ECE541: Stochastic Signals and Systems

Fall 2019

Lecture 1 - September 5, 2019

Prof. Salim El Rouayheb

Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache

Chapter 1: Introduction to Probability Theory

1 Axioms of Probability

Definition 1 (Probability Space). The Probability space is defined by a triplet $(\Omega, \mathcal{F}, \mathcal{P})$,

where:

 Ω is the Sample space

 \mathcal{F} is the set of Events

 \mathcal{P} is the Probability function

Definition 2 (Sample space). The Sample space, Ω , is the set of all possible outcomes of a random experiment.

Example 1. When we toss a coin, all the possible outcomes are Heads or Tails. Therefore, the sample space of a coin tossing is $\Omega = \{Head, Tail\}.$

Example 2. When we toss a die, one of the 6 faces is going to come up. Therefore, the sample space of a die tossing is $\Omega = \{1, 2, 3, 4, 5, 6\}$.

Example 3. Suppose that we want to measure the temperature a Thursday afternoon in September. Then $\Omega = \mathbb{R}$.

Definition 3 (Event). An event E is a subset of the sample space, i.e., $E \subseteq \Omega$.

Example 4. Coin Tossing: The Event of getting a Head is $E = \{H\}$

Example 5. Die Tossing: The Event of getting a "multiple of 3" is $E = \{3, 6\}$

Example 6. Temperature measurement: The Event of getting a temperature between $70^{\circ}F$ and $90^{\circ}F$ is E = [70, 90]

Example 7. If we toss a fair coin twice, then the sample space is $\Omega = \{HH, HT, TH, TT\}$. Consider the event A "at least one Head occurs"; then, the event is $A = \{HH, HT, TH\}$.

Let B be the event of tossing the coin repeatedly until a Head occurs. Then, $B = \{H, TH, TTH, \ldots\}$. Let C be the event of tossing the coin an even number of times until a Head occurs. Then, $C = \{TH, TTTH, \ldots\}$. **Definition 4** (\mathcal{F}) . \mathcal{F} is the set of all events.

Typically when Ω is countable, \mathcal{F} is the set of all subsets of Ω , i.e., the power set of Ω denoted by 2^{Ω} . But this is not the case for Ω uncountable, where \mathcal{F} is going to be too large and there will often be sets to which it will be impossible to assign a unique measure like in $\Omega = \mathbb{R}$. (Check Definition 5. and Remark 2.)

Remark 1. \mathcal{F} must be a σ – algebra such that

- 1. $\Omega \in \mathcal{F}$,
- 2. If $A \in \mathcal{F}$, then its complement set $A^C \in \mathcal{F}$,
- 3. if $A_i \in \mathcal{F}$ for all $i = 1, 2..., then <math>\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Corollary. From De Morgan's Law and the previous property we get that if $A_i \in \mathcal{F}$ for all $i = 1, 2..., then <math>\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$

Example 8. Temperature measurement How to prove that (a, b) is an Event when $[a, b] \in \mathcal{F}$? If $E = [a, b] \in \mathcal{F}$, then $a \& b \in \mathcal{F}$. Then $[a, b] \cap \{\bar{a}\} \cap \{\bar{b}\} \in \mathcal{F}$ which is (a, b).

Definition 5 (Borel Set). Borel sets are the sets that can be constructed from open or closed sets by repeatedly taking countable unions and intersections. Formally, Borel algebra is the smallest σ – algebra that makes all open sets measurable.

Remark 2. Not all subsets of Ω are events. You can define sets that have no probability. In such a case, we have to use the smallest σ – algebra called Borel algebra that contains all closed intervals

For this class, any subset of Ω is an event.

