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Abstract—We consider the problem of designing PIR scheme
on coded data when certain nodes are unresponsive. We provide
the construction of ν-robust PIR schemes that can tolerate
up to ν unresponsive nodes. These schemes are adaptive and
universally optimal in the sense of achieving (asymptotically)
optimal download cost for any number of unresponsive nodes
up to ν.

I. INTRODUCTION

Consider a user who wishes to download a certain file from

a distributed storage system (DSS) while keeping the identity

of this file private. The user’s concern about his/her privacy

is due to many causes, such as concern about surveillance,

protection against online profiling from companies, etc. Private

information retrieval (PIR) schemes [1], [2] allow a user to

achieve privacy by querying the different nodes in the system,

while guaranteeing that no information is being revealed

about which file is being retrieved. A straightforward PIR

scheme consists of the user downloading all the files in the

DSS, achieving perfect privacy. However, it has a very high

communication cost. The literature on PIR has focused on

efficient schemes that can achieve privacy while minimizing

different system costs, and in particular, the communication

cost, which has received the most attention [3].

Since its introduction in [1], the model of PIR assumes the

data to be replicated on multiple nodes (e.g. [4]–[8]). Recently,

there has been a growing interest in using codes in DSS to

minimize the storage overhead of data. This has motivated

recent works on PIR schemes for data stored under coded

form and not just replicated [9]–[16]. The next example, taken

from [11], [12], illustrates the construction of a PIR scheme

on coded data.

Example 1: Consider a DSS with n = 4 nodes storing

m files Xi = (ai, bi), ai, bi ∈ GF (3ℓ), i = 1, 2, . . . ,m.

The files are stored using an (n, k) = (4, 2) MDS code

over GF (3). Let A =
[

a1 a2 . . . am
]T

, and B =
[

b1 b2 . . . bm
]T

represent the first and second half

(block) all the files in the DSS, respectively. Nodes 1, . . . , 4
store A,B,A + B,A + 2B, respectively. The user requires

to retrieve file Xf = (af , bf), f ∈ {1, . . . ,m}, privately,

by querying the four nodes, but without revealing any in-

formation about the file index f to any of them. In the

scheme in [11], [12], the user generates an iid random vector

u =
[

u1 . . . um

]T
with elements chosen uniformly at

random from GF (3) and independent of f , and forms the

vector ef =
[

0f−1 1 0m−f

]T
. Then, the user sends the

query vectors u to nodes 1 and 2 and u + ef to nodes 3
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and 4. Each node responds by projecting its data onto the

query vector it receives. Therefore, the responses of nodes

1, . . . , 4 are given by u
TA, uTB, uTA + u

TB + af + bf ,

u
TA + 2uTB + af + 2bf , respectively. From the responses

of the nodes, the user will be able to obtain privately file

Xf = (af , bf). We measure the efficiency of a PIR scheme

by its relative download cost referred to as communication

price of privacy (cPoP ). To retrieve 2 file symbols, the

scheme downloads 4 implying cPoP = 4/2 = 2, which is

asymptotically optimal (as m → ∞) [10], [13].

In the previous scheme in Example 1 and its generalization

in [11], [12], the user needs to wait for the responses of

all the nodes to be able to decode the file. However, this

may not be possible in many cases due to some nodes being

unresponsive or due to network failures. Even when all the

nodes are responsive, some of them may be slow (due to being

busy or due to a slow connection). A single slow node will

delay the user, even if all the other nodes are fast. In this case,

it may be better for the user to “cut” the slow node, consider

it unresponsive and re-query the fast nodes. We are interested

in constructing PIR schemes that have this adaptive property.

A PIR scheme that can work even in the presence of

unresponsive servers has been studied in the literature in

the case of replicated data, and is called robust PIR scheme

[17]–[19]. We say that a PIR scheme is ν-robust if it can

tolerate ν unresponsive or slow servers. The standard method

for achieving robustness is to design the queries such that

the nodes’ responses contain enough redundancy to tolerate ν
erasures. In analogy with the existing work in the literature,

we aim at designing ν-robust PIR schemes that can operate on

coded and not only on replicated data. However, we require

the additional property that the scheme is universally optimal,

in the sense of achieving the minimum cPoP simultaneously

for any number of unresponsive nodes up to ν of them.

