Lecture 2 - September 12, 2019
Dr. Salim El Rouayheb
Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache

Chapter 2: Random Variables

Example 1. Tossing a fair coin twice:

$$
\Omega=\{H H, H T, T H, T T\} .
$$

Define for any $\omega \in \Omega, X(\omega)=$ number of heads in ω. $X(\omega)$ is a random variable.
Definition 1. A random variable ($R V$) is a function $X: \Omega \rightarrow \mathbb{R}$.
Example 2. Let w be the temperature in ${ }^{\circ} \mathrm{F}$ at 3:00 pm on Thursday afternoon. Let X be the r.v. which the temperature in ${ }^{\circ} \mathrm{C}$. Then

$$
X=\frac{5}{9}(w-32)
$$

Definition 2 (Cumulative distribution function(CDF)).

$$
\begin{equation*}
F(x)=P(X \leq x) . \tag{1}
\end{equation*}
$$

Figure 1: Cumulative distribution function of x
Example 3. The cumulative distribution function of x is as (Figure 1)

$$
F_{X}(x)= \begin{cases}0 & x<0 \\ \frac{1}{4} & 0 \leq x<1, \\ \frac{3}{4} & 1 \leq x<2, \\ 1 & x \geq 2 .\end{cases}
$$

Lemma 1. Properties of $C D F$
(1)

$$
\begin{align*}
& \lim _{x \rightarrow-\infty} F_{X}(x)=0 \tag{2}\\
& \lim _{x \rightarrow+\infty} F_{X}(x)=1, \tag{3}
\end{align*}
$$

(2) $F_{X}(x)$ is non-decreasing:

$$
\begin{equation*}
x_{1} \leq x_{2} \Longrightarrow F_{X}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right) \tag{4}
\end{equation*}
$$

(3) $F_{X}(x)$ is continuous from the right

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} F_{X}(x+\epsilon)=F_{X}(x), \epsilon>0 \tag{5}
\end{equation*}
$$

$$
\begin{align*}
P(a \leq X \leq b) & =P(X \leq b)-P(X \leq a)+P(X=a) \tag{6}\\
& =F_{X}(b)-F_{X}(a)+P(X=a)
\end{align*}
$$

$$
\begin{equation*}
P(X=a)=\lim _{\varepsilon \rightarrow 0} F_{X}(a)-F_{X}(a-\varepsilon), \varepsilon>0 \tag{5}
\end{equation*}
$$

Definition 3. If random variable X has finite or countable number of values, X is called discrete. If It is uncountable, then it is continuous.

Remark 1. A set S is countable if the its elements can be indexed, i.e., we can find a injective function from S to the natural numbers
Example 4. Non-countable example: \mathbb{R}.
Example 5. Countable example: The number of tosses we need till get a Head
Lemma 2. If X is continuous, then $F_{X}(x)$ is continuous.
Definition 4 (Probability density function(pdf)).

$$
\begin{equation*}
f_{X}(x)=\frac{d F_{X}(x)}{d x}(X \text { is continuous }) . \tag{9}
\end{equation*}
$$

Example 6. Gaussian random variable: Normal/ Gaussian Distribution.
By definition,

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Therefore,

$$
\begin{aligned}
F_{X}(a) & =P(x \leq a)=\int_{-\infty}^{a} f_{X}(x) d x \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{a} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x .
\end{aligned}
$$

Figure 2: Gaussian distribution pdf.

We should always have:

$$
\int_{-\infty}^{+\infty} f_{X}(x) d x=1
$$

Definition 5 (mean, variance of a RV X). For the continuous case:

$$
\begin{aligned}
E(X)=\mu & =\int_{-\infty}^{+\infty} x f_{X}(x) d x \\
V(X)=\sigma^{2} & =\int_{-\infty}^{+\infty}(x-\mu)^{2} f_{X}(x) d x
\end{aligned}
$$

For the discrete case:

$$
\begin{aligned}
& E(X)=\mu=\sum_{i=-\infty}^{+\infty} x_{i} P\left(X=x_{i}\right), \\
& V(X)=\sigma^{2}=\sum_{i=-\infty}^{+\infty}\left(x_{i}-\mu\right)^{2} P\left(X=x_{i}\right) .
\end{aligned}
$$

