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20.8 For the Hansen window of Eq. (20.17.2), show that the encircled energy ratio and limiting
directivity are given by the following closed-form expressions,

E(u0) =

∫ u0

0
|F(u)|2 udu

(2a)2

∫ a
0
|A(r⊥)|2 r⊥dr⊥

= 1−
J2

0

(
π
√
u2

0 −H2

)
+ J2

1

(
π
√
u2

0 −H2

)

I20(πH)−I21(πH)

D∞
(ka)2

=

∣∣∣∣
∫ a

0
A(r⊥)2πr⊥dr⊥

∣∣∣∣
2

πa2

∫ a
0
|A(r⊥)|2 2πr⊥dr⊥

=

[
2I1(πH)
πH

]2

I20(πH)−I21(πH)

20.9 To prove Eq. (20.20.8) without invoking the Babinet principle, first derive the following inte-
grals, where r⊥, r⊥′ are two-dimensional transverse vectors with magnitudes r⊥ = |r⊥| and
r′⊥ = |r⊥′|,
jk

2πz

∫∞
−∞
e−jk|r⊥−r⊥′|2/2z d2r⊥′ = jk

2πz
e−jkr

2⊥/2z
∫∞

0
e−jkr

′2⊥ /2z J0

(kr⊥r′⊥
z

)
2πr′⊥dr′⊥ = 1

then, using this result, show the relationship for any A(r⊥) and Ac(r⊥)= 1−A(r⊥),
jk

2πz
e−jkr

2⊥/2z
∫∞

0
A(r′⊥) e−jkr

′2⊥ /2z J0

(kr⊥r′⊥
z

)
2πr′⊥dr′⊥ =

= 1− jk
2πz

e−jkr
2⊥/2z

∫ ∞
0
Ac(r′⊥) e−jkr

′2⊥ /2z J0

(kr⊥r′⊥
z

)
2πr′⊥dr′⊥

20.10 Computer Experiment. Carry out the same experiment using the same numerical values as
in Example 20.22.4, but instead of Eq. (20.22.42), take the ideal focal spot within the field-
of-view [−a,a] to be a delta function,

Eb(x)= δ(x) , for |x| ≤ a = 0.6λ (20.23.2)

Make similar plots as in Fig. 20.22.6. Hint: In this case the expansion coefficients are simply,
bn = ψn(a, k,0)/λn, n = 0,1, . . . ,M.

21
Aperture Antennas

21.1 Open-Ended Waveguides

The aperture fields over an open-ended waveguide are not uniform over the aperture.
The standard assumption is that they are equal to the fields that would exist if the guide
were to be continued [1].

Fig. 21.1.1 shows a waveguide aperture of dimensions a > b. Putting the origin in
the middle of the aperture, we assume that the tangential aperture fields Ea, Ha are
equal to those of the TE10 mode. We have from Eq. (9.4.3):

Fig. 21.1.1 Electric field over a waveguide aperture.

Ey(x′)= E0 cos
(
πx′

a

)
, Hx(x′)= − 1

ηTE
E0 cos

(
πx′

a

)
(21.1.1)

where ηTE = η/K with K =
√

1−ω2
c/ω2 =

√
1− (λ/2a)2. Note that the boundary

conditions are satisfied at the left and right walls, x′ = ±a/2.
For larger apertures, such as a > 2λ, we may set K � 1. For smaller apertures, such

as 0.5λ ≤ a ≤ 2λ, we will work with the generalized Huygens source condition (18.5.7).
The radiated fields are given by Eq. (18.5.5), with fx = 0:

Eθ = jk e
−jkr

2πr
cθ fy(θ,φ)sinφ

Eφ = jk e
−jkr

2πr
cφ fy(θ,φ)cosφ

(21.1.2)
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where fy(θ,φ) is the aperture Fourier transform of Ey(x′), that is,

fy(θ,φ) =
∫ a/2
−a/2

∫ b/2
−b/2

Ey(x′)ejkxx
′+jkyy′dx′dy′

= E0

∫ a/2
−a/2

cos
(
πx′

a

)
ejkxx

′
dx′ ·

∫ b/2
−b/2

ejkyy
′
dy′

The y′-integration is the same as that for a uniform line aperture. For the x′-integration,
we use the definite integral:

∫ a/2
−a/2

cos
(
πx′

a

)
ejkxx

′
dx′ = 2a

π
cos(kxa/2)

1− (kxa/π)2

It follows that:

fy(θ,φ)= E0
2ab
π

cos(πvx)
1− 4v2

x

sin(πvy)
πvy

(21.1.3)

where vx = kxa/2π and vy = kyb/2π, or,

vx = aλ sinθ cosφ, vy = bλ sinθ sinφ (21.1.4)

The obliquity factors can be chosen to be one of the three cases: (a) the PEC case, if
the aperture is terminated in a ground plane, (b) the ordinary Huygens source case, if it
is radiating into free space, or (c) the modified Huygens source case. Thus,[

cθ
cφ

]
=
[

1
cosθ

]
,

1

2

[
1+ cosθ
1+ cosθ

]
,

1

2

[
1+K cosθ
K + cosθ

]
(21.1.5)

By normalizing all three cases to unity at θ = 0o, we may combine them into:

cE(θ)= 1+K cosθ
1+K , cH(θ)= K + cosθ

1+K (21.1.6)

where K is one of the three possible values:

K = 0 , K = 1 , K = η
ηTE

=
√

1−
(
λ
2a

)2

(21.1.7)

The normalized gains along the two principal planes are given as follows. For the xz- or
the H-plane, we set φ = 0o, which gives Eθ = 0:

gH(θ)= |Eφ(θ)|2
|Eφ|2max

= ∣∣cH(θ)∣∣2
∣∣∣∣cos(πvx)

1− 4v2
x

∣∣∣∣
2

, vx = aλ sinθ (21.1.8)

And, for the yz- or E-plane, we set φ = 90o, which gives Eφ = 0:

gE(θ)= |Eθ(θ)|2
|Eθ|2max

= ∣∣cE(θ)∣∣2

∣∣∣∣∣sin(πvy)
πvy

∣∣∣∣∣
2

, vy = bλ sinθ (21.1.9)
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The function cos(πvx)/(1−4v2
x) determines the essential properties of the H-plane

pattern. It is essentially a double-sinc function, as can be seen from the identity:

cos(πvx)
1− 4v2

x
= π

4

⎡
⎢⎢⎣

sin
(
π
(
vx + 1

2

))

π
(
vx + 1

2

) +
sin

(
π
(
vx − 1

2

))

π
(
vx − 1

2

)
⎤
⎥⎥⎦ (21.1.10)

It can be evaluated with the help of the MATLAB function dsinc, with usage:

y = dsinc(x); % the double-sinc function
cos(π x)
1 − 4x2 = π

4

[
sinc(x+ 0.5) + sinc(x− 0.5)

]

The 3-dB width of the E-plane pattern is the same as for the uniform rectangular
aperture, Δθy = 0.886λ/b. The dsinc function has the valueπ/4 at vx = 1/2. Its 3-dB
point is at vx = 0.5945, its first null at vx = 1.5, and its first sidelobe at vx = 1.8894 and
has height 0.0708 or 23 dB down from the main lobe. It follows from vx = a sinθ/λ
that the 3-dB width in angle space will be Δθx = 2×0.5945λ/a = 1.189λ/a. Thus, the
3-dB widths are in radians and in degrees:

Δθx = 1.189
λ
a
= 68.12o λ

a
, Δθy = 0.886

λ
b
= 50.76o λ

b
(21.1.11)

Example 21.1.1: Fig. 21.1.2 shows the H- and E-plane patterns for a WR90 waveguide operating
at 10 GHz, so that λ = 3 cm. The guide dimensions are a = 2.282 cm, b = 1.016 cm. The
typical MATLAB code for generating these graphs was:

a = 2.282; b = 1.016; la = 3;

th = (0:0.5:90) * pi/180;

vx = a/la * sin(th);
vy = b/la * sin(th);

K = sqrt(1 - (la/(2*a))^2); % alternatively, K = 0, or, K = 1

cE = (1 + K*cos(th))/(K+1); % normalized obliquity factors

cH = (K + cos(th))/(K+1);

gH = abs(cH .* dsinc(vx).^2); % uses dsinc

gE = abs(cE .* sinc(vy)).^2; % uses sinc from SP toolbox

figure; dbp(th,gH,45,12); dB gain polar plot

figure; dbp(th,gE,45,12);

The three choices of obliquity factors have been plotted for comparison. We note that the
Huygens source cases, K = 1 and K = η/ηTE, differ very slightly. The H-plane pattern
vanishes at θ = 90o in the PEC case (K = 0), but not in the Huygens source cases.

