Chapter 3 : Functions of Random Variables

Dr. Salim El Rouayheb
Scribe: Serge Kas Hanna, Lu Liu, Ghadir Ayache

1 Functions of Random Variables of the Type $Y=g(X)$

Example 1. Let X be a uniform $R V$ on $(0,1)$, that is, $X: U(0,1)$, and let $Y=2 X+3$. What is the pdf of Y ?

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}(Y \leq y) \\
& =\operatorname{Pr}(2 X+3 \leq y) \\
& =\operatorname{Pr}\left(X \leq \frac{y-3}{2}\right) \\
& =F_{X}\left(\frac{y-3}{2}\right) . \\
f_{Y}(y) & =\frac{d F_{Y}(y)}{d y}=\frac{1}{2} f_{X}\left(\frac{y-3}{2}\right) .
\end{aligned}
$$

Figure 1: PDF of X and Y.

Generalization: Let $Y=a X+b$, where $a(a \neq 0)$ and b are certain constants and X is continuous RV with pdf $f_{X}(x)$. Then the pdf of Y is given by:

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right) .
$$

Example 2. Let X be a $R V$ with continuous $C D F F_{X}(x)$ and let $Y=X^{2}$. What is the pdf of Y ?

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}(Y \leq y) \\
& =\operatorname{Pr}\left(X^{2} \leq y\right) .
\end{aligned}
$$

For $y \geq 0$,

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =F_{X}(+\sqrt{y})-F_{X}(-\sqrt{y})+\operatorname{Pr}(X=-\sqrt{y}) . \\
f_{Y}(y) & =\frac{d F_{Y}(y)}{d y} \\
& =\frac{d F_{X}(+\sqrt{y})}{d(\sqrt{y})} \frac{d(\sqrt{y})}{d y}-\frac{d F_{X}(-\sqrt{y})}{d(-\sqrt{y})} \frac{d(-\sqrt{y})}{d y} \\
& =f_{X}(\sqrt{y}) \times \frac{1}{2 \sqrt{y}}+f_{X}(-\sqrt{y}) \times \frac{1}{2 \sqrt{y}} \\
& =\frac{1}{2 \sqrt{y}}\left(f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})\right) .
\end{aligned}
$$

Suppose that $X \sim N(0,1)$, then the pdf of Y in this case is given by:

$$
f_{Y}(y)=\left\{\begin{array}{cl}
\frac{1}{\sqrt{2 \pi y}} e^{-\frac{y}{2}} & \text { if } y \geq 0 \\
0 & \text { if } y<0
\end{array}\right.
$$

Theorem 1. Given a continuous $R V X$ with $p d f f_{X}(x)$, and a differentiable function $g(X)$. The pdf of $Y=g(X)$ is given by,

$$
f_{Y}(y)=\sum_{i=1}^{n} \frac{f_{X}\left(x_{i}\right)}{\left|g^{\prime}\left(x_{i}\right)\right|}
$$

where the x_{i} 's, $i=1, \ldots, n$, are the roots of $y=g(x)$ and $g^{\prime}\left(x_{i}\right) \neq 0$.
Example 3. Let X be a random variable uniformly distributed over $(-\pi,+\pi)$ and let $Y=\sin X$. What is the pdf of Y ?
In this example, $g(x)=\sin x$ and $g^{\prime}(x)=\cos x$. The equation $g(x)=y$ has two roots for $|y|<1$, which are given by $x_{1}=\sin ^{-1} y$ and $x_{2}=\pi-\sin ^{-1} y$. By applying Theorem 1,

$$
\begin{aligned}
f_{Y}(y) & =\frac{f_{X}\left(x_{1}\right)}{\left|g^{\prime}\left(x_{1}\right)\right|}+\frac{f_{X}\left(x_{2}\right)}{\left|g^{\prime}\left(x_{2}\right)\right|} \\
& =\frac{1}{2 \pi} \frac{1}{\left|\cos \left(\sin ^{-1} y\right)\right|}+\frac{1}{2 \pi} \frac{1}{\left|\cos \left(\pi-\sin ^{-1} y\right)\right|} \\
& =\frac{1}{\pi} \frac{1}{\left|\cos \left(\sin ^{-1} y\right)\right|} .
\end{aligned}
$$

To evaluate $\cos \left(\sin ^{-1} y\right)$ we make use of figure 2.