Example 7. X is uniformly distributed in $[0,1]$.

$$
\begin{aligned}
& F_{X}(x)= \begin{cases}0 & x<0, \\
\int_{0}^{x} 1 d x=x & 0 \leq x<1, \\
1 & x \geq 1 .\end{cases} \\
& E(X)=\int_{0}^{1} X \times 1 d x=\frac{1}{2}, \\
& V(X)=\int_{0}^{1}\left(X-\frac{1}{2}\right)^{2} \times 1 d x=\frac{1}{12} .
\end{aligned}
$$

Lemma 3 (Probability Density Functions).

Figure 3: Uniform distribution 1^{1}
(1) Uniform X uniform over $[a, b]$:

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq x \leq b \tag{10}\\ 0 & \text { otherwise }\end{cases}
$$

(2) Gaussian distribution:

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} \tag{11}
\end{equation*}
$$

Figure 4: Gaussian distribution ${ }^{2}$
(3) Exponential distribution: It is the probability distribution of the waiting time between events in a Poisson process in which events occur continuously and independently at a constant average

[^0]rate (check Poisson process in later lectures)
\[

f_{X}(x)= $$
\begin{cases}\lambda e^{-\lambda} & \text { if } x \geq 0 \tag{12}\\ 0 & \text { if } x<0\end{cases}
$$
\]

The mean:

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{x=0}^{\infty} x f(x) d x \\
& =\int_{x=0}^{\infty} x \lambda \exp (-\lambda x) d x \\
& =\lambda \int_{x=0}^{\infty} x \exp (-\lambda x) d x \\
& =\lambda\left(\left[\frac{-1}{\lambda} x \exp (-\lambda x)\right]_{x=0}^{x=\infty}+\int_{x=0}^{\infty} \frac{1}{\lambda} \exp (-\lambda x) d x\right) \\
& =\lambda\left(0+\frac{1}{\lambda^{2}}\right) \\
& =\frac{1}{\lambda}
\end{aligned}
$$

Homework: Find the variance of the exponential distribution.
Answer:

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\int_{x=0}^{\infty} x^{2} f(x) d x \\
& =\int_{x=0}^{\infty} x^{2} \lambda \exp (-\lambda x) d x \\
& =\lambda \int_{x=0}^{\infty} x^{2} \exp (-\lambda x) d x \\
& =\lambda\left(\left[\frac{-1}{\lambda} x^{2} \exp (-\lambda x)\right]_{x=0}^{x=\infty}+\int_{x=0}^{\infty} \frac{1}{\lambda} x \exp (-\lambda x) d x\right) \\
& =\lambda\left(0+\frac{1}{\lambda}\left(\frac{1}{\lambda} \mathbb{E}[X]\right)\right) \\
& =\lambda\left(\frac{1}{\lambda^{3}}\right) \\
& =\frac{1}{\lambda^{2}}
\end{aligned}
$$

Figure 5: Exponential distribution ${ }^{3}$
(4) Rayleigh Distribution:

$$
\begin{equation*}
f_{X}(x)=\frac{x}{\sigma^{2}} e^{\frac{-x^{2}}{2 \sigma^{2}}}, x \geq 0 \tag{13}
\end{equation*}
$$

Figure 6: Rayleigh distribution ${ }^{4}$
(5) Laplacian Distribution:

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sqrt{2} \sigma} e^{\frac{-\sqrt{2}|x|}{\sigma}} \tag{14}
\end{equation*}
$$

[^1]

Figure 7: Laplacian distribution. ${ }^{5}$

1 Example of Discrete Random Variable

1.1 Bernoulli RV

flipping a coin, $P(H)=p, P(T)=1-p$, if head occurs $X=1$, if tail occurs $X=0, P(X=0)=$ $1-p, P(X=1)=p$. The CDF of a bernoulli RV is as Figure 8 .