The gain computed from Eq. (21.1.13) isG = 2.62 or 4.19 dB, and computed from Eq. (21.1.14),
G = 2.67 or 4.28 dB, where K = η/ηTE = 0.75 and (K + 1)2/4K = 1.02.

This waveguide is not a high-gain antenna. Increasing the dimensions a,b is impractical
and also would allow the propagation of higher modes, making it very difficult to restrict
operation to the TE10 mode. ��
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Fig. 21.1.2 Solid line has K = η/ηTE, dashed, K = 1, and dash-dotted, K = 0.

Next, we derive an expression for the directivity and gain of the waveguide aperture.
The maximum intensity is obtained at θ = 0o. Because cθ(0)= cφ(0), we have:

Umax = 1

2η
|E(0,φ)|2 = 1

2λ2η
c2
θ(0)|fy(0,φ)|2 =

1

2λ2η
c2
θ(0)|E0|2 4(ab)2

π2

The total power transmitted through the aperture and radiated away is the power
propagated down the waveguide given by Eq. (9.7.4), that is,

Prad = 1

4ηTE
|E0|2ab (21.1.12)

It follows that the gain/directivity of the aperture will be:

G = 4π
Umax

Prad
= 4π
λ2

8

π2
(ab)

ηTE

η
c2
θ(0)

For the PEC and ordinary Huygens cases, cθ(0)= 1. Assuming ηTE � η, we have:

G = 4π
λ2

8

π2
(ab)= 0.81

4π
λ2
(ab) (21.1.13)

Thus, the effective area of the waveguide aperture is Aeff = 0.81(ab) and the aper-
ture efficiency e = 0.81. For the modified Huygens case, we have for the obliquity factor
cθ(0)= (K + 1)/2 with K = η/ηTE. It follows that [1680]:

G = 4π
λ2

8

π2
(ab)

(K + 1)2

4K
(21.1.14)

For waveguides larger than about a wavelength, the directivity factor (K + 1)2/4K
is practically equal to unity, and the directivity is accurately given by Eq. (21.1.13). The
table below shows some typical values of K and the directivity factor (operation in the
TE10 mode requires 0.5λ < a < λ):
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a/λ K (K + 1)2/(4K)
0.6 0.5528 1.0905
0.8 0.7806 1.0154
1.0 0.8660 1.0052
1.5 0.9428 1.0009
2.0 0.9682 1.0003

The gain-beamwidth product is from Eqs. (21.1.11) and (21.1.13), p = GΔθx Δθy =
4π(0.81)(0.886)(1.189)=10.723 rad2=35 202 deg2. Thus, another instance of the
general formula (16.3.14) is (with the angles given in radians and in degrees):

G = 10.723

Δθx Δθy
= 35 202

Δθo
x Δθo

y
(21.1.15)

21.2 Horn Antennas

The only practical way to increase the directivity of a waveguide is to flare out its ends
into a horn. Fig. 21.2.1 shows three types of horns: The H-plane sectoral horn in which
the long side of the waveguide (the a-side) is flared, the E-plane sectoral horn in which
the short side is flared, and the pyramidal horn in which both sides are flared.

Fig. 21.2.1 H-plane, E-plane, and pyramidal horns.

The pyramidal horn is the most widely used antenna for feeding large microwave
dish antennas and for calibrating them. The sectoral horns may be considered as special
limits of the pyramidal horn. We will discuss only the pyramidal case.

Fig. 21.2.2 shows the geometry in more detail. The two lower figures are the cross-
sectional views along the xz- and yz-planes. It follows from the geometry that the
various lengths and flare angles are given by:

Ra = A
A− a RA ,

L2
a = R2

a +
A2

4
,

tanα = A
2Ra

,

Δa = A2

8Ra
,

Rb = B
B− b RB

L2
b = R2

b +
B2

4

tanβ = B
2Rb

Δb = B2

8Rb

(21.2.1)
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The quantities RA and RB represent the perpendicular distances from the plane of
the waveguide opening to the plane of the horn. Therefore, they must be equal,RA = RB.
Given the horn sides A,B and the common length RA, Eqs. (21.2.1) allow the calculation
of all the relevant geometrical quantities required for the construction of the horn.

The lengthsΔa andΔb represent the maximum deviation of the radial distance from
the plane of the horn. The expressions given in Eq. (21.2.1) are approximations obtained
when Ra	 A and Rb	 B. Indeed, using the small-x expansion,

√
1± x � 1± x

2

we have two possible ways to approximate Δa:

Δa = La −Ra =
√
R2
a + A

2

4
−Ra = Ra

√
1+ A2

4R2
a
−Ra � A2

8Ra

= La −
√
L2
a − A

2

4
= La − La

√
1− A2

4L2
a
� A2

8La

(21.2.2)

Fig. 21.2.2 The geometry of the pyramidal horn requires RA = RB.

The two expressions are equal to within the assumed approximation order. The
length Δa is the maximum deviation of the radial distance at the edge of the horn plane,
that is, at x = ±A/2. For any other distance x along theA-side of the horn, and distance
y along the B-side, the deviations will be:

Δa(x)= x2

2Ra
, Δb(y)= y2

2Rb
(21.2.3)
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The quantities kΔa(x) and kΔb(y) are the relative phase differences at the point
(x, y) on the aperture of the horn relative to the center of the aperture. To account for
these phase differences, the aperture electric field is assumed to have the form:

Ey(x, y)= E0 cos
(
πx
A

)
e−jkΔa(x) e−jkΔb(y) , or, (21.2.4)

Ey(x, y)= E0 cos
(
πx
A

)
e−jk x

2/2Ra e−jky
2/2Rb (21.2.5)

We note that at the connecting end of the waveguide the electric field is Ey(x, y)=
E0 cos(πx/a) and changes gradually into the form of Eq. (21.2.5) at the horn end.