Therefore, we avoid having to design the scheme for the worst-

case scenario assuming the maximum number of unresponsive

nodes.

Example 1 (continued): Consider again the same setting as

before. We want to design a universal 1-robust PIR scheme.

We propose an adaptive scheme with two layers. The first

layer is the same one described in the previous part of this

example. If there is no unresponsive nodes the scheme stops

after the first layer. The second layer depends on which node

is unresponsive, or deemed slow, and is described in table I.

Suppose, for example, that node 1 is not responsive. In this

case, the user will be missing u
TA (the response of node 1)

and needs it to be able to decode using the 3 other responses

from the first layer. The goal of the second layer is to retrieve

http://arxiv.org/abs/1707.09916v1


Node 1 u

Layer 1 Layer 2

∅

Node 1 is

unresponsive

v

Node 2 is

unresponsive

v + ef

Node 3 is

unresponsive

v + ef

Node 4 is

unresponsive

Node 2 u v ∅ v v

Node 3 u+ ef v + u v + u ∅ v

Node 4 u+ ef v v v ∅

TABLE I: An example of our proposed 1-universal and adap-

tive robust PIR scheme. The scheme has two layers, with ∅

indicating the unresponsive node.

u
TA or another linear combination that allows full decoding in

the first layer. Only nodes 3 and 4 can give uTA, but if the user

asks directly for it in Layer 2 it will reveal ef to the node and

therefore the identity of the requested file. That’s why the user

generates a new random vector v =
[

v1 . . . vm
]T

with

elements ∈ GF (3). Implementing the queries in the second

column in Table I, the user can decode u
TA+u

TB in layer 2,

and then Xf using the responses from layer 1. This schemes

achieves asymptotically optimal cPoP simultaneously for 0
unresponsive nodes (cPoP = 2) and 1 unresponsive node

(cPoP = 3), as given in (1) explained later.

Related work: Until recently, most of the work on PIR has

focused on replicated data and minimizing the total download

cost [4]–[8], [20]–[22]. Recent work has studied PIR schemes

on coded data. It was shown in [9] that downloading one extra

bit is enough to achieve privacy, if the number of servers is

exponential in the number of files. In [10], the authors derive

bounds on the tradeoff between storage cost and download

cost for linear coded data. Later, the authors in [13] derive

the optimal lower bounds on download cost. Methods for

transforming PIR schemes with replicated data to schemes

on coded data were devised in [14]. This work was later

generalized to PIR array codes in [15]. PIR schemes for MDS

coded data were presented in [11], [12]. For the case of non-

colluding nodes, these schemes achieve asymptotically optimal

download cost. A new family of PIR schemes on MDS coded

data was constructed in [16], which achieves a lower download

cost then the ones in [11] for the case of colluding nodes. In

terms of fundamental limits, it was shown in [4] that the so-

called PIR capacity is (1 + 1/n+ 1/n2 + · · ·+ 1/nm−1)−1,

which implies optimal cPoP = 1+1/n+1/n2+· · ·+1/nm−1,

where n is the number of nodes and m is the number of files.

This capacity expression was then generalized to the case of

a fixed number of colluding nodes in [5]. All the previous

fundamental results are for replicated data. When the data is

coded using an (n, k) MDS code, it was shown in [13] that

the optimal cPoP is 1 + k/n+ k2/n2 + · · ·+ km−1/nm−1,

thus the asymptotically optimal cPoP = n
n−k

, as the number

of files m goes to infinity. The setting in which nodes can be

byzantine (malicious) and store replicated data was considered

in [17]–[19] and robust PIR schemes were devised using

locally decodable codes.

Contributions: In this paper, we present a construction of

universal ν-robust PIR schemes on (n, k) MDS coded data,

where ν is the maximum number of unresponsive nodes1.

