
ECE511: Analysis of Random Signals Fall 2015

Martingales

Dr. Salim El Rouayheb Scribe: Serge Kas Hanna

1 Motivation: Fair Games

Example 1. Suppose you play the following series of games. In game i, i = 1, 2, . . . , you bet $1
and flip a fair coin. If the outcome is heads you win $1, and if the outcome is tails you lose $1. Let:

Xi : amount of money you win or lose (Xi < 0) in bet i, and Zi =
n∑

i=1

Xi.

We say the game is fair since E [Xi] = 0 for all i.

Claim 1. E [Zn|X1, . . . , Xn−1] = Zn−1.

Proof.

E [Zn|X1, . . . , Xn−1] = E [X1 + · · ·+Xn|X1, . . . , Xn−1] ,

= E [X1|X1, . . . , Xn−1] + · · ·+ E [Xn−1|X1, . . . , Xn−1] + E [Xn|X1, . . . , Xn−1]︸ ︷︷ ︸
=E[Xn]=0

,

= X1 + · · ·+Xn−1 + 0 ,

= Zn−1.

The property E [Zn|X1, . . . , Xn−1] = Zn−1 is a crucial property of the sequence Z0, Z1, . . . , that we
will use later to define a martingale.

The betting amount in a fair game for each game does not have to be fixed. It can:

1. Depend on which game is played. For example, bet $2i in game i.

2. Depend on the outcome of games in the past (betting strategy has memory). For example,
bet $2i if the previous bet was won, and bet $i if the previous game was lost.

Note: Regardless of the gambling strategy used, the game is fair as long as the coin used is fair.
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2 Martingales

Definition 1. A sequence of random variables Z0, Z1, . . . is a martingale with respect to the se-
quence X0, X1, . . . , if for all n ≥ 0 all the following hold:

1. Zn = f (X0, X1, . . . , Xn), i.e. f is a deterministic function of X0, . . . , Xn.

2. E [|Zn|] <∞.

3. E [Zn+1|X0, X1, . . . , Xn] = Zn.

Definition 2. A sequence of random variables Z0, Z1, . . . is a martingale when it is a martingale
with respect to itself, that is:

1. E [|Zn|] <∞.

2. E [Zn+1|Z0, Z1, . . . , Zn] = Zn.

Lemma 1. If Z0, Z1, . . . , Zn is a martingale with respect to X0, X1, . . . , Xn, then E [Zn] = E [Z0].

Proof. Since Zi defines a martingale:

Zi = E [Zi+1|X0, X1, . . . , Xi] .

E [Zi] = E [E [Zi+1|X0, X1, . . . , Xi]] ,

= E [Zi+1] .

3 Stopping Time

Question: Is there a gambling strategy that can guarantee that one always wins on average in a
fair game?

Example 2. Possible Stopping Strategies

1. Stop after k games: Intuitively, if the game is fair then there is no such strategy that guar-
antees winning on average. In fact E[Zk] = E[Z0].

2. Stop once you collect $100: The problem with such a strategy is that you have to wait an
infinite amount of time (and you may run out of money).
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Definition 3. A non-negative, integer random variable T is a stopping time for the sequence
Z0, Z1, . . . if the event “T = n” depends only on the value of random variables Z0, Z1, . . . , Zn.

Intuition: T corresponds to a strategy for determining when to stop a sequence based only on
values seen so far. In the gambling game:

1. First time I win 10 games in a row: is a stopping time.

2. The last time when I win: is not a stopping time (depends on the future).

Theorem 1. (Martingale Stopping Theorem)
If Z0, Z1, . . . is a martingale with respect to X1, X2, . . . and if T is a stopping time for X1, X2, . . .
then:

E [ZT ] = E [Z0] ,

whenever one of the following holds:

1. There is a constant c such that, almost surely, |Zn| ≤ c for all n ≤ T .

2. T is bounded, almost surely.

3. E [T ] <∞, and there is a constant c such that E [|Zi+1 − Zi| | X1, . . . , Xi] < c.

Example 3. The Gambler’s Ruin
The game consists of flipping a fair coin repeatedly, every time the outcome is heads the gambler
wins $1 and if the outcome is tails the gambler loses $1. The gambler starts the game with $k and
stops playing when he loses his all his money or when he reaches a total of $n, where n > k. This
problem can be seen as random as walk as shown in Figure 2, the gambler stops if he hits 0 or n.

n

k

Coin flips

Amount of money

n− k

k

Figure 1: Gambler’s Ruin Random Walk

Question: What is the probability of winning?

Answer: Intuitively the probability of winning is proportional to k, Pr(win) =
k

n
.