Because the aperture sides A,B are assumed to be large compared to λ, the Huy-
gens source assumption is fairly accurate for the tangential aperture magnetic field,
Hx(x, y)= −Ey(x, y)/η, so that:

Hx(x, y)= − 1

η
E0 cos

(
πx
A

)
e−jk x

2/2Ra e−jky
2/2Rb (21.2.6)

The quantities kΔa, kΔb are the maximum phase deviations in radians. Therefore,
Δa/λ and Δb/λ will be the maximum deviations in cycles. We define:

Sa = Δaλ = A2

8λRa
, Sb = Δbλ = B2

8λRb
(21.2.7)

It turns out that the optimum values of these parameters that result into the highest
directivity are approximately: Sa = 3/8 and Sb = 1/4. We will use these values later in
the design of optimum horns. For the purpose of deriving convenient expressions for
the radiation patterns of the horn, we define the related quantities:

σ2
a = 4Sa = A2

2λRa
, σ2

b = 4Sb = B2

2λRb
(21.2.8)

The near-optimum values of these constants are σa =
√

4Sa =
√

4(3/8) = 1.2247
and σb =

√
4Sb =

√
4(1/4) = 1. These are used very widely, but they are not quite the

true optimum values, which are σa = 1.2593 and σb = 1.0246.
Replacing k = 2π/λ and 2λRa = A2/σ2

a and 2λRb = B2/σ2
b in Eq. (21.2.5), we may

rewrite the aperture fields in the form: For −A/2 ≤ x ≤ A/2 and −B/2 ≤ y ≤ B/2,

Ey(x, y) = E0 cos
(
πx
A

)
e−j(π/2)σ

2
a(2x/A)2

e−j(π/2)σ
2
b(2y/B)

2

Hx(x, y) = − 1

η
E0 cos

(
πx
A

)
e−j(π/2)σ

2
a(2x/A)2

e−j(π/2)σ
2
b(2y/B)

2

(21.2.9)

21.3 Horn Radiation Fields

As in the case of the open-ended waveguide, the aperture Fourier transform of the elec-
tric field has only a y-component given by:
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fy(θ,φ)=
∫ A/2
−A/2

∫ B/2
−B/2

Ey(x, y)ejkxx+jkyy dxdy

= E0

∫ A/2
−A/2

cos
(
πx
A

)
ejkxxe−j(π/2)σ

2
a(2x/A)2

dx ·
∫ B/2
−B/2

ejkyye−j(π/2)σ
2
b(2y/B)

2
dy

The above integrals can be expressed in terms of the following diffraction-like inte-
grals, whose properties are discussed in Appendix F:

F0(v,σ) =
∫ 1

−1
ejπvξ e−j(π/2)σ

2 ξ2
dξ

F1(v,σ) =
∫ 1

−1
cos

(
πξ
2

)
ejπvξ e−j(π/2)σ

2 ξ2
dξ

(21.3.1)

The function F0(v,σ) can be expressed as:

F0(v,σ)= 1

σ
ej(π/2)(v

2/σ2)
[
F
(
v
σ
+σ

)
− F

(
v
σ
−σ

)]
(21.3.2)

where F(x)= C(x)−jS(x) is the standard Fresnel integral, discussed in Appendix F.
Then, the function F1(v,σ) can be expressed in terms of F0(v,σ):

F1(v,σ)= 1

2

[
F0(v+ 0.5, σ)+F0(v− 0.5, σ)

]
(21.3.3)

The functions F0(v,σ) and F1(v, s) can be evaluated numerically for any vector
of values v and any positive scalar σ (including σ = 0) using the MATLAB function
diffint, which is further discussed in Appendix F and has usage:

F0 = diffint(v,sigma,0); % evaluates the function F0(v,σ)

F1 = diffint(v,sigma,1); % evaluates the function F1(v,σ)

In addition to diffint, the following MATLAB functions, to be discussed later, fa-
cilitate working with horn antennas:

hband % calculate 3-dB bandedges

heff % calculate aperture efficiency

hgain % calculate H- and E-plane gains

hopt % optimum horn design

hsigma % calculate optimum values of σa,σb

Next, we express the radiation patterns in terms of the functions (21.3.1). Defining
the normalized wavenumbers vx = kxA/2π and vy = kyB/2π, we have:

vx = Aλ sinθ cosφ, vy = Bλ sinθ sinφ (21.3.4)
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Changing variables to ξ = 2y/B, the y-integral can written in terms of F0(v,σ):
∫ B/2
−B/2

ejkyye−j(π/2)σ
2
b(2y/B)

2
dy = B

2

∫ 1

−1
ejπvyξ e−j(π/2)σ

2
b ξ

2
dξ = B

2
F0(vy,σb)

Similarly, changing variables to ξ = 2x/A, we find for the x-integral:

∫ A/2
−A/2

cos
(
πx
A

)
ejkxxe−j(π/2)σ

2
a(2x/A)2

dx

= A
2

∫ 1

−1
cos

(
πξ
2

)
ejπvξ e−j(π/2)σ

2
a ξ2
dξ = A

2
F1(vx,σa)

It follows that the Fourier transform fy(θ,φ) will be:

fy(θ,φ)= E0
AB
4
F1(vx,σa)F0(vy,σb) (21.3.5)

The open-ended waveguide and the sectoral horns can be thought of as limiting cases
of Eq. (21.3.5), as follows:

1. open-ended waveguide: σa = 0, A = a, σb = 0, B = b.
2. H-plane sectoral horn: σa > 0, A > a, σb = 0, B = b.
3. E-plane sectoral horn: σa = 0, A = a, σb > 0, B > b.

In these cases, the F-factors with σ = 0 can be replaced by the following simplified
forms, which follow from equations (F.12) and (F.17) of Appendix F:

F0(vy,0)= 2
sin(πvy)
πvy

, F1(vx,0)= 4

π
cos(πvx)
1− 4v2

x
(21.3.6)

The radiation fields are obtained from Eq. (18.5.5), with obliquity factors cθ(θ)=
cφ(θ)= (1+ cosθ)/2. Replacing k = 2π/λ, we have:

Eθ = j e
−jkr

λr
cθ(θ) fy(θ,φ)sinφ

Eφ = j e
−jkr

λr
cφ(θ) fy(θ,φ)cosφ

(21.3.7)

or, explicitly,

Eθ = j e
−jkr

λr
E0
AB
4

(
1+ cosθ

2

)
sinφF1(vx,σa)F0(vy,σb)

Eφ = j e
−jkr

λr
E0
AB
4

(
1+ cosθ

2

)
cosφF1(vx,σa)F0(vy,σb)

(21.3.8)
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Horn Radiation Patterns

The radiation intensity is U(θ,φ)= r2
(|Eθ|2 + |Eφ|2)/2η, so that:

U(θ,φ)= 1

32ηλ2
|E0|2(AB)2 c2

θ(θ)
∣∣F1(vx,σa)F0(vy,σb)

∣∣2
(21.3.9)

Assuming that the maximum intensity is towards the forward direction, that is, at
vx = vy = 0, we have:

Umax = 1

32ηλ2
|E0|2(AB)2

∣∣F1(0, σa)F0(0, σb)
∣∣2

(21.3.10)

The direction of maximum gain is not necessarily in the forward direction, but it
may be nearby. This happens typically when σb > 1.54. Most designs use the optimum
value σb = 1, which does have a maximum in the forward direction. With these caveats
in mind, we define the normalized gain:

g(θ,φ)= U(θ,φ)
Umax

=
∣∣∣∣1+ cosθ

2

∣∣∣∣
2 ∣∣∣∣F1(vx,σa)F0(vy,σb)

F1(0, σa)F0(0, σb)

∣∣∣∣
2

(21.3.11)

Similarly, the H- and E-plane gains corresponding to φ = 0o and φ = 90o are:

gH(θ)=
∣∣∣∣1+ cosθ

2

∣∣∣∣
2 ∣∣∣∣F1(vx,σa)
F1(0, σa)

∣∣∣∣
2

= g(θ,0o) , vx = Aλ sinθ

gE(θ)=
∣∣∣∣1+ cosθ

2

∣∣∣∣
2 ∣∣∣∣F0(vy,σb)
F0(0, σb)

∣∣∣∣
2

= g(θ,90o) , vy = Bλ sinθ

(21.3.12)

The normalizing values F1(0, σa) and F0(0, σb) are obtained from Eqs. (F.11) and
(F.15) of Appendix F. They are given in terms of the Fresnel function F(x)= C(x)−jS(x)
as follows:

|F1(0, σa)|2 = 1

σ2
a

∣∣∣∣F
(

1

2σa
+σa

)
− F

(
1

2σa
−σa

)∣∣∣∣2

|F0(0, σb)|2 = 4

∣∣∣∣F(σb)σb

∣∣∣∣
2

(21.3.13)

These have the limiting values for σa = 0 and σb = 0:

|F1(0,0)|2 = 16

π2
, |F0(0,0)|2 = 4 (21.3.14)

The mainlobe/sidelobe characteristics of the gain functions gH(θ) and gE(θ) de-
pend essentially on the two functions:

f1(vx,σa)=
∣∣∣∣F1(vx,σa)
F1(0, σa)

∣∣∣∣ , f0(vy,σa)=
∣∣∣∣F0(vy,σb)
F0(0, σb)

∣∣∣∣ (21.3.15)

Fig. 21.3.1 shows these functions for the following values of theσ-parameters: σa =
[0, 1.2593, 1.37, 1.4749, 1.54] and σb = [0, 0.7375, 1.0246, 1.37, 1.54].
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Fig. 21.3.1 Gain functions for different σ-parameters.

