Chapter 1: Introduction to Probability Theory

1 Axioms of Probability

Definition 1 (Probability Space). The Probability space is defined by a triplet $(\Omega, \mathcal{F}, \mathcal{P})$, where:
Ω is the Sample space
\mathcal{F} is the set of Events
\mathcal{P} is the Probability function
Definition 2 (Sample space). The Sample space, Ω, is the set of all possible outcomes of a random experiment.

Example 1. When we toss a coin, all the possible outcomes are Heads or Tails. Therefore, the sample space of a coin tossing is $\Omega=\{$ Head, Tail $\}$.

Example 2. When we toss a die, one of the 6 faces is going to come up. Therefore, the sample space of a die tossing is $\Omega=\{1,2,3,4,5,6\}$.

Example 3. Suppose that we want to measure the temperature a Thursday afternoon in September. Then $\Omega=\mathbb{R}$.

Definition 3 (Event). An event E is a subset of the sample space, i.e., $E \subseteq \Omega$.
Example 4. Coin Tossing: The Event of getting a Head is $E=\{H\}$
Example 5. Die Tossing: The Event of getting a "multiple of 3" is $E=\{3,6\}$
Example 6. Temperature measurement: The Event of getting a temperature between $70^{\circ} \mathrm{F}$ and $90^{\circ} F$ is $E=[70,90]$

Example 7. If we toss a fair coin twice, then the sample space is $\Omega=\{H H, H T, T H, T T\}$. Consider the event A "at least one Head occurs"; then, the event is $A=\{H H, H T, T H\}$.
Let B be the event of tossing the coin repeatedly until a Head occurs. Then, $B=\{H, T H, T T H, \ldots\}$. Let C be the event of tossing the coin an even number of times until a Head occurs. Then, $C=\{T H, T T T H, \ldots\}$.

Definition $4(\mathcal{F}) . \mathcal{F}$ is the set of all events.
Typically when Ω is countable, \mathcal{F} is the set of all subsets of Ω, i.e., the power set of Ω denoted by 2^{Ω}. But this is not the case for Ω uncountable, where \mathcal{F} is going to be too large and there will often be sets to which it will be impossible to assign a unique measure like in $\Omega=\mathbb{R}$. (Check Definition 5. and Remark 2.)

Remark 1. \mathcal{F} must be a σ-algebra such that

1. $\Omega \in \mathcal{F}$,
2. If $A \in \mathcal{F}$, then its complement set $A^{C} \in \mathcal{F}$,
3. if $A_{i} \in \mathcal{F}$ for all $i=1,2 \ldots$, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$

Corollary. From De Morgan's Law and the previous property we get that if $A_{i} \in \mathcal{F}$ for all $i=$ $1,2 \ldots$, then $\bigcap_{i=1}^{\infty} A_{i} \in \mathcal{F}$

Example 8. Temperature measurement How to prove that (a, b) is an Event when $[a, b] \in \mathcal{F}$? If $E=[a, b] \in \mathcal{F}$, then $a \& b \in \mathcal{F}$. Then $[a, b] \bigcap\{\bar{a}\} \bigcap\{\bar{b}\} \in \mathcal{F}$ which is (a, b).

Definition 5 (Borel Set). Borel sets are the sets that can be constructed from open or closed sets by repeatedly taking countable unions and intersections. Formally, Borel algebra is the smallest σ-algebra that makes all open sets measurable.

Remark 2. Not all subsets of Ω are events. You can define sets that have no probability. In such a case, we have to use the smallest σ - algebra called Borel algebra that contains all closed intervals

For this class, any subset of Ω is an event.
Definition 6 (Axioms of probability). A probability measure P on Ω is a function

$$
\begin{aligned}
P: \mathcal{F} & \rightarrow[0,1], \\
E & \rightarrow P(E),
\end{aligned}
$$

such that it satisfies the following properties:
(1) $P(\emptyset)=0$.
(2) $P(\Omega)=1$.
(3) If $A_{1}, A_{2}, A_{3} \ldots$ are disjoint subsets of Ω,

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i} P\left(A_{i}\right)
$$

Lemma 1. Let A and B be two subsets of Ω. We define \bar{A} to be the complement of A in Ω, we have:
(a) $P(\bar{A})=1-P(A)$.
(b) If $A \subseteq B$, then $P(A) \leq P(B)$.
(c) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