We focus on non-colluding nodes (i.e., no spy nodes in the

model in [11], [12]) and want to achieve perfect privacy which

guarantees that zero information is leaked to the individual

nodes about the index of the retrieved file. The construction

is a generalization of our PIR schemes on MDS codes in

[11], with robustness against up to ν unresponsive nodes. The

proposed scheme consists of two layers and has the following

properties: (i) universality, meaning the scheme allows the

user to retrieve the requested file privately, for all number

of unresponsive servers up to ν, and achieving the optimal

cPoP = n−i
n−i−k

for all i = 1, . . . , ν, where i is the actual

number of unresponsive nodes; and (ii) adaptivity, meaning the

scheme changes depending on which nodes do not respond.

II. SYSTEM MODEL AND MAIN RESULT

We adopt the same model in [11] and summarize it here.

DSS: We consider a distributed storage system (DSS) formed

of n nodes indexed from 1 to n. The DSS stores m files,

X1, . . . , Xm using an (n, k) MDS code over GF (q), which

achieves reliability against n − k node failures. Each file Xi

is divided into k blocks, and each block is divided into α
stripes or subdivisions. Thus, a file Xi could be represented

by a k × α matrix with symbols chosen from the finite field

GF (qℓ). The stripes are considered to be encoded separately

using the generator matrix of the same MDS code. We assume

the user knows the encoding vector used to encode the data

on each node. We denote the column vector stored on node

i by Wi ∈ GF (qℓ)mα. For instance, in Example 1, α = 1,

W1 = A,W2 = B,W3 = A+ B,W4 = A + 2B, and q = 5.
We assume the MDS code code is given and is not a design

parameter.

PIR: The user wants to retrieve file Xf , from n nodes,

privately, meaning without revealing the index, f , to any of

the nodes. We assume that the nodes in the DSS do not

collude and that f is chosen uniformly at random from the

set {1, . . . ,m}. We say that a PIR scheme over GF (q) is

linear, and of dimension d, when the request sent to node

i is a d × mα query matrix, Qi, over GF (q). In this case,

the response of a node is the projection of its data onto the

query matrix. We want the PIR scheme to achieve perfect

privacy, i.e., H(f |Qi) = H(f), for all i. Here, H(.) denotes

the entropy function.

Definition 1 (Universal ν-robust PIR scheme): A universal

ν-robust PIR scheme is a PIR scheme which can tolerate up

to ν unresponsive nodes, and for any number of unresponsive

nodes 0 ≤ i ≤ ν, it achieves perfect privacy with minimum

cPoP given by (assuming no node collusion)

cPoP =
ni

ni − k
, (1)

where ni = n− i is the number of responsive nodes.

1The parameter ν can be between 0 and n− k− 1. A 0-robust scheme is
a non-robust scheme. If ν = n− k, i.e., there is no redundant data queried,
then perfect privacy can not be achieved except by downloading all the files.
If ν > n− k, the file can not be fully retrieved since the MDS code cannot
tolerate more than n− k failures.



Theorem 1 gives the main result of this paper and is proved

in Section IV.

Theorem 1: Consider a DSS with n non-colluding nodes

and using an (n, k) MDS code over GF (q). Then, the linear

PIR scheme over GF (q) described in Section III is a universal

ν-robust PIR scheme, i.e., it achieves perfect privacy and and

has optimal cPoP = ni

ni−k
, where ni = n− i, for all number

of unresponsive nodes i, 0 ≤ i ≤ ν.

III. ROBUST PIR SCHEME DESCRIPTION

We describe here the universal PIR scheme referred to in

Theorem 1. This scheme is adaptive and consists of two layers.

A. Layer 1 is essentially multiple copies of the non-robust

PIR scheme of Theorem 1 in [11]. This scheme requires a

number of subdivisions α = LCM(k,n−k)
k

and is of dimension

d′ = LCM(k,n−k)
n−k

, i.e., it consists of d′ subqueries.

WLOG, we assume the code is systematic and write n−k =
βk+ r, where β and r are integers and 0 ≤ r < k and β ≥ 0.

We divide the nodes into groups, as seen in Table II. The first

group consists of k nodes and is divided into two sub-groups.

The first consists of r nodes, which are chosen to be the first

r nodes for the first subquery. The second is formed of the

remaining k−r nodes. As for the parity nodes, we divide them

into β groups of k nodes each, and one group of r nodes.