The values σa = 1.2593 and σb = 1.0246 are the optimum values that maximize
the horn directivity (they are close to the commonly used values of σa =

√
1.5 = 1.2247

and σb = 1.)
The values σa = 1.4749 and σb = σa/2 = 0.7375 are the optimum values that

achieve the highest directivity for a waveguide and horn that have the same aspect ratio
of b/a = B/A = 1/2.

For σa = σb = 0, the functions reduce to the sinc and double-sinc functions of
Eq. (21.3.6). The value σb = 1.37 was chosen because the function f0(vy,σb) develops
a plateau at the 3-dB level, making the definition of the 3-dB width ambiguous.

The value σb = 1.54 was chosen because f0(vy,σb) exhibits a secondary maximum
away from vy = 0. This maximum becomes stronger as σb is increased further.

The functions f1(v,σ) and f0(v,σ) can be evaluated for any vector of v-values and
any σ with the help of the function diffint. For example, the following code computes
them over the interval 0 ≤ v ≤ 4 for the optimum values σa = 1.2593 and σb = 1.0246,
and also determines the 3-dB bandedges with the help of the function hband:

sa = 1.2593; sb = 1.0249;
v = 0:0.01:4;

f1 = abs(diffint(v,sa,1) / diffint(0,sa,1));
f0 = abs(diffint(v,sb,0) / diffint(0,sb,0));

va = hband(sa,1); % 3-dB bandedge for H-plane pattern

vb = hband(sb,0); % 3-dB bandedge for E-plane pattern

The mainlobes become wider as σa and σb increase. The 3-dB bandedges corre-
sponding to the optimum σs are found from hband to be va = 0.6928 and vb = 0.4737,
and are shown on the graphs.

The 3-dB width in angle θ can be determined from vx = (A/λ)sinθ, which gives
approximately Δθa = (2va)(λ/A)—the approximation being good for A > 2λ. Thus,
in radians and in degrees, we obtain the H-plane and E-plane optimum 3-dB widths:

Δθa = 1.3856
λ
A
= 79.39o λ

A
, Δθb = 0.9474

λ
B
= 54.28o λ

B
(21.3.16)
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The indicated angles must be replaced by 77.90o and 53.88o if the near-optimum σs
are used instead, that is, σa = 1.2247 and σb = 1.

Because of the 3-dB plateau of f0(vy,σb) at or near σb = 1.37, the function hband
defines the bandedge to be in the middle of the plateau. At σb = 1.37, the computed
bandedge is vb = 0.9860, and is shown in Fig. 21.3.1.

The 3-dB bandedges for the parameters σa = 1.4749 and σb = 0.7375 correspond-
ing to aspect ratio of 1/2 are va = 0.8402 (shown on the left graph) and vb = 0.4499.

The MATLAB function hgain computes the gains gH(θ) and gE(θ) atN+1 equally
spaced angles over the interval [0,π/2], given the horn dimensions A,B and the pa-
rameters σa,σb. It has usage:

[gh,ge,th] = hgain(N,A,B,sa,sb); % note: th = linspace(0, pi/2, N+1)

[gh,ge,th] = hgain(N,A,B); % uses optimum values σa = 1.2593, σb = 1.0246

Example 21.3.1: Fig. 21.3.2 shows the H- and E-plane gains of a horn with sides A = 4λ and
B = 3λ and for the optimum values of the σ-parameters. The 3-dB angle widths were
computed from Eq. (21.3.16) to be: Δθa = 19.85o and Δθb = 18.09o.

The graphs show also a 3-dB gain circle as it intersects the gain curves at the 3-dB angles,
which are Δθa/2 and Δθb/2.
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Fig. 21.3.2 H- and E-plane gains for A = 4λ, B = 3λ, and σa = 1.2593, σb = 1.0246.

The essential MATLAB code for generating the left graph was:

A = 4; B = 3; N = 200;

[gh,ge,th] = hgain(N,A,B); % calculate gains

Dtha = 79.39/A; % calculate width Δθa

dbp(th,gh); % make polar plot in dB

addbwp(Dtha); % add the 3-dB widths

addcirc(3); % add a 3-dB gain circle

We will see later that the gain of this horn isG = 18.68 dB and that it can fit on a waveguide
with sides a = λ and b = 0.35λ, with an axial length of RA = RB = 3.78λ. ��

1054 21. Aperture Antennas

21.4 Horn Directivity

The radiated power Prad is obtained by integrating the Poynting vector of the aperture
fields over the horn area. The quadratic phase factors in Eq. (21.2.9) have no effect on
this calculation, the result being the same as in the case of a waveguide. Thus,

Prad = 1

4η
|E0|2(AB) (21.4.1)

It follows that the horn directivity will be:

G = 4π
Umax

Prad
= 4π
λ2
(AB)

1

8

∣∣F1(0, σa)F0(0, σb)
∣∣2 = e 4π

λ2
AB (21.4.2)

where we defined the aperture efficiency e by:

e(σa,σb)= 1

8

∣∣F1(0, σa)F0(0, σb)
∣∣2

(21.4.3)

Using the MATLAB function diffint, we may compute e for any values of σa,σb.
In particular, we find for the optimum values σa = 1.2593 and σb = 1.0246:

σa = 1.2593 ⇒ |F1(0, σa)
∣∣2 =∣∣diffint(0, σa,1)∣∣2 = 1.2520

σb = 1.0246 ⇒ |F0(0, σb)
∣∣2 =∣∣diffint(0, σb,0)∣∣2 = 3.1282

(21.4.4)

This leads to the aperture efficiency:

e = 1

8
(1.2520)(3.1282)� 0.49 (21.4.5)

and to the optimum horn directivity:

G = 0.49
4π
λ2
AB (optimum horn directivity) (21.4.6)

If we use the near-optimum values ofσa =
√

1.5 andσb = 1, the calculated efficiency
becomes e = 0.51. It may seem strange that the efficiency is larger for the non-optimum
σa,σb. We will see in the next section that “optimum” does not mean maximizing the
efficiency, but rather maximizing the gain given the geometrical constraints of the horn.