Proof. For part(a),

$$
\begin{aligned}
& P(A \cup \bar{A})=P(\Omega)=1 \text { and } A, \bar{A} \text { are disjoint } \\
& \Rightarrow P(A)+P(\bar{A})=1 \\
& \Rightarrow P(\bar{A})=1-p(A)
\end{aligned}
$$

For part(b),

$$
\begin{aligned}
B & =A \cup(B \backslash A) \\
\Rightarrow P(B) & =P(A)+P(B \backslash A) \\
& \geq P(A)
\end{aligned}
$$

For part(c),

$$
P(A \cup B)=P(A)+P(B \backslash A)=P(A)+P(B \backslash A \cap B)
$$

Now,

$$
(A \cap B) \subseteq B \Rightarrow P(B \backslash A \cap B)=P(B)-P(A \cap B)
$$

Lemma 2 (Union bound). Let A and B be two subsets of Ω, then

$$
P(A \cup B) \leq P(A)+P(B)
$$

In general,

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)
$$

Example 9 (Tossing a Die (a)). A_{1} : The result number is a multiple of 2. A_{2} : The result number is a multiple of 3.
$A_{1}=\{2,4,6\}, P\left(A_{1}\right)=\frac{1}{2} . A_{2}=\{3,6\}, P\left(A_{2}\right)=\frac{1}{3}$.

$$
P\left(A_{1} \cup A_{2}\right) \leq P\left(A_{1}\right)+P\left(A_{2}\right)=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}
$$

In fact, $A_{1} \cup A_{2}=\{2,3,4,6\}$ and $P\left(A_{1} \cup A_{2}\right)=\frac{2}{3}$.
Example 10 (Tossing a Die (b)). A_{1} : The result number is greater than or equal to 3. A_{2} : The result number is prime.
$A_{1}=\{3,4,5,6\}, P\left(A_{1}\right)=\frac{2}{3} . A_{2}=\{2,3,5\}, P\left(A_{2}\right)=\frac{1}{2}$.

$$
P\left(A_{1} \cup A_{2}\right) \leq P\left(A_{1}\right)+P\left(A_{2}\right)=\frac{2}{3}+\frac{1}{2}=\frac{7}{6}>1
$$

In fact, $A_{1} \cup A_{2}=\{2,3,4,5,6\}$ and $P\left(A_{1} \cup A_{2}\right)=\frac{5}{6}$.

1.1 Conditional Probability

Example 11. Consider the experiment of tossing two fair dice. Let A be the event that their total sum is greater than 6 .
(a) Find $P(A)$. The set of all events Ω is given by the following set:

$$
\Omega=\left\{\begin{array}{cccc}
(1,1), & (1,2), & \ldots & (1,6), \\
(2,1), & (2,2), & \ldots & (2,6), \\
\vdots & \vdots & \ddots & \vdots \\
(6,1), & (6,2), & \ldots & (6,6)
\end{array}\right\}
$$

Now, we need to find $P(A)$. All the possible outcomes of A (total exceeds 6) are:

$$
\begin{aligned}
& A=\{(1,6) \\
&(2,5),(2,6) \\
&(3,4),(3,5),(3,6) \\
&(4,3),(4,4),(4,5),(4,6) \\
&(5,2),(5,3),(5,4),(5,5),(5,6) \\
&(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} .
\end{aligned}
$$

Therefore

$$
P(A)=\sum_{e \in A} P(e) \stackrel{\text { fair dice }}{=} \frac{21}{36}
$$

(b) Let B the event that the first dice is 3. Find $P(B)$.

All the possible outcomes of event B are:

$$
\begin{equation*}
B=\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\} \tag{1}
\end{equation*}
$$

Then all the possible outcomes of event A given B are the events in equation (1) satisfying A (total exceeds 6), hence

$$
(A \cap B)=\{(3,4),(3,5),(3,6)\} .
$$

(c) What is the probability of "Total exceeds 6 given that the first dice is 3"

$$
P(A \mid B)=\frac{3}{6}
$$

we can find that by

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Definition 7 (Conditional probability). We define the conditional probability of an event A given that event B happened (with $P(B)>0$) by:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Definition 8 (Independent events). Two events A and B are independent iff

$$
P(A \cap B)=P(A) P(B)
$$

In general,

$$
\begin{align*}
P(A \cap B) & =P(A) P(B \mid A) \tag{2}\\
& =P(B) P(A \mid B) \tag{3}
\end{align*}
$$