Table II describes the first subquery of the PIR scheme when

the user wants file Xf . The user generates a random vector u,

whose elements are chosen uniformly at random from GF (q),
the same field over which the MDS code is defined. Next,

we summarize how the remaining subqueries are constructed.

For each subquery j, j = 2, . . . , d′, a new random vector vj

is created. The subqueries to the first group, assumed to be

systematic, are shifted cyclically downwards in each subquery.

As for the remaining β groups of k nodes each, the query to

each group s is vj + e(f−1)α+r+(s−2)d+j , where vector ej is

the all-zero vector with a single 1 in position j. As for the

last r nodes, the random vector vj is sent in subquery j.

The number of subdivisions for a non-robust scheme on an

(ni, k) MDS code is αi =
LCM(k,ni−k)

k
, and the dimension or

number of subqueries of the PIR scheme is d′i =
LCM(k,ni−k)

ni−k
.

To achieve a universal ν-robust PIR scheme on (n, k) MDS

code, we need enough “granularity” to account for the different

number i of unresponsive nodes, for i = 0, . . . , ν. The number

of subdivisions α for a universal ν-robust PIR scheme is the

LCM of the number of subdivisions, αi, of the scheme for

all possible numbers of responsive servers ni.

α = LCM(α1, . . . , αi). (2)

The number of subqueries sent in layer 1 is d0 = d′0 ×
α
α0

.
For this, d0 random vectors u1, . . . ,ud0

are created (one ran-

dom vector per subquery). Every α0 subdivisions are queried

in a set of d′0 subqueries.

B. Layer 2 depends on which nodes are unresponsive. Thus,

the user will cut those nodes off and compensate for the

responses from these nodes using extra subqueries to the other

ni nodes. The goal of layer 2 is to allow the user to recover the

responses that were missed in layer 1. However, this should

Nodes Queries

G
ro

u
p
1

1 u+ e(f−1)α+1

2 u+ e(f−1)α+2

.

.

.
.
.
.

r u+ e(f−1)α+r

r + 1

u
.
.
.
k

G
ro

u
p
2

k + 1

u+ e(f−1)α+r+1
.
.
.
2k
.
.
.

.

.

.

G
ro

u
p
β

+
1 βk + 1

u+ e(f−1)α+r+(β−1)d+1
.
.
.

(β + 1)k

G
ro

u
p
β

+
2 (β + 1)k + 1

u
.
.
.
n

TABLE II: First subquery, in the non-robust PIR scheme in

[11] (no collusion), assuming the user wants file Xf .

be accomplished without violating the privacy constraint. Let

us suppose ni is the number of responsive nodes in layer 1.

Hence, in each copy of the scheme in layer 1, there are

(n0 − ni) × d0 sub-responses missing. The goal of layer 2
is to recover these sub-responses. We will divide the missing

parts into di− d0 groups of size ni− k. Each of these groups

will be asked for in one subquery, in the way a subquery is

sent in an (ni, k) system to decode ni−k parts in [11]. There

are two cases:

• Case 1: If the missing part is a function of ej the user

shall send ej + us, where us is a new random vector,

to one of the responsive nodes which never received a

query on ej in the previous subqueries. For instance, if

the required file is X1, e1, . . . , er are asked for in group

1, so to ask for them in the second layer, the user should

ask them from any group other than group 1.

• Case 2: On the other hand, if the missing part is a

“purely” randomvector (uj , for any 1 ≤ j ≤ d0), the user

shall send uj +us to one of the responsive nodes which

never received a query uj in the previous subqueries. For

instance, to ask for a pure random vector ui in layer 2, it

should not be queried from group β. Also, it should not

be asked for from the k − r nodes in group 1 that have

been asked for a purely random vector in subquery j.

After setting those, the random vector ui will be sent to the

rest of the nodes (k nodes), in this subquery i.