Now we calculate Pr(win) again, this time using Theorem 2 (Martingale Stopping Theorem):
Let Xi be the amount of money the gambler gains after playing the ith round, such that:

Pr(Xi = +$1) = Pr(heads) = Pr(tails)︸ ︷︷ ︸
fair coin

= Pr(Xi = −$1) =
1

2
.
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Let Z0 = k and Zi =
∑i

k=1Xk.

E [Zi+1|X1, . . . , Xi] = E [X1 + · · ·+Xi+1|X1, . . . , Xi] ,

= E [Zi +Xi+1|X1, . . . , Xi] ,

= Zi +���
��:0

E [Xi+1] ,

= Zi.

Therefore, Z0, Z1, . . . , is a martingale with respect to X1, X2, . . . . Let T be the time when the
gambler hits 0 or n, T is a stopping time for X1, . . . , Xn. Also |Zi| for i = 1, . . . , n are bounded by
n. By Martingale Stopping Theorem (theorem 2):

E [ZT ] = E [Z0] = k.

n× Pr(win) + 0× Pr(lose) = k

Pr(win) =
k

n
.

Example 4. A Ballot Theorem
Two candidates, Hillary and Trump, run for election. Hillary gets a votes and Trump gets b votes,
such that a > b. Votes are counted in random order: chosen from all permutations on n = a + b
votes. What is the probability that Hillary is always ahead in the count?
Let Si be the number of votes Hillary is leading by after i votes (if Hillary is trailing: Si < 0),
Sn = a− b. The cases we’re interested in are the ones similar to example shown in table 1, where
Hillary is always in the lead (Si > 0).

Hillary Trump Si
1 0 1
2 0 2
3 0 3
4 0 4
4 1 3
4 2 2

Table 1: Count Example.

Let p be the probability that Hillary is always leading. Let us start by a toy example with a = 2 and
b = 1 in table 2 and will be proven later using martingales.
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Hillary Trump Si
1 0 1
2 0 2
2 1 1

(a) case 1

Hillary Trump Si
0 1 -1
1 1 0
2 1 1

(b) case 2

Hillary Trump Si
1 0 1
1 1 0
2 1 1

(c) case 3

Table 2: a = 2, b = 1 Example.

Out of the 3 possible cases shown in table 2, case 1 is the only case where Hillary is always in the
lead. Therefore:

p =
1

3
.

Now we determine p using martingales. Define:

Xk =
Sn−k
n− k

, 0 ≤ k ≤ n− 1.

Claim 2. X0, X1, . . . , Xn is a martingale.

Let us assume that the claim is true for now. Let:

T =

{
min{k : Xk = 0} if such k exists,

n− 1 otherwise.
.

The first case (case 1, T = min{k : Xk = 0}), is the first time that the score of Hillary is equal
to the score of Trump. This case happening means that Hillary does not lead throughout the whole
count. The second case (case 2, T = n− 1) is when n = a+ b is reached and Hillary was always in
the lead.
T is bounded and depends only on all the votes up to T (past). Therefore, T is a stopping time and
by Theorem 2 (Martingale Stopping Theorem):

E [XT ] = E [X0] =
E [Sn]

n
=
a− b
a+ b

.

Case 1: For some k : Sk = 0, then Xk = 0. T = k < n− 1 and XT = 0.
Case 2: For 0 ≤ k ≤ n − 1 : Sn−k > 0, then Xk > 0. T = n − 1 and XT = Xn−1 = S1 = 1
(definitely leads after first vote).

E [XT ] = 0× Pr(case 1) + 1× Pr(case 2) =
a− b
a+ b

.
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Therefore,

Pr(case 2) = p =
a− b
a+ b

.

Now let’s prove Claim 2, E [Xi+1|X0, . . . , Xi]
?
= Xi.

Conditioning on X0, X1, . . . , Xk−1 is the same as conditioning on Sn, Sn−1, . . . , Sn−k+1.
Let ai be the number of votes for Hillary after first i votes are counted.

Sn−k =

{
Sn−k+1 + 1 if n− k + 1th vote is for Trump,

Sn−k+1 − 1 if n− k + 1th vote is for Hillary.

Sn−k =

Sn−k+1 + 1 with prob.
n− k + 1− an−k+1

n− k + 1
,

Sn−k+1 − 1 with prob.
an−k+1

n− k + 1
.

E [Sn−k|Sn−k+1] = (Sn−k+1 + 1)
n− k + 1− an−k+1

n− k + 1
+ (Sn−k+1 − 1)

an−k+1

n− k + 1
. (1)

number of votes for Hillary + number of votes for Trump = n− k + 1,

an−k+1 + (an−k+1 − Sn−k+1) = n− k + 1,

an−k+1 =
n− k + 1 + Sn−k+1

2
. (2)

Replacing (2) in (1) we get:

E [Sn−k|Sn−k+1] = Sn−k+1
n− k

n− k + 1
. (3)

E [Xk|X0, X1, . . . , Xk−1] = E

[
Sn− k
n− k

|Sn, . . . , Sn−k+1

]
,

=
Sn−k+1

n− k + 1
,

= Xk−1.