We can also say that the events A and B are independent iff

$$
\begin{aligned}
& P(A \mid B)=P(A), \quad(P(B) \neq 0) \\
& P(B \mid A)=P(B), \quad(P(A) \neq 0)
\end{aligned}
$$

Figure 1: Binary Symmetric Channel (BSC) with probability of error $P_{e}=\varepsilon$.
Example 12 (Binary symmetric channel).
In the BSC of Fig. 8 the bits are flipped with probability $\varepsilon(\varepsilon$ is called crossover probability), we can write

$$
\begin{aligned}
\varepsilon & =P(Y=0 \mid X=1) \\
& =P(Y=1 \mid X=0)
\end{aligned}
$$

Suppose the bits ' 0 ' and ' 1 ' are equal likely to be sent, i.e.,

$$
P(X=0)=P(X=1)=0.5
$$

Q. Find the probability of sending a ' 0 ' and receiving a ' 0 '.

Ans.

$$
\begin{aligned}
P(X=0, Y=0) & =P(X=0) P(Y=0 \mid X=0) \\
& =0.5(1-\varepsilon)
\end{aligned}
$$

Example 13 (Random Graphs). Consider the graph $\mathcal{G}=(V, E)$ over 4 vertices, given in Figure 1, where $V=\{1,2,3,4\}$ is the vertex set and $E=\{\{1,2\},\{2,3\},\{3,4\}\}$ is the edge set.
A random graph \mathcal{G} defined over the vertex set V is a graph where an edge between any two vertices exists with a probability p. If we take a graph on n vertices and the edge exists between 2 vertices

Figure 2: Graph connection.

Figure 3: Graph connection for 4 vertices

with probability $=p=0.5$. Then the number of subsets of V of size $2=\frac{n(n-1)}{2}=\binom{n}{2}$. The number of subsets of V of size $k=\binom{n}{k}$.

If we have 4 vertices in a graph. What is the probability that vertex 1 is connected to k other nodes? Let N be the neighbors of vertex $1, N=\phi$ in fig(a), $N=\{1,2\}$ in fig(b), $N=\{1,3\}$ in fig(c), $N=\{2,3,4\}$ in fig(d).
Then we define the event A_{N} is that the vertex 1 is connected to the vertices in N
We say vertex 1 is connected to k other vertices, if $k=2$, all the possible graph are as (Figure 3).
Define event A vertex 1 is connected to 2 other vertices, therefore:

$$
A=A_{\{2,3\}} \cup A_{\{3,4\}} \cup A_{\{2,4\}} .
$$

The probability of this event A is

$$
P(A)=P\left(A_{\{2,3\}}\right)+P\left(A_{\{3,4\}}\right)+P\left(A_{\{2,4\}}\right) .
$$

Figure 4: vertex 1 is connected to two vertices

The probability of vertex 1 is connected to vertex 2 and 3 is

$$
P\left(A_{\{2,3\}}\right)=\left(\frac{1}{2}\right)^{3}=p^{2}(1-p)=P\left(A_{\{3,4\}}\right)=P\left(A_{\{2,4\}}\right),
$$

therefore,

$$
P(A)=3 p^{2}(1-p)
$$

In general, the probability vertex 1 is connected to k specific vertices is

$$
P\left(A_{N}\right)=p^{k}(1-p)^{n-1-k} .
$$

The probability vertex 1 is connected to k other vertices is

$$
\begin{aligned}
P(A) & =\Sigma P\left(A_{N}\right) \\
& =\binom{n-1}{k} p^{k}(1-p)^{n-1-k} .
\end{aligned}
$$

1.2 Total Law of Probability

Theorem 1. Let $A_{1}, A_{2}, \ldots, A_{n}$ be n mutually disjoint events such that

$$
\begin{equation*}
\Omega=\bigcup_{i=1}^{n} A_{i}\left(P\left(A_{i}\right) \neq 0\right) \tag{4}
\end{equation*}
$$

then for any event $B \subseteq \Omega$ we have

$$
P(B)=P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right)+\ldots+P\left(A_{n}\right) P\left(B \mid A_{n}\right) .
$$

Proof. For n=2

$$
\begin{align*}
B & =\left(B \cap A_{1}\right) \cup\left(B \cap A_{2}\right) \tag{5}\\
P(B) & =P\left(B \cap A_{1}\right)+P\left(B \cap A_{2}\right), \tag{6}\\
& =P\left(A_{1}\right) P\left(B \mid A_{1}\right)+P\left(A_{2}\right) P\left(B \mid A_{2}\right) . \tag{7}
\end{align*}
$$

Figure 5: Total law of probability.