Figure 8: Cumulative distribution function of Bernoulli Random Variable

[^2]
1.2 Binomial distribution

Tossing a coin n times, $P(H)=p, P(T)=1-p . \mathrm{X}$ is number of heads, $x \in\{0,1, \ldots, n\}$.

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Remark 2. Let $Y_{i} \in\{0,1\}$ denote the outcome of tossing the coin the ith time

$$
X=Y_{1}+Y_{2}+\cdots+Y_{n} .
$$

i.e., a Binomial RV can be thought of as the sum of n independent Bernoulli RV.

Example 8 (Random graph). Each edge exists with probability p, X is the number of neighbor of node 1(Figure 9).

$$
\begin{gathered}
Y_{i}= \begin{cases}1, & \text { if node } 1 \text { is connected to } i+1, \\
0, & \text { otherwise. }\end{cases} \\
X=Y_{1}+Y_{2}+\cdots+Y_{n-1} .
\end{gathered}
$$

So X follows the Binomial distribution.

Figure 9: Random Graphs

Example 9 (BSC). Suppose we are transmitting a file of length n. Consider a BSC where the probability of error is p and the probability of receiving the correct bit is 1-p. (Figure 10) What is the probability that we have k errors?

$$
P(k \text { errors })=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Figure 10: Binary Symmetric Channel with probability of error $P_{e}=p$.

Let X represent the number of errors, what is $E(X)$

$$
\begin{aligned}
E(X) & =\sum_{k=0}^{n} k P(X=k), \\
& =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}, \\
& =n p \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k-1}(1-p)^{n-k}, \\
& =n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{n-k+1}, \\
& =n p .
\end{aligned}
$$

Binomial theorem:

$$
\begin{aligned}
(x+y)^{n} & =\sum_{k=1}^{n}\binom{n}{k} x^{k} y^{n-k} \\
(p+1-p)^{n-1} & =\sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{n-k+1} \\
& =1 .
\end{aligned}
$$

Theorem 1. For any two RVs X_{1} and $X_{2}, Y=X_{1}+X_{2}$,

$$
\begin{equation*}
E(Y)=E\left(X_{1}\right)+E\left(X_{2}\right) \tag{15}
\end{equation*}
$$

It does not matter whether X_{1} and X_{2} are independent or not.

1.3 Geometric distribution

You keep tossing a coin until you observe a Head. X is the number of times you have to toss the coin.

$$
\begin{aligned}
X & \in\{1,2, \ldots\} \\
P(X=K) & =(1-p)^{k} p
\end{aligned}
$$

Figure 11: Binary Erasure Channel with probability of erasure $P_{e}=0.1$.

Example 10 (Binary erasure channel). Suppose you have a BEC channel with feedback. When you get a erasure, you ask the sender to retransmit.(Figure 11)
Suppose you pay one dollar for each retransmission. Let X be the amount of money you pay per transmission.

$$
\begin{aligned}
E(X) & =\frac{1}{1-p}, \\
& =\frac{1}{0.9} \approx 1.11 \$.
\end{aligned}
$$

For geometric distribution,

$$
P(H) \approx \frac{1}{E(X)}
$$

which $E(X)$ is the number of coin flips on average.
Intuition: You have to make $E(X)$ trials, and in these $E(X)$ trials, the success happens once at the last trial

Proof.

$$
\begin{align*}
E(X) & =\sum_{k=1}^{\infty} k P(X=k), \tag{16}\\
& =\sum_{k=1}^{\infty} k(1-p)^{k-1} p, \tag{17}\\
& =p \sum_{k=1}^{\infty} k(1-p)^{k-1} . \tag{18}
\end{align*}
$$

Recall that for $|x|<1$,

$$
\begin{align*}
\sum_{k=0}^{\infty} x^{k} & =\frac{1}{1-x} \tag{19}\\
\frac{d}{d k} \sum_{k=1}^{\infty} k x^{k-1} & =\frac{1}{(1-x)^{2}} \tag{20}\\
\sum_{k=1}^{\infty} k(1-p)^{k} & =\frac{1}{p^{2}} \tag{21}
\end{align*}
$$