Figure 2: Evaluating $\cos \left(\sin ^{-1} y\right)$.

As shown in figure 2, $\theta=\sin ^{-1} y$ and $\cos \theta=\sqrt{1-y^{2}}=\cos \left(\sin ^{-1} y\right)$. Hence,

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{1}{\pi} \frac{1}{\sqrt{1-y^{2}}} & \text { if }|y|<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Example 4. A student at a train station awaits the arrival of either a red or a green train. At this station, red and green trains arrive independently with a rate $\lambda_{r}=0.1$ train/min for red trains and a rate of $\lambda_{g}=0.5$ trains $/$ min for green trains. Let T_{R} be the time the student waits until a red train arrives, and T_{G} be the time the students waits until a green train arrives. Given $T_{G} \sim \exp \left(\lambda_{g}\right)$ and $T_{R} \sim \exp \left(\lambda_{r}\right)$.

1. What is the probability that the green train arrives first?

$$
\begin{aligned}
\operatorname{Pr}\left(T_{G}<T_{R}\right) & =\int_{0}^{+\infty} \operatorname{Pr}\left(T_{R}>t \mid T_{G}=t\right) f_{T_{G}}(t) d t \\
& =\int_{0}^{+\infty}\left(1-\operatorname{Pr}\left(T_{R} \leq t \mid T_{G}=t\right)\right) f_{T_{G}}(t) d t \\
& =\int_{0}^{+\infty}\left(1-F_{T_{R}}(t)\right) f_{T_{G}}(t) d t \\
& =\int_{0}^{+\infty} e^{-\lambda_{r} t} \lambda_{g} e^{-\lambda_{g} t} d t \\
& =\frac{\lambda_{g}}{\lambda_{g}+\lambda_{r}} \\
& =\frac{5}{6} .
\end{aligned}
$$

2. Let T be the time the student waits until a red or a green train arrives. What is the pdf of T ? Intuitively, T can be expressed as

$$
T=\min \left\{T_{R}, T_{G}\right\}
$$

Therefore for $t \geq 0$,

$$
\begin{aligned}
\operatorname{Pr}(T \leq t) & =\operatorname{Pr}\left(\min \left\{T_{R}, T_{G}\right\} \leq t\right) \\
& =1-\operatorname{Pr}\left(\min \left\{T_{R}, T_{G}\right\}>t\right) \\
& =1-\operatorname{Pr}\left(T_{R}>t, T_{G}>t\right) \\
& =1-\operatorname{Pr}\left(T_{R}>t\right) \operatorname{Pr}\left(T_{G}>t\right) \\
& =1-\left(1-\operatorname{Pr}\left(T_{R} \leq t\right)\right)\left(1-\operatorname{Pr}\left(T_{G} \leq t\right)\right) \\
& =1-\left(1-F_{T_{R}}(t)\right)\left(1-F_{T_{G}}(t)\right) \\
& =1-e^{-\left(\lambda_{r}+\lambda_{g}\right) t} .
\end{aligned}
$$

Therefore, $T \sim \exp \left(\lambda_{r}+\lambda_{g}\right)=\exp (0.6)$.

2 Functions of Random Variables of the Type $Z=g(X, Y)$

Theorem 2. Given two independent random variables X and Y with pdfs $f_{X}(x)$ and $f_{Y}(y)$ respectively, the pdf of $Z=X+Y$ is given by,

$$
f_{Z}(z)=\left(f_{X} * f_{Y}\right)(z)=\int_{-\infty}^{+\infty} f_{X}(y) f_{Y}(z-y) d y
$$

Example 5. Let X and Y be independent random variables such that $X \sim \exp (1)$ and $Y \sim$ Uniform $(-1,1)$, and let $Z=X+Y$. What is the pdf of Z ?

$$
f_{Z}(z)=\int_{-\infty}^{+\infty} f_{X}(y) f_{Y}(z-y) d y
$$

Figure 3: Relative positions of $f_{X}(z-y)$ and $f_{Y}(y)$.