Definition 6 (Axioms of probability). A probability measure P on Ω is a function

$$P: \mathcal{F} \to [0, 1],$$

 $E \to P(E),$

such that it satisfies the following properties:

- (1) $P(\emptyset) = 0$.
- (2) $P(\Omega) = 1$.
- (3) If $A_1, A_2, A_3...$ are disjoint subsets of Ω ,

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i} P(A_i).$$

Lemma 1. Let A and B be two subsets of Ω . We define \bar{A} to be the complement of A in Ω , we have:

(a)
$$P(\bar{A}) = 1 - P(A)$$
.

(b) If $A \subseteq B$, then $P(A) \leq P(B)$.

(c)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
.

Proof. For part(a),

$$P(A \cup \bar{A}) = P(\Omega) = 1$$
 and A , \bar{A} are disjoint $\Rightarrow P(A) + P(\bar{A}) = 1$
 $\Rightarrow P(\bar{A}) = 1 - p(A)$

For part(b),

$$B = A \cup (B \setminus A)$$

$$\Rightarrow P(B) = P(A) + P(B \setminus A)$$

$$\geq P(A)$$

For part(c),

$$P(A \cup B) = P(A) + P(B \setminus A) = P(A) + P(B \setminus A \cap B).$$

Now,

$$(A \cap B) \subseteq B \Rightarrow P(B \setminus A \cap B) = P(B) - P(A \cap B).$$

Lemma 2 (Union bound). Let A and B be two subsets of Ω , then

$$P(A \cup B) \le P(A) + P(B).$$

In general,

$$P\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} P(A_i).$$

Example 9 (Tossing a Die (a)). A_1 : The result number is a multiple of 2. A_2 : The result number is a multiple of 3.

$$A_1 = \{2, 4, 6\}, P(A_1) = \frac{1}{2}. A_2 = \{3, 6\}, P(A_2) = \frac{1}{3}.$$

$$P(A_1 \cup A_2) \le P(A_1) + P(A_2) = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

In fact, $A_1 \cup A_2 = \{2, 3, 4, 6\}$ and $P(A_1 \cup A_2) = \frac{2}{3}$.

Example 10 (Tossing a Die (b)). A_1 : The result number is greater than or equal to 3. A_2 : The result number is prime.

$$A_1 = \{3, 4, 5, 6\}, P(A_1) = \frac{2}{3}. A_2 = \{2, 3, 5\}, P(A_2) = \frac{1}{2}.$$

$$P(A_1 \cup A_2) \le P(A_1) + P(A_2) = \frac{2}{3} + \frac{1}{2} = \frac{7}{6} > 1$$

In fact, $A_1 \cup A_2 = \{2, 3, 4, 5, 6\}$ and $P(A_1 \cup A_2) = \frac{5}{6}$.

1.1 Conditional Probability

Example 11. Consider the experiment of tossing two fair dice. Let A be the event that their total sum is greater than 6.

(a) Find P(A). The set of all events Ω is given by the following set:

$$\Omega = \left\{ \begin{array}{lll} (1,1), & (1,2), & \dots & (1,6), \\ (2,1), & (2,2), & \dots & (2,6), \\ \vdots & \vdots & \ddots & \vdots \\ (6,1), & (6,2), & \dots & (6,6). \end{array} \right\}.$$

Now, we need to find P(A). All the possible outcomes of A (total exceeds 6) are:

$$A = \{(1,6) \\ (2,5), (2,6) \\ (3,4), (3,5), (3,6) \\ (4,3), (4,4), (4,5), (4,6) \\ (5,2), (5,3), (5,4), (5,5), (5,6) \\ (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}.$$

Therefore

$$P(A) = \sum_{e \in A} P(e) \stackrel{fair dice}{=} \frac{21}{36}$$

(b) Let B the event that the first dice is 3. Find P(B).