A. Example on Scheme Construction

Example 2 (Universal 2-robust PIR): Consider the (5, 2)
systematic MDS code storing m files. Nodes 1, 2, . . . 5 store

A,B,A+ B,A+ 2B,A+ 3B, respectively, where A and B
are as defined in example 1. We want a universal 2-robust

PIR scheme, a PIR scheme that will be optimal in terms of



node 1

Layer 1

u1 + e1 u2

Layer 2

∅ u3 + u1 u3 + e2 u3 + e2 u3 + u1

node 2 u1 u2 + e1 u3 + u2 ∅ u3 + e3 u3 + e3 u3 + u2

node 3 u1 + e2 u2 + e3 u3 + e1 u3 + e1 ∅ u3 u3

node 4 u1 + e2 u2 + e3 u3 u3 u3 ∅ u3

node 5 u1 u2 u3 u3 u3 u3 ∅

TABLE III: Queries to the nodes when one node is unresponsive. The 2 columns in Layer 1 represent the queries to all the

nodes. Depending on which node is unresponsive (designated with ∅), one column in Layer 2 is chosen to query.

communication price of privacy (cPoP ) if 5 nodes, 4 nodes,

and 3 nodes respond. Let us call n0 = 5, n1 = 4, n2 = 3.

We consider the number of subdivisions and dimension of

each code. For the (5, 2) code, α0 = 3 and d′0 = 2, for the

(4, 2), α1 = 1 and d′1 = 1, and for (3, 2), α2 = 1 and d′2 = 2.

For the code to tolerate failures, we need to subdivide the

files into α = LCM(α0, α1, α2) = 3.
The number of subqueries required in order to retrieve the

α parts of the file for code (ni, k) will be

di = d′i ×
α

αi

. (3)

Thus, d0 = 2, d1 = 3, d2 = 6.
Layer 1: Suppose the user wants X1. The user first sends

subqueries to the 5 nodes expecting all of them to respond.

We use here the PIR scheme in [11] for the case of a (5, 2)
MDS code. The user creates random vectors u1, u2, and send

the queries as in layer 1 of table III.

Layer 2:

Case 1: If one node does not respond, the user compensates

for the missing information and sends an extra query to the

other 4 nodes. In one query to a (4, 2) system, the user can

decode privately 2 parts. In a (4, 2) system each query can

give us 2 parts, thus 1 extra query can compensate for the

unresponsive node, this matches the number of subqueries

being 3. We generate a new random vector u3 for this extra

query.

Column i in layer 2 shows the subquery when node i does

not respond. For example, when node 1 does not respond. We

see that we are missing equation with u1 + e1, which is case

1 and u2 which is case 2. For this, we will send a u3 +u2 to

node 2 and u3 + e1 to node 3. Of course, then we send u3 to

nodes 1 and 4 to decode the interference. Table III shows the

sent queries.

Case 2: On the other hand, if two nodes do not respond, then

we need 4 extra subqueries. For example, if nodes 1 and 3
do not respond, there are 4 missing responses. Three of those

missing parts are of case 1, e1, e2, and e3, and one missing

part is of case 2, u2. The queries in this case are shown in

table IV.

IV. PROOF OF THEOREM 1

Before giving the proof of the theorem, we will state two

properties of the PIR scheme in Theorem 1 in [11] that will

be essential to prove Theorem 1.

Property 1: In the PIR scheme in [11], the query vectors

in each sub-query can be permuted among the nodes without

affecting the decodability and the privacy properties of the

1

Layer 1

u1 + e1 u2

Layer 2

∅ ∅ ∅ ∅

2 u1 u2 + e1 u3 u4 u5 + e2 u6 + e3

3 u1 + e2 u2 + e3 ∅ ∅ ∅ ∅

4 u1 + e2 u2 + e3 u3 + e1 u4 + u2 u5 u6

5 u1 u2 u3 u4 u5 u6

TABLE IV: Queries to the nodes when nodes 1 and 3 are

unresponsive

scheme. This follows directly from the fact that the node

groups (see for e.g. Table II) can be chosen arbitrarily.

Property 2: The scheme in [11] allows the user to retrieve

efX , which is, in other words, the file Xf . This can be

readily generlized to retrieve any uX , where u is any vector

of dimension m, where m is the number of files.

Let us start by proving the decodability of the example in

section III-A.

A. Example 2 decodability:

Let A and B be as defined in example 1.

Layer 1: The scheme’s decodability when all nodes respond

follows directly from [11].

Layer 2: We will prove that the scheme applied in section III-A

is decodable when node 1, for example, is unresponsive. The

nodes project the query vectors on the data they hold and send

the response back to the user.