The gain-beamwidth product is from Eqs. (21.3.16) and (21.4.6), p = GΔθa Δθb =
4π(0.49)(1.3856)(0.9474)=8.083 rad2=26 535 deg2. Thus, in radians and in de-
grees, we have another instance of (16.3.14):

G = 8.083

Δθa Δθb
= 26 535

Δθo
a Δθo

b
(21.4.7)

The gain of the H-plane sectoral horn is obtained by setting σb = 0, which gives
F0(0,0)= 2. Similarly, the E-plane horn is obtained by setting σa = 0, with F1(0,0)=
4/π. Thus, we have:

GH = 4π
λ2
(AB)

1

8

∣∣F1(0, σa)
∣∣2

4 = 2π
λ2
(AB)

∣∣F1(0, σa)
∣∣2

GE = 4π
λ2
(AB)

1

8

16

π2

∣∣F0(0, σb)
∣∣2 = 8

πλ2
(AB)

∣∣F0(0, σb)
∣∣2

(21.4.8)
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The corresponding aperture efficiencies follow by dividing Eqs. (21.4.8) by 4πAB/λ2:

eH(σa)= e(σa,0)= 1

2

∣∣F1(0, σa)
∣∣2 , eE(σb)= e(0, σb)= 2

π2

∣∣F0(0, σb)
∣∣2

In the limit σa = σb = 0, we find e = 0.81, which agrees with Eq. (21.1.13) of the
open waveguide case. The MATLAB function heff calculates the aperture efficiency
e(σa,σb) for any values of σa, σb. It has usage:

e = heff(sa,sb); % horn antenna efficiency

Next, we discuss the conditions for optimum directivity. In constructing a horn an-
tenna, we have the constraints of (a) keeping the dimensions a,b of the feeding waveg-
uide small enough so that only the TE10 mode is excited, and (b) maintaining the equal-
ity of the axial lengths RA = RB between the waveguide and horn planes, as shown in
Fig. 21.2.2. Using Eqs. (21.2.1) and (21.2.8), we have:

RA = A− aA Ra = A(A− a)
2λσ2

a
, RB = B− bB Rb = B(B− b)

2λσ2
b

(21.4.9)

Then, the geometrical constraint RA = RB implies;

A(A− a)
2λσ2

a
= B(B− b)

2λσ2
b

⇒ σ2
b

σ2
a
= B(B− b)
A(A− a) (21.4.10)

We wish to maximize the gain while respecting the geometry of the horn. For a fixed
axial distance RA = RB, we wish to determine the optimum dimensions A,B that will
maximize the gain.

The lengthsRA,RB are related to the radial lengthsRa,Rb by Eq. (21.4.9). ForA	 a,
the lengths Ra and RA are practically equal, and similarly for Rb and RB. Therefore, an
almost equivalent (but more convenient) problem is to find A,B that maximize the gain
for fixed values of the radial distances Ra,Rb.

Because of the relationships A = σa
√

2λRa and B = σb
√

2λRb, this problem is
equivalent to finding the optimum values of σa and σb that will maximize the gain.
Replacing A,B in Eq. (21.4.2), we rewrite G in the form:

G = 4π
λ2

(
σa
√

2λRa
)(
σb
√

2λRb
)

1

8

∣∣F1(0, σa)F0(0, σb)
∣∣2 , or,

G = π
√
RaRb
λ

fa(σa)fb(σb) (21.4.11)

where we defined the directivity functions:

fa(σa)= σa
∣∣F1(0, σa)

∣∣2 , fb(σb)= σb
∣∣F0(0, σb)

∣∣2
(21.4.12)

These functions are plotted on the left graph of Fig. 21.4.1. Their maxima occur at
σa = 1.2593 and σb = 1.0246. As we mentioned before, these values are sometimes
approximated by σa =

√
1.5 = 1.2244 and σb = 1.

An alternative class of directivity functions can be derived by constructing a horn
whose aperture has the same aspect ratio as the waveguide, that is,
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Fig. 21.4.1 Directivity functions.

B
A
= b
a
= r (21.4.13)

The aspect ratio of a typical waveguide is of the order of r = 0.5, which ensures the
largest operating bandwidth in the TE10 mode and the largest power transmitted.

It follows from Eq. (21.4.13) that (21.4.10) will be satisfied provided σ2
b/σ2

a = r2, or
σb = rσa. The directivity (21.4.11) becomes:

G = π
√
RaRb
λ

fr(σa) (21.4.14)

where we defined the function:

fr(σa)= fa(σa)fb(rσa)= r σ2
a
∣∣F1(0, σa)F0(0, rσa)

∣∣2
(21.4.15)

This function has a maximum, which depends on the aspect ratio r. The right graph
of Fig. 21.4.1 shows fr(σ) and its maxima for various values of r. The aspect ratio
r = 1/2 is used in many standard guides, r = 4/9 is used in the WR-90 waveguide, and
r = 2/5 in the WR-42.

The MATLAB function hsigma computes the optimum σa and σb = rσa for a given
aspect ratio r. It has usage:

[sa,sb] = hsigma(r); % optimum σ-parameters

With input r = 0, it outputs the separate optimal values σa = 1.2593 and σb =
1.0246. For r = 0.5, it gives σa = 1.4749 and σb = σa/2 = 0.7375, with corresponding
aperture efficiency e = 0.4743.

21.5 Horn Design

The design problem for a horn antenna is to determine the sides A,B that will achieve a
given gainG and will also fit geometrically with a given waveguide of sidesa,b, satisfying
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the condition RA = RB. The two design equations for A,B are then Eqs. (21.4.2) and
(21.4.10):

G = e 4π
λ2
AB ,

σ2
b

σ2
a
= B(B− b)
A(A− a) (21.5.1)

The design of the constant aspect ratio case is straightforward. Because σb = rσa,
the second condition is already satisfied. Then, the first condition can be solved for A,
from which one obtains B = rA and RA = A(A− a)/(2λσ2

a):

G = e 4π
λ2
A(rA) ⇒ A = λ

√
G

4πer
(21.5.2)

In Eq. (21.5.2), the aperture efficiency emust be calculated from Eq. (21.4.3) with the
help of the MATLAB function heff.

For unequal aspect ratios and arbitrary σa,σb, one must solve the system of equa-
tions (21.5.1) for the two unknowns A,B. To avoid negative solutions for B, the second
equation in (21.5.1) can be solved for B in terms of A,a, b, thus replacing the above
system with:

f1(A,B) ≡ B−
⎡
⎢⎣b

2
+
√√√√b2

4
+ σ

2
b

σ2
a
A(A− a)

⎤
⎥⎦ = 0

f2(A,B) ≡ AB− λ
2G

4πe
= 0

(21.5.3)

This system can be solved iteratively using Newton’s method, which amounts to
starting with some initial valuesA,B and keep replacing them with the corrected values
A+ΔA and B+ΔB, where the corrections are computed from:

[
ΔA
ΔB

]
= −M−1

[
f1
f2

]
, where M=

[
∂Af1 ∂Bf1
∂Af2 ∂Bf2

]

The matrix M is given by:

M=
⎡
⎢⎣−σ

2
b

σ2
a

2A− a
(2B− b− 2f1)

1

B A

⎤
⎥⎦ �

⎡
⎢⎣−σ

2
b

σ2
a

2A− a
2B− b 1

B A

⎤
⎥⎦

where we replaced the 2f1 term by zero (this is approximately correct near convergence.)
Good initial values are obtained by assuming thatA,B will be much larger than a,b and
therefore, we write Eq. (21.5.1) approximately in the form:

G = e 4π
λ2
AB ,

σ2
b

σ2
a
= B

2

A2
(21.5.4)

This system can be solved easily, giving the initial values:

A0 = λ
√
G

4πe
σa
σb
, B0 = λ

√
G

4πe
σb
σa

(21.5.5)
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Note that these are the same solutions as in the constant-r case. The algorithm
converges extremely fast, requiring about 3-5 iterations. It has been implemented by
the MATLAB function hopt with usage:

[A,B,R,err] = hopt(G,a,b,sa,sb); % optimum horn antenna design

[A,B,R,err] = hopt(G,a,b,sa,sb,N); % N is the maximum number of iterations

[A,B,R,err] = hopt(G,a,b,sa,sb,0); % outputs initial values only

where G is the desired gain in dB, a,b are the waveguide dimensions. The output R
is the common axial length R = RA = RB. All lengths are given in units of λ. If the
parameters σa, σb are omitted, their optimum values are used. The quantity err is the
approximation error, and N, the maximum number of iterations (default is 10.)