All the possible outcomes of event B are:

$$B = \{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}. \tag{1}$$

Then all the possible outcomes of event A given B are the events in equation (1) satisfying A (total exceeds 6), hence

$$(A \cap B) = \{(3,4), (3,5), (3,6)\}.$$

(c) What is the probability of "Total exceeds 6 given that the first dice is 3"

$$P(A|B) = \frac{3}{6},$$

we can find that by

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Definition 7 (Conditional probability). We define the conditional probability of an event A given that event B happened (with P(B) > 0) by:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Definition 8 (Independent events). Two events A and B are independent iff

$$P(A \cap B) = P(A)P(B).$$

In general,

$$P(A \cap B) = P(A)P(B|A)$$

$$= P(B)P(A|B).$$
(2)

We can also say that the events A and B are independent iff

$$P(A|B) = P(A), \quad (P(B) \neq 0)$$

 $P(B|A) = P(B), \quad (P(A) \neq 0).$

Figure 1: Binary Symmetric Channel (BSC) with probability of error $P_e = \varepsilon$.

Example 12 (Binary symmetric channel).

In the BSC of Fig. 8 the bits are flipped with probability ε (ε is called crossover probability), we can write

$$\varepsilon = P(Y = 0|X = 1)$$
$$= P(Y = 1|X = 0).$$

Suppose the bits '0' and '1' are equal likely to be sent, i.e.,

$$P(X = 0) = P(X = 1) = 0.5$$
.

Q. Find the probability of sending a '0' and receiving a '0'.

Ans.

$$P(X = 0, Y = 0) = P(X = 0)P(Y = 0|X = 0)$$

= 0.5(1 - \varepsilon).

Example 13 (Random Graphs). Consider the graph $\mathcal{G} = (V, E)$ over 4 vertices, given in Figure 1, where $V = \{1, 2, 3, 4\}$ is the vertex set and $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$ is the edge set.

A random graph G defined over the vertex set V is a graph where an edge between any two vertices exists with a probability p. If we take a graph on n vertices and the edge exists between 2 vertices

Figure 2: Graph connection.

- (a) vertices 2,3,4 are connected to each other
- (b) vertices 1,2 are connected to each other

- (c) vertices 1,3 are connected to each other
- (d) vertices 1,2,3,4 connected to each other

Figure 3: Graph connection for 4 vertices

with probability=p=0.5. Then the number of subsets of V of size $2=\frac{n(n-1)}{2}=\binom{n}{2}$. The number of subsets of V of size $k=\binom{n}{k}$.

If we have 4 vertices in a graph. What is the probability that vertex 1 is connected to k other nodes?

Let N be the neighbors of vertex 1, $N=\phi$ in fig(a), $N=\{1,2\}$ in fig(b), $N=\{1,3\}$ in fig(c), $N=\{2,3,4\}$ in fig(d).

Then we define the event A_N is that the vertex 1 is connected to the vertices in N

We say vertex 1 is connected to k other vertices, if k = 2, all the possible graph are as (Figure 3).

Define event A vertex 1 is connected to 2 other vertices, therefore:

$$A = A_{\{2,3\}} \cup A_{\{3,4\}} \cup A_{\{2,4\}}.$$

The probability of this event A is

$$P(A) = P(A_{\{2,3\}}) + P(A_{\{3,4\}}) + P(A_{\{2,4\}}).$$

(a): Node 1 connected to 2 and 3

(b): Node 1 connected to 3 and 4.

(c): Node 1 connected to 2 and 4.

Figure 4: vertex 1 is connected to two vertices

The probability of vertex 1 is connected to vertex 2 and 3 is

$$P(A_{\{2,3\}}) = (\frac{1}{2})^3 = p^2(1-p) = P(A_{\{3,4\}}) = P(A_{\{2,4\}}),$$

therefore,

$$P(A) = 3p^2(1-p).$$

In general, the probability vertex 1 is connected to k specific vertices is

$$P(A_N) = p^k (1-p)^{n-1-k}.$$

The probability vertex 1 is connected to k other vertices is

$$P(A) = \Sigma P(A_N),$$

= $\binom{n-1}{k} p^k (1-p)^{n-1-k}.$

1.2 Total Law of Probability

Theorem 1. Let A_1, A_2, \ldots, A_n be n mutually disjoint events such that

$$\Omega = \bigcup_{i=1}^{n} A_i \ (P(A_i) \neq 0), \tag{4}$$

then for any event $B \subseteq \Omega$ we have

$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \dots + P(A_n)P(B|A_n).$$

Proof. For n=2

$$B = (B \cap A_1) \cup (B \cap A_2), \tag{5}$$

$$P(B) = P(B \cap A_1) + P(B \cap A_2),$$
 (6)

$$= P(A_1)P(B|A_1) + P(A_2)P(B|A_2). (7)$$

Figure 5: Total law of probability.