Example 14. (BSC) Consider a BSC in Fig. 6 with crossover probability $\varepsilon=0.1$. The probability of sending ' 0 ' is 0.4 and the probability of sending ' 1 ' is 0.6.
Q. Find the probability of receiving a ' 0 '.

Figure 6: Binary Symmetric Channel with probability of error $P_{e}=0.1$.

Ans. The probability of sending ' 1 ' is $P(X=1)=0.6$, and the probability of sending ' 0 ' is $P(X=0)=0.4$. Then if we want to know the probability of receiving ' 0 ', we can use the total law of probability to calculate $P(Y=0)$,

$$
\begin{aligned}
P(Y=0) & =P(X=0) P(Y=0 \mid X=0)+P(X=1) P(Y=0 \mid X=1), \\
& =(0.4) \times(0.9)+(0.6) \times(0.1)=0.42
\end{aligned}
$$

1.3 Birthday paradox

Question:What is the probability that at least 2 students in class have the same birthday. E :at least 2 students have the same birthday.
Number of days per year is n, number of students in class is m.
\bar{E} : each student has distinct birthday.

Answer:

$$
P(\bar{E})=1 \times\left(1-\frac{1}{n}\right) \times\left(1-\frac{2}{n}\right) \times \cdots \times\left(1-\frac{m-1}{n}\right) .
$$

We know that

$$
1-\frac{k}{n} \approx \mathrm{e}^{-\frac{k}{n}, \quad k \ll n . . . ~}
$$

Then,

$$
\begin{aligned}
P(\bar{E}) & =\mathrm{e}^{-\frac{1}{n} \times \mathrm{e}^{-\frac{2}{n}} \times \cdots \times \mathrm{e}^{-\frac{m-1}{n}},} \\
& =\exp \left(-\frac{1}{n}(1+2+\cdots+m-1)\right), \\
& =\mathrm{e}^{-\frac{m(m-1)}{2 n}} \\
& \approx \mathrm{e}^{-\frac{m^{2}}{2 n}}
\end{aligned}
$$

Now we have student $m=50$, and number of birthdays $n=365$.

$$
\begin{aligned}
P(E) & \approx 1-\mathrm{e}^{-\frac{50^{2}}{2 \times 365}}, \\
& \approx 96.7 \% .
\end{aligned}
$$

Question:How big the class should be if the probability of 2 students have same birthday is larger than 50% ?
Answer:

$$
P(E)=\frac{1}{2} .
$$

Then

$$
1-\mathrm{e}^{-\frac{m^{2}}{2 n}}=\frac{1}{2}
$$

so

$$
\begin{aligned}
& \frac{m^{2}}{2 n}=\ln 2, \\
m & =\sqrt{2 \ln 2} \times \sqrt{n}, \\
& \approx 23 .
\end{aligned}
$$

So we need approximately 23 students in same class to make the probability that at least 2 students have the same birthday is larger than $\frac{1}{2}$.

Theorem 2 (Baye's Theorem).

$$
\begin{equation*}
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)} . \tag{8}
\end{equation*}
$$

Example 15 (BSC). In this case we have $P(X=0)=P(X=1)=\frac{1}{2}$ (0s and 1s are equal likely transmitted)
Suppose we observe $Y=1$. What value of X should we decode?

$$
P(X=1 \mid Y=1)=\frac{P(X=1, Y=1)}{P(Y=1)} .
$$

Figure 7: Baye's theorem.

Figure 8: Binary Symmetric Channel (BSC) with probability of error $P_{e}=\epsilon$.

According to the Baye's theorem

$$
\begin{aligned}
P(X=1 \mid Y=1) & =\frac{P(X=1) P(Y=1 \mid X=1)}{P(X=0) P(Y=1 \mid X=0)+P(X=1) P(Y=1 \mid X=1)}, \\
& =\frac{0.5(1-\varepsilon)}{0.5 \varepsilon+0.5(1-\varepsilon)}, \\
& =1-\varepsilon .
\end{aligned}
$$