Example 21.5.1: Design a horn antenna with gain 18.68 dB and waveguide sides of a = λ and
b = 0.35λ. The following call to hopt,

[A,B,R,err] = hopt(18.68, 1, 0.35);

yields the values (in units of λ): A = 4, B = 2.9987, R = 3.7834, and err = 3.7 × 10−11.
These are the same as in Example 21.3.1. ��

Example 21.5.2: Design a horn antenna operating at 10 GHz and fed by a WR-90 waveguide
with sides a = 2.286 cm and b = 1.016 cm. The required gain is 23 dB (G = 200).

Solution: The wavelength isλ = 3 cm. We carry out two designs, the first one using the optimum
values σa = 1.2593, σb = 1.0246, and the second using the aspect ratio of the WR-90
waveguide, which is r = b/a = 4/9, and corresponds to σa = 1.4982 and σb = 0.6659.
The following MATLAB code calculates the horn sides for the two designs and plots the
E-plane patterns:

la = 3; a = 2.286; b = 1.016; % lengths in cm

G = 200; Gdb = 10*log10(G); % GdB = 23.0103 dB

[sa1,sb1] = hsigma(0); % optimum σ-parameters

[A1,B1,R1] = hopt(Gdb, a/la, b/la, sa1, sb1); % A1, B1, R1 in units of λ

[sa2,sb2] = hsigma(b/a); % optimum σ’s for r = b/a
[A2,B2,R2] = hopt(Gdb, a/la, b/la, sa2, sb2,0); % output initial values

N = 200; % 201 angles in 0 ≤ θ ≤ π/2

[gh1,ge1,th] = hgain(N,A1,B1,sa1,sb1); % calculate gains

[gh2,ge2,th] = hgain(N,A2,B2,sa2,sb2);

figure; dbp(th,gh1); figure; dbp(th,ge1); % polar plots in dB

figure; dbp(th,gh2); figure; dbp(th,ge2);

A1 = A1*la; B1 = B1*la; R1 = R1*la; % lengths in cm

A2 = A2*la; B2 = B2*la; R2 = R2*la;

The designed sides and axial lengths are in the two cases:
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A1 = 19.2383 cm, B1 = 15.2093 cm, R1 = 34.2740 cm
A2 = 26.1457 cm, B2 = 11.6203 cm, R2 = 46.3215 cm

The H- and E-plane patterns are plotted in Fig. 21.5.1. The first design (top graphs) has
slightly wider 3-dB width in the H-plane because its A-side is shorter than that of the
second design. But, its E-plane 3-dB width is narrower because its B-side is longer.

The initial values given in Eq. (21.5.5) can be used to give an alternative, albeit approximate,
solution obtained purely algebraically: Compute A0, B0, then revise the value of B0 by
recomputing it from the first of Eq. (21.5.3), so that the geometric constraint RA = RB is
met, and then recompute the gain, which will be slightly different than the required one.

For example, using the optimum values σa = 1.2593 and σb = 1.0246, we find from
(21.5.5): A0 = 18.9644, B0 = 15.4289 cm, and RA = 33.2401 cm. Then, we recalculate B0

to be B0 = 13.9453 cm, and obtain the new gain G = 180.77, or, 22.57 dB. ��
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Fig. 21.5.1 H- and E-plane patterns.
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21.6 Microstrip Antennas

A microstrip antenna is a metallic patch on top of a dielectric substrate that sits on
top of a ground plane. Fig. 21.6.1 depicts a rectangular microstrip antenna fed by a
microstrip line. It can also be fed by a coaxial line, with its inner and outer conductors
connected to the patch and ground plane, respectively.

Fig. 21.6.1 Microstrip antenna and E-field pattern in substrate.

In this section, we consider only rectangular patches and discuss simple aperture
models for calculating the radiation patterns of the antenna. Further details and appli-
cations of microstrip antennas may be found in [1700–1707].

The height h of the substrate is typically of a fraction of a wavelength, such as
h = 0.05λ, and the length L is of the order of 0.5λ. The structure radiates from the
fringing fields that are exposed above the substrate at the edges of the patch.

In the so-called cavity model, the patch acts as resonant cavity with an electric field
perpendicular to the patch, that is, along the z-direction. The magnetic field has van-
ishing tangential components at the four edges of the patch. The fields of the lowest
resonant mode (assuming L ≥W) are given by:

Ez(x) = −E0 sin
(
πx
L

)

Hy(x) = −H0 cos
(
πx
L

) for

−L
2
≤ x ≤ L

2

−W
2
≤ y ≤ W

2

(21.6.1)

where H0 = −jE0/η. We have placed the origin at the middle of the patch (note that
Ez(x) is equivalent to E0 cos(πx/L) for 0 ≤ x ≤ L.)

It can be verified that Eqs. (21.6.1) satisfy Maxwell’s equations and the boundary
conditions, that is, Hy(x)= 0 at x = ±L/2, provided the resonant frequency is:

ω = πc
L

⇒ f = 0.5
c
L
= 0.5

c0

L
√
εr

(21.6.2)

where c = c0/
√
εr , η = η0/

√
εr , and εr is the relative permittivity of the dielectric

substrate. It follows that the resonant microstrip length will be half-wavelength:
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L = 0.5
λ√
εr

(21.6.3)

Fig. 21.6.2 shows two simple models for calculating the radiation patterns of the
microstrip antenna. The model on the left assumes that the fringing fields extend over
a small distance a around the patch sides and can be replaced with the fields Ea that
are tangential to the substrate surface [1702]. The four extended edge areas around the
patch serve as the effective radiating apertures.

Fig. 21.6.2 Aperture models for microstrip antenna.

The model on the right assumes that the substrate is truncated beyond the extent of
the patch [1701]. The four dielectric substrate walls serve now as the radiating apertures.
The only tangential aperture field on these walls is Ea = ẑEz, because the tangential
magnetic fields vanish by the boundary conditions.

For both models, the ground plane can be eliminated using image theory, resulting in
doubling the aperture magnetic currents, that is, Jms = −2n̂×Ea. The radiation patterns
are then determined from Jms.

For the first model, the effective tangential fields can be expressed in terms of the
field Ez by the relationship: aEa = hEz. This follows by requiring the vanishing of the
line integrals of E around the loops labeled ABCD in the lower left of Fig. 21.6.2. Because
Ez = ±E0 at x = ±L/2, we obtain from the left and right such contours:

∮
ABCD

E · dl = −E0h+ Eaa = 0 ,
∮
ABCD

E · dl = E0h− Eaa = 0 ⇒ Ea = hE0

a

In obtaining these, we assumed that the electric field is nonzero only along the sides
AD and AB. A similar argument for the sides 2 & 4 shows that Ea = ±hEz(x)/a. The
directions of Ea at the four sides are as shown in the figure. Thus, we have:

for sides 1 & 3 : Ea = x̂
hE0

a

for sides 2 & 4 : Ea = ±ŷ
hEz(x)
a

= ∓ŷ
hE0

a
sin

(
πx
L

) (21.6.4)
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The outward normal to the aperture plane is n̂ = ẑ for all four sides. Therefore, the
surface magnetic currents Jms = −2n̂× Ea become:

for sides 1 & 3 : Jms = −ŷ
2hE0

a

for sides 2 & 4 : Jms = ±x̂
2hE0

a
sin

(
πx
L

) (21.6.5)

The radiated electric field is obtained from Eq. (18.3.4) by setting F = 0 and calculat-
ing Fm as the sum of the magnetic radiation vectors over the four effective apertures:

E = jk e
−jkr

4πr
r̂× Fm = jk e

−jkr

4πr
r̂× [Fm1 + Fm2 + Fm3 + Fm4

]
(21.6.6)

The vectors Fm are the two-dimensional Fourier transforms over the apertures:

Fm(θ,φ)=
∫
A

Jms(x, y)ejkxx+jkyy dS

The integration surfaces dS = dxdy are approximately, dS = ady for 1 & 3, and
dS = adx for 2 & 4. Similarly, in the phase factor ejkxx+jkyy, we must set x = ∓L/2
for sides 1 & 3, and y = ∓W/2 for sides 2 & 4. Inserting Eq. (21.6.5) into the Fourier
integrals and combining the terms for apertures 1 & 3 and 2 & 4, we obtain:

Fm,13 = −ŷ
2hE0

a

∫W/2
−W/2

(
e−jkxL/2 + ejkxL/2)ejkyyady

Fm,24 = x̂
2hE0

a

∫ L/2
−L/2

(
e−jkyW/2 − ejkyW/2) sin

(
πx
L

)
ejkxxadx

Note that the a factors cancel. Using Euler’s formulas and the integrals:

∫W/2
−W/2

ejkyydy =W sin(kyW/2)
kyW/2

,
∫ L/2
−L/2

sin
(
πx
L

)
ejkxxdx = 2jkxL2

π2

cos(kxL/2)

1−
(
kxL
π

)2 ,

we find the radiation vectors:

Fm,12 = −ŷ 4E0hW cos(πvx)
sin(πvy)
πvy

Fm,24 = x̂ 4E0hL
4vx cos(πvx)
π(1− 4v2

x)
sin(πvy)

(21.6.7)

where we defined the normalized wavenumbers as usual:

vx = kxL
2π

= L
λ

sinθ cosφ

vy = kyW
2π

= W
λ

sinθ sinφ
(21.6.8)
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From Eq. (E.8) of Appendix E, we have:

r̂× ŷ = r̂× (r̂ sinθ sinφ+ θ̂θθ cosθ sinφ+ φ̂φφ cosφ)= φ̂φφ cosθ sinφ− θ̂θθ cosφ

r̂× x̂ = r̂× (r̂ sinθ cosφ+ θ̂θθ cosθ cosφ− φ̂φφ sinφ)= φ̂φφ cosθ cosφ+ θ̂θθ sinφ

It follows from Eq. (21.6.6) that the radiated fields from sides 1 & 3 will be:

E(θ,φ)= −jk e
−jkr

4πr
4E0hW

[
φ̂φφ cosθ sinφ− θ̂θθ cosφ

]
F(θ,φ) (21.6.9)

where we defined the function:

F(θ,φ)= cos(πvx)
sin(πvy)
πvy

(21.6.10)

Similarly, we have for sides 2 & 4:

E(θ,φ) = jk e
−jkr

4πr
4E0hL

[
φ̂φφ cosθ cosφ+ θ̂θθ sinφ

]
f(θ,φ)

f(θ,φ) = 4vx cos(πvx)
π(1− 4v2

x)
sin(πvy)

(21.6.11)

The normalized gain is found from Eq. (21.6.9) to be:

g(θ,φ)= |E(θ,φ)|2
|E|2max

= (cos2 θ sin2φ+ cos2φ
)∣∣F(θ,φ)∣∣2

(21.6.12)

The corresponding expression for sides 2 & 4, although not normalized, provides a
measure for the gain in that case:

g(θ,φ)= (cos2 θ cos2φ+ sin2φ
)∣∣f(θ,φ)∣∣2

(21.6.13)

The E- and H-plane gains are obtained by setting φ = 0o and φ = 90o in Eq. (21.6.12):

gE(θ)= |Eθ|2
|Eθ|2max

= ∣∣cos(πvx)
∣∣2 , vx = Lλ sinθ

gH(θ)= |Eφ|2
|Eφ|2max

=
∣∣∣∣∣cosθ

sin(πvy)
πvy

∣∣∣∣∣
2

, vy = Wλ sinθ
(21.6.14)

Most of the radiation from the microstrip arises from sides 1 & 3. Indeed, F(θ,φ)
has a maximum towards broadside, vx = vy = 0, whereas f(θ,φ) vanishes. Moreover,
f(θ,φ) vanishes identically for all θ and φ = 0o (E-plane) or φ = 90o (H-plane).

Therefore, sides 2 & 4 contribute little to the total radiation, and they are usually
ignored. For lengths of the order of L = 0.3λ to L = λ, the gain function (21.6.13)
remains suppressed by 7 to 17 dB for all directions, relative to the gain of (21.6.12).
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Fig. 21.6.3 E- and H-plane gains of microstrip antenna.

Example 21.6.1: Fig. 21.6.3 shows the E- and H-plane patterns for W = L = 0.3371λ. Both
patterns are fairly broad.

The choice for L comes from the resonant condition L = 0.5λ/
√
εr . For a typical substrate

with εr = 2.2, we find L = 0.5λ/
√

2.2 = 0.3371λ.

Fig. 21.6.4 shows the 3-dimensional gains computed from Eqs. (21.6.12) and (21.6.13). The
field strengths (square roots of the gains) are plotted to improve the visibility of the graphs.
The MATLAB code for generating these plots was:
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Fig. 21.6.4 Two-dimensional gain patterns from sides 1 & 3 and 2 & 4.

L = 0.5/sqrt(2.2); W = L;

[th,ph] = meshgrid(0:3:90, 0:6:360); th = th * pi/180; ph = ph * pi/180;

vx = L * sin(th) .* cos(ph);
vy = W * sin(th) .* sin(ph);

E13 = sqrt(cos(th).^2.*sin(ph).^2 + cos(ph).^2);
E13 = E13 .* abs(cos(pi*vx) .* sinc(vy));
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figure; surfl(vx,vy,E13);
shading interp; colormap(gray(32));

view([-40,10]);

E24 = sqrt(cos(th).^2.*cos(ph).^2 + sin(ph).^2);
E24 = E24 .* abs(4*vx.*dsinc(vx)/pi .* sin(pi*vy));

figure; surfl(vx,vy,E24);
shading interp; colormap(gray(32));

The gain from sides 2 & 4 vanishes along the vx- and vy axes, while its maximum in all
directions is

√g = 0.15 or −16.5 dB. ��

Using the alternative aperture model shown on the right of Fig. 21.6.2, one obtains
identical expressions for the magnetic current densities Jms along the four sides, and
therefore, identical radiation patterns. The integration surfaces are now dS = hdy for
sides 1 & 3, and dS = hdx for 2 & 4.

21.7 Parabolic Reflector Antennas

Reflector antennas are characterized by very high gains (30 dB and higher) and narrow
main beams. They are widely used in satellite and line-of-sight microwave communica-
tions and in radar.

At microwave frequencies, the most common feeds are rectangular, circular, or cor-
rugated horns. Dipole feeds—usually backed by a reflecting plane to enhance their ra-
diation towards the reflector—are used at lower frequencies, typically, up to UHF. Some
references on reflector antennas and feed design are [1680–1699].

A typical parabolic reflector, fed by a horn antenna positioned at the focus of the
parabola, is shown in Fig. 21.7.1. A geometrical property of parabolas is that all rays
originating from the focus get reflected in a direction parallel to the parabola’s axis, that
is, the z direction.

We choose the origin to be at the focus. An incident ray OP radiated from the feed
at an angle ψ becomes the reflected ray PA parallel to the z-axis. The projection of all
the reflected rays onto a plane perpendicular to the z-axis—such as the xy-plane—can
be considered to be the effective aperture of the antenna. This is shown in Fig. 21.7.2.

Let R and h be the lengths of the rays OP and PA. The sum R + h represents the
total optical path length from the focus to the aperture plane. This length is constant,
independent of ψ, and is given by

R+ h = 2F (21.7.1)

where F is the focal length. The length 2F is the total optical length of the incident and
reflected axial rays going from O to the vertex V and back to O.

Therefore, all the rays suffer the same phase delay traveling from the focus to the
plane. The spherical wave radiated from the feed gets converted upon reflection into a
plane wave. Conversely, for a receiving antenna, an incident plane wave gets converted
into a spherical wave converging onto the focus.
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Fig. 21.7.1 Parabolic reflector antenna with feed at the focus.

Fig. 21.7.2 Parabolic antenna and its projected effective aperture.