So,

$$
\begin{align*}
E(X) & =p \frac{1}{p^{2}}, \tag{22}\\
& =\frac{1}{p} . \tag{23}
\end{align*}
$$

1.4 Poisson distribution

Suppose a server receives λ searches per second on average. The probability that the server receives k searches for this second is

$$
\begin{equation*}
P(X=k)=C \frac{\lambda^{k}}{k!}, k=0,1,2, \ldots, \infty \tag{24}
\end{equation*}
$$

To find C:

$$
\begin{aligned}
\sum_{k=0}^{\infty} P(X=k) & =1 \\
C \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} & =1 \\
C & =\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \\
C & =e^{-\lambda} .
\end{aligned}
$$

Then the pdf of the poisson distribution for an average of λ arrivals per time unit is:

$$
\begin{equation*}
P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, k=0,1,2, \ldots, \infty . \tag{25}
\end{equation*}
$$

The mean is:

$$
E(X)=\lambda .
$$

Example 11 (Interpretation of poisson distribution as an arrival experiment).
Suppose average of arrival cumtomers per second is λ. Suppose server goes down if $X \geq 100$. We want to find the probability of $P(X=k)$.

$$
P(\text { server going down })=P(X \geq 100) \text {. }
$$

We divide the one second to n intervals, each length of the interval is $\frac{1}{n}$ second. The probability p of getting requests in small interval is $\frac{\lambda}{n}$.

Figure 12: one second divided into n intervals.

Now we can consider it to be Bernoulli distribution with p.

$$
\begin{align*}
P(X=k) & =\binom{n}{k} p^{k}(1-p)^{n-k}, \tag{26}\\
& =\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \tag{27}\\
& \approx \frac{n^{k}}{k!}\left(\frac{p}{1-p}\right)^{k}(1-p)^{n}, \tag{28}\\
& =\frac{1}{k!}(n p)^{k} e^{-n p}, \tag{29}\\
& =\frac{1}{k!} \lambda^{k} e^{-\lambda}, \tag{30}\\
& =\frac{\lambda^{k}}{k!} e^{-\lambda} . \tag{31}
\end{align*}
$$

We get (28) because of

$$
\begin{align*}
\binom{n}{k} & =\frac{1}{k!} n(n-1) \ldots(n-k+1), \tag{32}\\
& \approx \frac{n^{k}}{k!},(k \text { is a constant and } n \text { goes to infinity }) . \tag{33}
\end{align*}
$$

This means we can approximate Binomial($n, p)$ by Poisson with $\lambda=n p$ (if n is very large).

2 Two Random Variables

Example 12. Let X and Y be Bernoulli Random Variable. If $Y=0$, we know X must equal to

	$\mathrm{Y}=0$	$\mathrm{Y}=1$
$\mathrm{X}=0$	$\frac{1}{2}$	$\frac{1}{4}$
$\mathrm{X}=1$	0	$\frac{1}{4}$

Table 1: Joint probability mass function of X and Y.
0 , so X and Y are dependent.

$$
\begin{aligned}
& P(X=0)=\frac{3}{4} \\
& P(X=1)=\frac{1}{4}
\end{aligned}
$$

Here is a example which X and Y are independent, but they have the same marginal distribution.

	$\mathrm{Y}=0$	$\mathrm{Y}=1$
$\mathrm{X}=0$	$\frac{3}{8}$	$\frac{3}{8}$
$\mathrm{X}=1$	$\frac{1}{8}$	$\frac{1}{8}$

Table 2: Joint probability mass function of X and Y.