• We notice that from the third subquery, the user decodes

the interference from nodes 3 and 4. Then gets a11+ b11
and u

T
2 B.

• From the first subquery, a12 + 2b12 and a12 + 3b12 can

be retrieved and thus decoding a12 and b12.

• From u
T
2 B and the response of node 4 in the second

query, the user decodes the interference u
T
2 A and u

T
2 B.

The user can then retrieve b11, a13+ b13, and a13+2b13.

From these equations, along with a11 + b11 retrieved

from the third subquery (second layer), the user decodes

a11, b11, a13, and b13.

Thus decoding all parts of the file 1. The cPoP of the

scheme if one node is unresponsive is 12 × 1
6 = 2 which is

the same as the optimal cPoP found in [13]. When 2 nodes

do not respond, if we look at the query table IV, we notice

that the missing parts are retrieved, and achieve cPoP = 3.

B. Decodability:

Layer 1: If n0 = n nodes respond, the decodability follows

from [11]. Every α0 parts are decoded in d′0 subqueries,

thus retrieving the complete file (i.e. α parts) in d0 =
d′

0α

α0

subqueries.



Layer 2: If ni out of the n nodes respond, si = (n0−ni)×d0
responses are missing. In each extra subquery, the user can

decode ni − k parts. Thus in total, from the di − d0 extra

subqueries the user can decode (ni − k) × (di − d0) parts.

We can see that (ni − k)(di − d0) = d0 × (n0 − ni) = si,
by substituting the value of di by its expression in (3). This

shows that the number of decodable parts from the extra di−d0
subqueries is equal to the number of missing parts.

Now the question is whether the new sub-responses are able

to provide parts that are sufficient for the user to be able to

retrieve the file he/she wants.

Here, we use properties 1 and 2. Using property 1, we can

see that we can, in fact, decode ni−k parts in each subquery of

this layer, since those subqueries are similar to the schemes

in [11], only permuted. Using property 2, we can see that

if a missing response is a function of a random vector in a

subquery of layer 1, the user can hide the random vector using

the scheme in [11] and retrieve a new function, in layer 2, that

could substitute the missing response.

When all nodes are responsive, the responses from layer 1
form a set of k independent equations about the k blocks of

each stripe and about the interference, allowing the user to

decode the file. However, when some nodes are unresponsive,

some sub-responses, and therefore equations, are not retrieved.

In this layer, the extra subqueries should be able to provide

equations that will substitute those missing equations. Thus,

those extra sub-responses, along with the sub-responses from

layer 1, should form a system of k independent equations

about each stripe and interference.

The number of unresponsive nodes can be at most ν =
n− k − 1. The number of independent equations required to

retrieve a full stripe or to decode the interference is k. To

form a solvable system of equations about a stripe, a node is

asked at most once about the same stripe. Thus, the number of

missing sub-responses about a certain stripe or interference is

at most min(k, n−k−1). Consider the number of unretrieved

equations about a stripe is γ. Since there are at least k + 1
responding servers, there will always be at least γ nodes that

have not been asked for equations about this stripe before. The

user can query those nodes to retrieve new equations about this

stripe to substitute the missing ones.

Privacy: In each subquery, the query to a node is either one-

time padded by an independent vector or the independent

vector itself. Therefore, the privacy of the scheme follows from

the fact that the nodes do not collude.

Optimality: The price of privacy is optimal for any number of

responsive nodes ni ≥ nν , cPoP = dini

kα
= ni

ni−k
, obtained

by substituting equations (2) and (3) into this equation.

V. CONCLUSION

We studied the problem of constructing robust PIR schemes

with low communication cost for requesting data from a DSS

storing data using MDS codes. The responses from certain

nodes may be very slow. In such case, the user would cut those

nodes off and ask the rest of the nodes for what he/she should

have received from this node. The objective is to allow the

user to do this with low communication cost. We constructed

adaptive universal ν-robust PIR schemes with non-colluding

nodes achieving the optimal price of privacy for all numbers

of responsive nodes. The next steps would be to look into

non-adaptive schemes, and schemes for colluding nodes.
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