1. If $z \leq-1$,

$$
f_{Z}(z)=0
$$

2. If $-1 \leq z \leq 1$,

$$
f_{Z}(z)=\frac{1}{2} \int_{-1}^{z} e^{-(z-y)} d y=\frac{1}{2}\left(1-e^{-1-z}\right)
$$

3. If $z \geq 1$,

$$
f_{Z}(z)=\frac{1}{2} \int_{-1}^{1} e^{-(z-y)} d y=\frac{1}{2}\left(e^{1-z}-e^{-1-z}\right)
$$

Figure 4: The pdf $f_{Z}(z)$.

Example 6. Let X and Y be independent random variables such that $X \sim \exp (a)$ and $Y \sim \exp (b)$, and let $Z=X+Y$. What is the pdf of Z ?

$$
\begin{gathered}
f_{X}(x)= \begin{cases}a e^{-a x} & \text { if } x \geq 0 \\
0 & \text { if } x<0\end{cases} \\
f_{Y}(y)= \begin{cases}b e^{-b y} & \text { if } y \geq 0 \\
0 & \text { if } y<0\end{cases} \\
f_{Z}(z)=\int_{-\infty}^{+\infty} f_{X}(y) f_{Y}(z-y) d y
\end{gathered}
$$

1. If $z \leq 0$,

$$
f_{Z}(z)=0
$$

2. If $z \geq 0$,

$$
\begin{aligned}
f_{Z}(z) & =\int_{0}^{z} a b e^{-a y} e^{-b(z-y)} d y \\
& =a b e^{-b z} \int_{0}^{z} e^{(b-a) y} d y
\end{aligned}
$$

Therefore, for $z \geq 0$,

$$
f_{Z}(z)=\left\{\begin{array}{cl}
\frac{a b}{a-b}\left(e^{-b z}-e^{-a z}\right) & \text { if } a \neq b \\
a b z e^{-b z} & \text { if } a=b
\end{array}\right.
$$

Example 7. Let X and Y be two iid (independent and identically distributed) random variables such that $X, Y \sim N(0,1)$.

1. What is the pdf of $Z=X^{2}+Y^{2}$?

Method 1:

$$
\begin{aligned}
Z & =T+W \\
T & =X^{2} \\
W & =Y^{2}
\end{aligned}
$$

Since T and W are independent, $f_{Z}=f_{T} * f_{W}$.
Method 2:

$$
\begin{aligned}
F_{Z}(z) & =\operatorname{Pr}(Z \leq z) \\
& =\operatorname{Pr}\left(X^{2}+Y^{2} \leq z\right) \\
& =\iint_{x^{2}+y^{2} \leq z} f_{X, Y}(x, y) d x d y \\
& =\iint_{x^{2}+y^{2} \leq z} f_{X}(x) f_{Y}(y) d x d y \\
& =\frac{1}{2 \pi} \iint_{x^{2}+y^{2} \leq z} e^{-\frac{x^{2}}{2}} e^{-\frac{y^{2}}{2}} d x d y \\
& =\frac{1}{2 \pi} \iint_{x^{2}+y^{2} \leq z} e^{-\frac{x^{2}+y^{2}}{2}} d x d y
\end{aligned}
$$

Figure 5: The region of the event $\left\{X^{2}+Y^{2} \leq z\right\}$ for $z \geq 0$.

We evaluate this integral by transforming to polar coordinates,

$$
\begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta \\
x^{2}+y^{2} & =r^{2}
\end{aligned}
$$

Therefore,

$$
F_{Z}(z)=\int_{0}^{\sqrt{z}} \int_{0}^{2 \pi} \frac{e^{-\frac{r^{2}}{2}}}{|J|} d \theta d r
$$

Where $|J|$ is determinant of the Jacobian of the transformation and is given by,

$$
J=\left|\begin{array}{ll}
\frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}
\end{array}\right|
$$

$|J|$ is also equal to the inverse of the Jacobian of the inverse transformation

$$
|J|^{-1}=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r
$$

Therefore, for $z \geq 0$,

$$
\begin{aligned}
F_{Z}(z) & =\frac{1}{2 \pi} \int_{0}^{\sqrt{z}} \int_{0}^{2 \pi} r e^{-\frac{r^{2}}{2}} d \theta d r \\
& =\frac{1}{2 \pi} \int_{0}^{\sqrt{z}} r e^{-\frac{r^{2}}{2}} d r \int_{0}^{2 \pi} d \theta \\
& =1-e^{-\frac{z}{2}} \\
f_{Z}(z) & =\frac{1}{2} e^{-\frac{z}{2}}
\end{aligned}
$$