⇒ X0, X1, . . . , Xn is a martingale, which proves Claim 2.

4 Doob Martingale

Theorem 2. (Martingale Convergence Theorem)
If Z0, Z1, . . . is a martingale and E

[
Z2
n

]
< c for all n ≥ 0 and for some constant c, then Zn

a.s.−−→ Z
when n→∞.

Proof. Refer to textbook.

Let X1, X2, . . . , Xn be a sequence of random variables.
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Definition 4 (Doob Martingale).
Let Y = f (X1, . . . , Xn) be a random variable with E [|Y |] <∞ that is a function of X1, . . . , Xn.
Let Z0 = E [Y ], and Zi = E [Y |X1, X2, . . . , Xi] , i = 0, 1, . . . , n.

Lemma 2. The sequence Z0, Z1, . . . , Zn defined above is a martingale with respect to X0, X1, . . . , Xn,
called Doob martingale.

Proof. The proof uses the fact that E [E [V |U,W ] |W ] = E [V |W ].

Zi = E [Y |X0, X1, . . . , Xi] , i = 0, 1, . . . , n.

E [Zi+1|X0, X1, . . . , Xi] = E [E [Y |X0, X1, . . . , Xi+1] |X0, X1, . . . , Xi] ,

= E [Y |X0, X1, . . . , Xi] ,

= Zi.

Example 5. (Edge Exposure Martingale)
Consider the random graph Gn,p, i.e. a graph with n vertices such that the probability that two
vertices are connected is p. Consider the m =

(
n
2

)
possible edges in arbitrary order such that:

Xi =

{
1 if edge i is present,

0 otherwise.
.

The clique number (maximum number of vertices that are pairwise connected) is denoted by w(G).
We can think of w(G) as a function of the edges, i.e. w(G) = f(X1, X2, . . . , Xm). The Doob
martingale is defined as follows:
Z0 = E [w(G)].
Zi = E [w(G)|X1, X2, . . . , Xi] , i = 1, . . . ,m.
Z0, Z1, . . . , Zm is a Doob martingale.

Let us take the example of a random graph on n = 3 vertices (G3, 1
2
). The complete graph of

G is shown in Figure 1, where X1 = X2 = X3 = 1 and w(G) = 3.

1

23

v1 v2

v3

Figure 2: Complete graph for n = 3.

Now for G3, 1
2

we determine Z0 and Z1, the first two terms of the sequence, and verify the martingale

property. The other terms of the sequence can also be verified to satisfy the martingale property by
the same procedure.

1. Z0 = E [w(G)] and w(G) = {1, 2, 3}.
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(a) Pr(w(G) = 1) = Pr(G has no edges) =

(
1

2

)3

=
1

8
.

(b) Pr(w(G) = 2) = Pr(G has 1 or 2 edges) = 3

(
1

2

)3

+ 3

(
1

2

)3

=
3

4
.

(c) Pr(w(G) = 3) = Pr(G has 3 edges) =

(
1

2

)3

=
1

8
. (This is the case of Figure 1).

Z0 = E [w(G)] = 1× 1

8
+ 2× 3

4
+ 3× 1

8
= 2.

2. Z1 = E [w(G)|X1] which is a random variable.

(a) If X1 = 1 the possible values of w(G) are 2 and 3.

Pr (w(G) = 3|X1 = 1) = Pr(edges 2 and 3 exist) =

(
1

2

)2

=
1

4
.

Pr (w(G) = 2|X1 = 1) = Pr(at most one edge other than edge 1 exits) = 3

(
1

2

)2

=
3

4
.

E [w(G)|X1 = 1] = 3× 1

4
+ 2× 3

4
=

9

4
.

(b) If X1 = 0, the possible values of w(G) are 1 and 2.

Pr (w(G) = 2|X1 = 0) = Pr(at least one of the edges 2 and 3 exist) = 3

(
1

2

)2

=
3

4
.

Pr (w(G) = 1|X1 = 0) = Pr(edges 2 and 3 don’t exist) =

(
1

2

)2

=
1

4
.

E [w(G)|X1 = 0] = 2× 3

4
+ 1× 1

4
=

7

4
.

Z1 ∈
{

7

4
,
9

4

}
such that Pr

(
Z1 =

9

4

)
= Pr(X1 = 1) = Pr(X1 = 0) = Pr

(
Z1 =

7

4

)
=

1

2
.

Now having determined Z0 and Z1, we verify that E [Z1] (which can be thought of as equal to
E [Z1|X0] for some constant X0) is equal to Z0. In fact:

E [Z1] =
1

2
× 7

4
+

1

2
× 9

4
,

= 2

= Z0.

