get $P \leq \infty$. See how it varies.

$$
\begin{aligned}
\min _{t} e^{(\mu-a) t+\frac{\sigma^{2} t^{2}}{2}} & \Rightarrow \frac{\partial f(t)}{\partial t}=0 \\
& \Rightarrow\left(\sigma^{2} t+\mu-a\right) e=0 \\
& \Rightarrow t^{*}=\frac{a-\mu}{\sigma^{2}}
\end{aligned}
$$

Which gives us the following:

$$
\begin{aligned}
& P(X \geq a) \leq e^{(\mu-a) t^{*}+\frac{\sigma^{2} t^{*}}{2}} \\
& P(X \geq a) \leq e^{\frac{-(a-\mu)(\mu-a)}{\sigma^{2}}+\frac{\sigma^{2}(a-\mu)^{2}}{2 \sigma^{4}}} \\
& P(X \geq a) \leq e^{\frac{-(a-\mu)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

We can compare this result with the reality where we know that $P(X \geq a)=\int_{a}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x$.

8 Characteristic Function

In this section, we define a characteristic function and give some examples. The characteristic function of a RV is similar to a Fourrier transform of a function without the ' - '.

Definition 9. X is a $R V$,

$$
\begin{equation*}
\Phi_{X}(w)=E\left(e^{j w X}\right)=\int_{-\infty}^{+\infty} f_{X}(x) e^{j w x} d x \tag{1}
\end{equation*}
$$

is called the characteristic function of X where j is the complex number $j^{2}=-1$.

Example: Find the characteristic function of $X \sim \exp (\lambda)$. Recall that for $\lambda \geq 0$

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & \text { if } x \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Then

$$
\begin{aligned}
\Phi_{X}(w) & =\int_{0}^{\infty} \lambda e^{-\lambda x} e^{j w x} d x \\
& =\lambda \int_{0}^{\infty} e^{(j w-\lambda) x} d x \\
& =\frac{\lambda}{j w-\lambda}\left[e^{(j w-\lambda) x}\right]_{0}^{\infty}
\end{aligned}
$$

Since $\lambda \geq 0$ and $j w$ is a unit quantity $\Rightarrow(j w-\lambda) \leq 0$ therefore $\lim _{x \rightarrow \infty} e^{(j w-\lambda) x}=0$. Which results in

$$
\begin{aligned}
& \Phi_{X}(w)=\frac{\lambda}{j w-\lambda}(0-1) \\
& \Phi_{X}(w)=\frac{\lambda}{\lambda-j w}
\end{aligned}
$$

Lemma 5. If $\Phi_{X}(w)$ exists, moments $m_{n}=E\left[X^{n}\right]$ can be obtained by

$$
m_{n}=\frac{1}{j^{n}} \Phi_{X}^{(n)}(0)
$$

where

$$
\Phi_{X}^{(n)}(0)=\left.\frac{d^{n}}{d w^{n}} \Phi_{X}^{(w)}\right|_{w=0} .
$$

Proof.

$$
\begin{aligned}
\Phi_{X}(w) & =E\left[e^{j w X}\right] \\
& =\sum_{n=0}^{\infty} \frac{(j w)^{n}}{n!} m_{n} \\
m_{n} & =\frac{1}{j^{n}}\left(\left.\frac{d^{n}}{d w^{n}} \Phi_{X}^{(w)}\right|_{w=0}\right) .
\end{aligned}
$$

Lemma 6. if X, Y are two independent $R V$ and $Z=X+Y$ then $\Phi_{Z}(w)=\Phi_{X}(w) \Phi_{Y}(w)$ and $\mathcal{M}_{Z}(t)=\mathcal{M}_{X}(t) \mathcal{M}_{Y}(t)$

Remark: To find the distribution of $Z=X+Y$ it could be easier to find $\Phi_{X}(w), \Phi_{Y}(w)$, multiply them and then invert the from "Fourrier" domain by integrating or by using tables of Fourrier inverse.

Example: Consider the example of problem 9 of homework 3:

Question: Let X_{1} and X_{2} be two independent RV such that $X_{1} \sim N\left(\mu_{1}, \sigma_{1}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma_{2}\right)$ and let $X=a X_{1}+b X_{2}$. Find the distribution of X.