Therefore, $Z \sim \exp (0.5)$.
2. What is the pdf of $Z^{\prime}=\sqrt{X^{2}+Y^{2}}$?

$$
\begin{aligned}
F_{Z^{\prime}}\left(z^{\prime}\right) & =\operatorname{Pr}\left(Z^{\prime} \leq z^{\prime}\right) \\
& =\operatorname{Pr}\left(Z^{\prime 2} \leq z^{\prime 2}\right) \\
& =\operatorname{Pr}\left(Z \leq z^{\prime 2}\right) \\
& =F_{Z}\left(z^{\prime 2}\right) \\
& =1-e^{-\frac{z^{\prime 2}}{2}} \\
f_{Z^{\prime}}\left(z^{\prime}\right) & =z^{\prime} e^{-\frac{z^{\prime 2}}{2}} \cdot(\text { Rayleigh distribution })
\end{aligned}
$$

Example 8. Let X and Y be two iid random variables such that $X, Y \sim N(0,1)$, and let $Z=Y / X$.
What is the pdf of Z ?
By conditioning on X (fixing) and applying the general linear transformation we get,

$$
f_{Z \mid X=x}(z \mid X=x)=\frac{|x|}{\sqrt{2 \pi}} e^{-\frac{x^{2} z^{2}}{2}}
$$

Therefore, by applying the total law of probability,

$$
\begin{aligned}
f_{Z}(z) & =\int_{-\infty}^{+\infty} f_{Z \mid X=x}(z \mid X=x) f_{X}(x) d x \\
& =\int_{-\infty}^{+\infty} \frac{|x|}{\sqrt{2 \pi}} e^{-\frac{x^{2} z^{2}}{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|x| e^{-\frac{x^{2}\left(1+z^{2}\right)}{2}} d x \\
& =\frac{1}{\pi} \frac{1}{1+z^{2}} .
\end{aligned}
$$

3 Functions of Random Variables of the Type $U=g(X, Y)$ and $V=h(X, Y)$

Example 9. Let X and Y be two iid random variables such that $X, Y \sim N(0,1)$. Let $U=X+Y$ and $V=X-Y$. What is joint pdf of U and V ? Consider the point M shown in the figures below.

This figures illustrate a case of a one-to-one mapping, because the linear system of equations

$$
\left\{\begin{array}{l}
X+Y=1 \\
X-Y=1
\end{array}\right.
$$

is invertible, i.e. $\left|\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right|=-2 \neq 0$.
In fact,

$$
f_{U, V}(1,1)=\frac{f_{X, Y}(1,0)}{|J|}
$$

Where,

$$
\begin{aligned}
J & =\left|\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right|=-2 . \\
& \Rightarrow f_{U, V}(1,1)=\frac{f_{X, Y}(1,0)}{2} .
\end{aligned}
$$

Generalizing,

$$
f_{U, V}(u, v)=\frac{f_{X, Y}(x, y)}{|J|}
$$

such that,

$$
\begin{aligned}
& x=\frac{u+v}{2} \\
& y=\frac{u-v}{2} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f_{U, V}(u, v) & =\frac{1}{2} f_{X, Y}\left(\frac{u+v}{2}, \frac{u-v}{2}\right) \\
& =\frac{1}{4 \pi} \exp \left[-\frac{1}{8}\left[(u+v)^{2}-(u-v)^{2}\right]\right] .
\end{aligned}
$$

Theorem 3. Given two continuous RVs X and Y with pdfs $f_{X}(x)$ and $f_{Y}(y)$ respectively, and two differentiable functions $g_{1}(x)$ and $g_{2}(x)$. The joint pdf of $U=g_{1}(X, Y)$ and $V=g_{2}(X, Y)$ is given by,

$$
f_{U, V}(u, v)=\sum_{i=1}^{n} \frac{f_{X, Y}\left(x_{i}, y_{i}\right)}{\left|J\left(x_{i}, y_{i}\right)\right|}
$$

where the pairs $\left(x_{i}, y_{i}\right), i=1, \ldots, n$, are the solutions of the system of equations given by,

$$
\left\{\begin{array}{l}
g_{1}(x, y)=u \\
g_{2}(x, y)=v
\end{array} .\right.
$$