2.1 Marginalization

You have the joint distribution $P_{X, Y}(x, y)$.

$$
\begin{align*}
P_{X}\left(x_{0}\right) & =\sum_{y} P_{X, Y}\left(x_{0}, y\right), \tag{34}\\
P_{Y}\left(y_{0}\right) & =\sum_{x} P_{X, Y}\left(x, y_{0}\right) . \tag{35}
\end{align*}
$$

Definition 6. If X and Y are continuous random variables, then the joint CDF:

$$
\begin{equation*}
F_{X, Y}(x, y)=P(X \leq x, Y \leq y) . \tag{36}
\end{equation*}
$$

Given joint CDF $F_{X, Y}(x, y)$,

$$
\begin{equation*}
F_{X}\left(x_{0}\right)=F_{X, Y}\left(x_{0},+\infty\right) \tag{37}
\end{equation*}
$$

Definition 7. When the CDF is differentiable, the joint pdf is defined as

$$
\begin{align*}
f_{X, Y}(x, y) & =\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y}, \tag{38}\\
f_{X}(x) & =\int_{\infty}^{-\infty} f_{X, Y}(x, y) d y \tag{39}\\
f_{Y}(y) & =\int_{\infty}^{\infty} f_{X, Y}(x, y) d x . \tag{40}
\end{align*}
$$

Definition 8. X and Y are independent if and only if

$$
\begin{align*}
F_{X, Y}(x, y) & =F_{X}(x) F_{Y}(y), \tag{41}\\
f_{X, Y}(x, y) & =f_{X}(x) f_{Y}(y) . \tag{42}
\end{align*}
$$

Definition 9. Conditional CDF of marginal distribution is

$$
\begin{align*}
F_{X, Y}(x \mid y) & =P(X \leq x \mid Y \leq y) \tag{43}\\
& =\frac{F_{X, Y}(X \leq x, Y \leq y)}{P(Y \leq y)} \tag{44}
\end{align*}
$$

Example 13. X and Y are 2 random variables given by the joint pdf

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \sigma^{2} \sqrt{1-\rho^{2}}} \exp \left[\frac{-1}{2 \sigma^{2}\left(1-\rho^{2}\right)}\left(x^{2}+y^{2}-2 \rho x y\right)\right] .
$$

What is $f_{X}(x)$?

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \\
& =\frac{1}{2 \pi \sigma^{2} \sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} \exp \left[\frac{-1}{2 \sigma^{2}\left(1-\rho^{2}\right)}\left(x^{2}+y^{2}-2 \rho x y\right)\right] d y \\
& =\frac{\exp \left[\frac{-x^{2}}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right]}{2 \pi \sigma^{2} \sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} \exp \left[\frac{-1}{2 \sigma^{2}\left(1-\rho^{2}\right)}\left(y^{2}-2 \rho x y+\rho x^{2}-\rho^{2} x^{2}\right)\right] d y, \\
& =\frac{\exp \left[\frac{-x^{2}+\rho^{2} x^{2}}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right]}{2 \pi \sigma^{2} \sqrt{\sigma \rho^{2}}} \int_{-\infty}^{\infty} e^{\frac{-(y-\rho x)}{2 \sigma^{2}\left(1-\rho^{2}\right)}} d y \\
& =\frac{\exp \left[\frac{-\left(1-\rho^{2}\right) x^{2}}{2 \sigma^{2}\left(1-\rho^{2}\right)}\right]}{\sqrt{2 \pi} \sigma} \frac{\sqrt{1-\rho^{2 x}}}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{\frac{-(y-\rho x)}{2 \sigma^{2}\left(1-\rho^{2}\right)}} d y .
\end{aligned}
$$

Because

$$
\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{\frac{-(x-\mu)^{2}}{2 \sigma}} d x=1
$$

So if $\rho=0$,

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-x^{2}}{2 \sigma^{2}}}
$$

Similarly,

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-y^{2}}{2 \sigma^{2}}} .
$$

We can have

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

So X and Y are independent. If $\rho \neq 0, X$ and Y are not independent.

[^0]: ${ }^{1}$ Figure from Wikipedia: https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
 ${ }^{2}$ Figure from Wikipedia: https://en.wikipedia.org/wiki/Normal_distribution

[^1]: ${ }^{3}$ Figure from Wikipedia: https://en.wikipedia.org/wiki/Exponential_distribution
 ${ }^{4}$ Figure from Wikipedia: https://en.wikipedia.org/wiki/Rayleigh_distribution

[^2]: ${ }^{5}$ Figure from Wikipedia: https://en.wikipedia.org/wiki/Laplace_distribution