Answer: Let $X_{1}^{\prime}=a X_{1}, X_{2}^{\prime}=b X_{2}$ it is clear that $X_{1}^{\prime} \sim N\left(a \mu_{1}, a \sigma_{1}\right)$ and $X_{2}^{\prime} \sim N\left(b \mu_{2}, b \sigma_{2}\right)$ and that $\Phi_{X}(w)=\Phi_{X_{1}^{\prime}}(w) \Phi_{X_{2}^{\prime}}(w)$.

$$
\begin{aligned}
& \Phi_{X_{1}^{\prime}}(w)=\ldots=e^{a \mu_{1} j w-\frac{a^{2} \sigma_{1}^{2} w^{2}}{2}} \\
& \Phi_{X}(w)=e^{a \mu_{1} j w-\frac{a^{2} \sigma_{1}^{2} w^{2}}{2}} e^{b \mu_{2} j w-\frac{b^{2} \sigma_{2}^{2} w^{2}}{2}} \\
& \Phi_{X}(w)=e^{j\left(a \mu_{1}+b \mu_{2}\right) w-\left(a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}\right) \frac{w^{2}}{2}}
\end{aligned}
$$

Which implies that $X \sim N\left(a \mu_{1}+b \mu_{2}, \sqrt{a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}}\right)$.
Fact 1. A linear combination of two independent Gaussian $R V$ is a Gaussian $R V$.

9 Central Limit Theorem

In this section we state the central limit theorem and give a rigourous proof.
Theorem 9. Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent $R V$ s with $\mu_{X_{i}}=0$ and $V\left(X_{i}\right)=1 \forall i$ then

$$
Z_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{\sqrt{n}} \underset{n \rightarrow \infty}{\rightarrow} N(0,1)
$$

In other words

$$
\lim _{n \rightarrow \infty} P(Z \leq z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{x^{2}}{2}} d x
$$

This is for example a way to convert flipping a coin n times to a Gaussian RV (fig. ??,fig. ??).

$$
X_{i}= \begin{cases}0 & \text { if a tail is observed with } p=\frac{1}{2} \\ 1 & \text { if a head is observed with } 1-p=\frac{1}{2}\end{cases}
$$

And set $S_{n}=\frac{\sum_{i=0}^{n} X_{i}}{\sqrt{n}}$, notice that $S_{n} \in\left\{0,1, \ldots, \frac{n}{\sqrt{n}}\right\}$ and according to CLT $S_{n} \underset{n \rightarrow \infty}{\sim} N(0,1)$.

CLT: says that no matter how far you are from the mean, the probability of $X=x$ being outside $|x-\mu| \leq \sqrt{n}$ decreases exponentially with n.

Figure 4: This is $\frac{S_{n}}{n}$ as a function of n, we can clearly see that when n grows $\frac{S_{n}}{n}$ goes to 0.5 for the equation of the example below for n goes to 100 . Refer to section 6 for detailed code.

Remark: The RVs X_{i} have to be independent because if for example $X_{i}=X_{1}$ for $i \in\{2,3, \ldots, n\}$ then

$$
S_{n}=n X_{i}=\left\{\begin{array}{cc}
\sqrt{n} & \text { if } X_{1}=1 \\
0 & \text { if } X_{1}=0
\end{array}\right.
$$

which does not converge to a Gaussian distribution when $n \rightarrow \infty$.
Proof. (of theorem ??)

$$
\lim _{n \rightarrow \infty} \Phi_{Z_{n}}(w)=e^{-\frac{w^{2}}{2}} \Rightarrow f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

where this form of $\Phi_{Z_{n}}(w)$ is the characteristic function of a $N(0,1)$ RV.

Figure 5: This is $\frac{S_{n}}{n}$ as a function of n, we can clearly see that when n grows $\frac{S_{n}}{n}$ goes to 0.5 for the equation of the example below for n goes to 300 . Refer to section 6 for detailed code.

$$
\begin{aligned}
Z_{n} & =\underbrace{\frac{X_{1}}{\sqrt{n}}}_{W_{1}}+\underbrace{\frac{X_{2}}{\sqrt{n}}}_{W_{2}}+\cdots+\underbrace{\frac{X_{n}}{\sqrt{n}}}_{W_{n}} \\
\Phi_{Z_{n}}(w) & =\Phi_{W_{1}}(w) \Phi_{W_{2}}(w) \Phi_{W_{3}}(w) \ldots \Phi_{W_{n}}(w)=\left[\Phi_{W_{1}}(w)\right]^{n} \\
\Phi_{W_{1}}(w) & =E\left(e^{w j W_{1}}\right)=E\left(e^{\frac{j w X_{1}}{\sqrt{n}}}\right)=\Phi_{X_{1}}\left(\frac{w}{\sqrt{n}}\right)
\end{aligned}
$$