5 Azuma-Hoeffding Inequality

Motivation: If the martingale is stopped at Zk for a fixed k (E[Zk] = E[Z0]), how far can Zk be
from E[Zk]?

Example 6.
Let X1, . . . , Xn be a sequence of iid random variables such that Pr(Xi = +1) = Pr(Xi = −1) = 1

2 .

Let Z0 = 0 and Zi =
∑i

k=1Xk. Z0, Z1, . . . is a martingale.

E[Zi] = 0 = E[X1] + · · ·+ E[Xi] = E[Z0] = 0 for all i = 1, 2, . . . .
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The CLT,

P (|Zi| ≥ a)
i→∞−−−→ 2

∫ +∞

a

e−
x2

2i

√
2πi

dx ≤ 2e−
a2

2i (Chernoff Bound).

⇒ There is a high concentration around the average. And the probability that Zi is far from the
average decreases exponentially.

The next theorem proves that the same phenomenon happens even if the increments X ′is are not
independent (so we can’t apply the CLT), as long as their partial sums form a Martingale,

Theorem 3 (Azuma-Hoeffding Inequality).
Let Z0, Z1, . . . , Zn be a martingale with respect to X1, X2, . . . such that |Zk − Zk−1| ≤ ck for given
constants ck. Then, for all t ≥ 0 and any λ > 0 :

Pr (|Zt − Z0| ≥ λ) ≤ 2e
− λ2

2
∑t
k=1

c2
k .

Corollary 1. Let X0, X1, . . . be a martingale such that for all k ≥ 1,

|Xk −Xk−1| ≤ c.

Then, for all t ≥ 1 and λ > 0,

Pr
(
|Xt −X0| ≥ λc

√
t
)
≤ 2e−

λ2

2 .

Example 7. Pattern Matching
Given a long string A and a short pattern B, we ask the following questions:

1. Does this pattern appear more often than is expected in a random string?

2. Is the number of occurrences of the pattern concentrated around the expectation?

Let A = (a1, a2, . . . , an) be a string of characters, each chosen independently and uniformly at
random from Σ, with |Σ| = m (size of the alphabet), and B = (b1, . . . , bk) a fixed string representing
the pattern such that k < n and bi ∈ Σ. Let F be the number of occurrences of B in random string
A.

E[F ] = (n− k + 1)

(
1

m

)k

.

A possible application for such a pattern matching is looking for a certain pattern in a patient’s
DNA sequence, that is not present in a healthy human’s DNA, in order to diagnose a disease. Where
Σ = {A,C,G, T} ⇒ |Σ| = m = 4.

Can we bound the deviation of F from its expectation? The idea is illustrated in figure 3 which
shows the histogram, frequency of appearing, of all substrings of length k in the big sequence A.

Let us construct a Doob martingale:

Z0 = E[F ],

Zi = E[F |a1, . . . , ai] for i = 1, . . . , n.
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Substrings

Frequency

n−k+1
mk

Figure 3: Histogram of all substrings of length k in the big sequence A.

⇒ Z0, Z1, . . . , is a Doob martingale such that E[Zn] = F.

Each character in A can participate in no more than k occurrences of B:

|Zi − Zi+1| ≤ k.

By Azuma-Hoeffding inequality:

Pr (|F − E[F ]| ≥ λ) ≤ e−
λ2

2nk2 .

Example 8. Bins and Balls
We are throwing m balls independently and uniformly at random into n bins. We are interested in
F the number of empty bins at the end.

After the balls are thrown, let:

Xi =

{
1 if bin i is empty,

0 otherwise.

Let F be the number of empty bins. F = f (X1, X2, . . . , Xm), in particular we can write:

F = X1 + · · ·+Xn.

Note that the X ′is are not independent and F is a not a Binomial random variable. For example, not
all X ′is can be zero at the same time. Also, if m < n and it happens that X1 = X2 = · · · = Xm = 0
(first m bins not empty) then definitely we have Xm+1 = · · · = Xn = 1 (the remaining bins must
be empty because we are out of balls).
A bin i is empty if all the m balls are thrown in the n− 1 bins other than bin i. Therefore,

Pr(bin i is empty) =

(
n− 1

n

)m

.

E[F ] = E(X1 + · · ·+Xn) = nE(X1) = n

(
n− 1

n

)m

.

We are interested in bounding the deviation of F from its expectation. Let us construct a Doob
martingale,

Z0 = E(F ), and, Zi+1 = E [F |X1, . . . , Xi] , i = 1, . . . n.

After revealing the status of bin i + 1, the number of empty bins can at most increase by one.
Therefore,

|Zi+1 − Zi| ≤ 1.

Therefore, we can apply the Azuma-Hoeffding inequality to obtain:

Pr (|F − E[F ]| ≥ λ) ≤ e−
λ2

2n .
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