Example 14. (BSC) Consider a BSC in Fig. 6 with crossover probability $\varepsilon = 0.1$. The probability of sending '0' is 0.4 and the probability of sending '1' is 0.6.

Q. Find the probability of receiving a '0'.

Figure 6: Binary Symmetric Channel with probability of error $P_e = 0.1$.

Ans. The probability of sending '1' is P(X = 1) = 0.6, and the probability of sending '0' is P(X = 0) = 0.4. Then if we want to know the probability of receiving '0', we can use the total law of probability to calculate P(Y = 0),

$$P(Y = 0) = P(X = 0)P(Y = 0|X = 0) + P(X = 1)P(Y = 0|X = 1),$$

= $(0.4) \times (0.9) + (0.6) \times (0.1) = 0.42.$

1.3 Birthday paradox

Question: What is the probability that at least 2 students in class have the same birthday.

E:at least 2 students have the same birthday.

Number of days per year is n, number of students in class is m.

 \bar{E} : each student has distinct birthday.

Answer:

$$P(\bar{E}) = 1 \times (1 - \frac{1}{n}) \times (1 - \frac{2}{n}) \times \dots \times (1 - \frac{m-1}{n}).$$

We know that

$$1 - \frac{k}{n} \approx e^{-\frac{k}{n}}, \quad k \ll n.$$

Then,

$$P(\bar{E}) = e^{-\frac{1}{n} \times e^{-\frac{2}{n}} \times \dots \times e^{-\frac{m-1}{n}}},$$

$$= exp(-\frac{1}{n}(1+2+\dots+m-1)),$$

$$= e^{-\frac{m(m-1)}{2n}},$$

$$\approx e^{-\frac{m^2}{2n}}.$$

Now we have student m = 50, and number of birthdays n = 365.

$$P(E) \approx 1 - e^{-\frac{50^2}{2 \times 365}},$$

 $\approx 96.7\%.$

Question:How big the class should be if the probability of 2 students have same birthday is larger than 50%?

Answer:

$$P(E) = \frac{1}{2}.$$

Then

$$1 - e^{-\frac{m^2}{2n}} = \frac{1}{2},$$

SO

$$\frac{m^2}{2n} = \ln 2,$$

$$m = \sqrt{2\ln 2} \times \sqrt{n},$$
$$\approx 23.$$

So we need approximately 23 students in same class to make the probability that at least 2 students have the same birthday is larger than $\frac{1}{2}$.

Theorem 2 (Baye's Theorem).

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}.$$
 (8)

Example 15 (BSC). In this case we have $P(X = 0) = P(X = 1) = \frac{1}{2}$ (0s and 1s are equal likely transmitted)

Suppose we observe Y = 1. What value of X should we decode?

$$P(X = 1|Y = 1) = \frac{P(X = 1, Y = 1)}{P(Y = 1)}.$$

Figure 7: Baye's theorem.

Figure 8: Binary Symmetric Channel (BSC) with probability of error $P_e = \epsilon$.

According to the Baye's theorem

$$P(X = 1|Y = 1) = \frac{P(X = 1)P(Y = 1|X = 1)}{P(X = 0)P(Y = 1|X = 0) + P(X = 1)P(Y = 1|X = 1)},$$

$$= \frac{0.5(1 - \varepsilon)}{0.5\varepsilon + 0.5(1 - \varepsilon)},$$

$$= 1 - \varepsilon.$$