Taylor expansion: Using the Taylor expansion of $\Phi_{W_{1}}(w)$ around 0 we get,

$$
\Phi_{W_{1}}(w)=\Phi_{W_{1}}(0)+\Phi_{W_{1}}^{\prime}(0)+\frac{\Phi_{W_{1}}^{\prime \prime}(0)}{2!}+\ldots
$$

1. Find the value of $\Phi_{W_{1}}(0)$.

$$
\begin{aligned}
\Phi_{W_{1}}(0) & =\left.E\left(e^{\frac{j w X}{\sqrt{n}}}\right)\right|_{w=0} \\
& =\int_{-\infty}^{+\infty} e^{\frac{j 0 X}{\sqrt{n}}} f_{X}(x) d x \\
& =\int_{-\infty}^{+\infty} f_{X}(x) d x \\
& =1
\end{aligned}
$$

2. Find the value of $\Phi_{W_{1}}^{\prime}(0)$.

$$
\begin{aligned}
\Phi_{W_{1}}^{\prime}(0) & =\int_{-\infty}^{+\infty} \frac{j x}{\sqrt{n}} e^{\frac{j 0 X}{\sqrt{n}}} f_{X}(x) d x \\
& =\frac{j}{\sqrt{n}} \int_{-\infty}^{+\infty} x f_{X}(x) d x \\
& =\frac{j}{\sqrt{n}} E\left(X_{1}\right) \\
& =0
\end{aligned}
$$

3. Find the value of $\Phi_{W_{1}}^{\prime \prime}(0)$.

$$
\begin{aligned}
\Phi_{W_{1}}^{\prime \prime}(0) & =\frac{d^{2} \Phi_{W_{1}}(w)}{d w^{2}} \\
& =\int_{-\infty}^{+\infty}\left(\frac{j x}{\sqrt{n}}\right)^{2} e^{\frac{j 0 X}{\sqrt{n}}} f_{X}(x) d x \\
& =\frac{-1}{n} \int_{-\infty}^{+\infty} x^{2} f_{X}(x) d x \\
& =\frac{-1}{n}(\underbrace{V(X)}_{1}+\underbrace{E^{2}(X)}_{0}) \\
& =\frac{-1}{n}
\end{aligned}
$$

Hence, using these results and Taylor's expansion, $\Phi_{W_{1}}(w)=1-\frac{w^{2}}{2 n}$. Therefore $\Phi_{Z_{n}}(w)=\left[1-\frac{w^{2}}{2 n}\right]^{n}$.

Recall that $\log (1-\epsilon) \simeq-\epsilon$, then

$$
\begin{aligned}
\log \Phi_{Z_{n}} & =n \log \left(1-\frac{w^{2}}{2 n}\right) \\
\log \Phi_{Z_{n}} & \simeq n\left(-\frac{w^{2}}{2 n}\right) \\
\log \Phi_{Z_{n}} & \simeq-\frac{w^{2}}{2} \\
\Phi_{Z_{n}} & =e^{-\frac{w^{2}}{2}}
\end{aligned}
$$

10 MATLAB Code generating the figures

In this section we give the MATLAB code used to generate fig. ?? and fig ??.

```
A=[];B=[]; % generate two empty vectors
for i=1:100 % in this loop i stands for the number of times the coin is flipped
    A=[A,binornd(i,0.5)/i]; % at each iteration generate a binomial random number with
end % parameters n=i, p=0.5 and divide it by n to have (S_n)/n
for n=1:300
B=[B,binornd(n,0.5)/n]; % same as previous but repeat it 300 times
end
x1=[1:i];x2=[1:n]; % x1 and x2 are used to represent n in each figure
figure(1)
plot(x1,A);
hold on
plot(x1,0.5,'r','linewidth',2);
xlabel('n');
ylabel('S_n/n');
figure(2)
plot(x2,B);
hold on
plot(x2,0.5,'r','linewidth',2);
xlabel('n');
ylabel('S_n/n');
```