Since h = R cosψ, Eq. (21.7.1) can be written in the following form, which is the
polar representation of the parabolic surface:

R+R cosψ = 2F ⇒ R = 2F
1+ cosψ

, or, (21.7.2)

R = 2F
1+ cosψ

= F
cos2(ψ/2)

(21.7.3)

The radial displacement ρ of the reflected ray on the aperture plane is given by
ρ = R sinψ. Replacing R from (21.7.3), we find:

ρ = 2F
sinψ

1+ cosψ
= 2F tan

(
ψ
2

)
(21.7.4)



21.8. Gain and Beamwidth of Reflector Antennas 1067

Similarly, using R+ h = 2F or F − h = R− F, we have:

F − h = F 1− cosψ
1+ cosψ

= F tan2
(
ψ
2

)
(21.7.5)

It follows that h and ρ will be related by the equation for a parabola:

4F(F − h)= ρ2 (21.7.6)

In terms of the xyz-coordinate system, we have ρ2 = x2 + y2 and z = −h, so that
Eq. (21.7.6) becomes the equation for a paraboloid surface:

4F(F + z)= x2 + y2 (21.7.7)

The diameter D, or the radius a = D/2, of the reflector and its focal length F deter-
mine the maximum angle ψ. It is obtained by setting ρ = a in Eq. (21.7.4):

a = D
2
= 2F tan

(
ψ0

2

)
⇒ ψ0 = 2 atan

(
D
4F

)
(21.7.8)

Thus, the F/D ratio determines ψ0. For example, if F/D = 0.25,0.35,0.50, then
ψ0 = 90o, 71o, 53o. Practical F/D ratios are in the range 0.25–0.50.

21.8 Gain and Beamwidth of Reflector Antennas

To determine the radiation pattern of a reflector antenna, one may use Eq. (18.4.2),
provided one knows the aperture fields Ea, Ha on the effective aperture projected on
the aperture plane. This approach is referred to as the aperture-field method [21].

Alternatively, the current-distribution method determines the current J s on the sur-
face of the reflector induced by the incident field from the feed, and then applies
Eq. (18.4.1) with Jms = 0, using the curved surface of the reflector as the integration
surface (Jms vanishes on the reflector surface because there are no tangential electric
fields on a perfect conductor.)

The two methods yield slightly different, but qualitatively similar, results for the
radiation patterns. The aperture fields Ea,Ha and the surface current J s are determined
by geometrical optics considerations based on the assumptions that (a) the reflector
lies in the radiation zone of the feed antenna, and (b) the incident field from the feed
gets reflected as if the reflector surface is perfectly conducting and locally flat. These
assumptions are justified because in practice the size of the reflector and its curvature
are much larger than the wavelength λ.

We use the polar and azimuthal angles ψ and χ indicated on Fig. 21.7.2 to charac-
terize the direction R̂ of an incident ray from the feed to the reflector surface.

The radiated power from the feed within the solid angle dΩ = sinψdψdχmust be
equal upon reflection to the power propagating parallel to the z-axis and intercepting
the aperture plane through the area dA = ρdρdχ, as depicted in Fig. 21.7.1.
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Assuming that Ufeed(ψ,χ) is the feed antenna’s radiation intensity and noting that
|Ea|2/2η is the power density of the aperture field, the power condition reads:

1

2η
|Ea|2dA = Ufeed(ψ,χ)dΩ ⇒ 1

2η
|Ea|2ρdρ = Ufeed(ψ,χ)sinψdψ (21.8.1)

where we divided both sides by dχ. Differentiating Eq. (21.7.4), we have:

dρ = 2F
dψ
2

1

cos2(ψ/2)
= Rdψ

which implies that ρdρ = R2 sinψdψ. Thus, solving Eq. (21.8.1) for |Ea|, we find:

|Ea(ρ,χ)| = 1

R

√
2ηUfeed(ψ,χ) (21.8.2)

where we think of Ea as a function of ρ = 2F tan(ψ/2) and χ. Expressing R in terms
of ρ, we have R = 2F − h = F + (F − h)= F + ρ2/4F. Therefore, we may also write:

|Ea(ρ,χ)| = 4F
ρ2 + 4F2

√
2ηUfeed(ψ,χ) (21.8.3)

Thus, the aperture fields get weaker towards the edge of the reflector. A measure of
this tapering effect is the edge illumination, that is, the ratio of the electric field at the
edge (ρ = a) and at the center (ρ = 0). Using Eqs. (21.7.3) and (21.8.2), we find:

|Ea(a,χ)|
|Ea(0, χ)| =

1+ cosψ0

2

√
Ufeed(ψ0, χ)
Ufeed(0, χ)

(edge illumination) (21.8.4)

In Sec. 18.6, we defined the directivity or gain of an aperture by Eq. (18.6.10), which
we rewrite in the following form:

Ga = 4πUmax

Pa
(21.8.5)

where Pa is the total power through the aperture given in terms of Ea as follows:

Pa = 1

2η

∫
A
|Ea|2dA =

∫ ψ0

0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ (21.8.6)

and we used Eq. (21.8.1). For a reflector antenna, the gain must be defined relative to
the total power Pfeed of the feed antenna, that is,

Gant = 4πUmax

Pfeed
= 4πUmax

Pa
Pa
Pfeed

= Gaespl (21.8.7)

The factor espl = Pa/Pfeed is referred to as the spillover efficiency or loss and repre-
sents the fraction of the power Pfeed that actually gets reflected by the reflector antenna.
The remaining power from the feed “spills over” the edge of the reflector and is lost.

We saw in Sec. 18.4 that the aperture gain is given in terms of the geometrical area
A of the aperture and the aperture-taper and phase-error efficiencies by:
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Ga = 4πA
λ2

eatl epel (21.8.8)

It follows that the reflector antenna gain can be written as:

Gant = Gaespl = 4πA
λ2

eatl epel espl (21.8.9)

The total aperture efficiency is ea = eatl epel espl. In practice, additional efficiency or
loss factors must be introduced, such as those due to cross polarization or to partial
aperture blockage by the feed.

Of all the loss factors, the ATL and SPL are the primary ones that significantly affect
the gain. Their tradeoff is captured by the illumination efficiency or loss, defined to be
the product of ATL and SPL, eill = eatl espl.

The ATL and SPL may be expressed in terms of the radiation intensity Ufeed(ψ,χ).
Using ρdρ = R2 sinψdψ = ρRdψ = 2FR tan(ψ/2)dψ and Eq. (21.8.2), we have:

|Ea|dA =
√

2ηUfeed
1

R
2FR tan

ψ
2
dψdχ = 2F

√
2ηUfeed tan

ψ
2
dψdχ

|Ea|2dA = 2ηUfeed
1

R2
R2 sinψdψdχ = 2ηUfeed sinψdψdχ

The aperture area is A = πa2 = π(2F)2tan2(ψ0/2). Thus, it follows from the
definition (18.6.13) that the ATL will be:

eatl =

∣∣∣∣
∫
A
|Ea|dA

∣∣∣∣2

A
∫
A
|Ea|2dA

=
(2F)2

∣∣∣∣
∫
A

√
2ηUfeed tan

ψ
2
dψdχ

∣∣∣∣2

π(2F)2tan2(ψ0/2)
∫
A

2ηUfeed sinψdψdχ
, or,

eatl = 1

π
cot2

(
ψ0

2

)
∣∣∣∣∣
∫ ψ0

0

∫ 2π

0

√
Ufeed(ψ,χ) tan

ψ
2
dψdχ

∣∣∣∣∣
2

∫ ψ0

0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ

(21.8.10)

Similarly, the spillover efficiency can be expressed as:

espl = Pa
Pfeed

=

∫ ψ0

0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ∫ π

0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ

(21.8.11)

where we replaced Pfeed by the integral of Ufeed over all solid angles. It follows that the
illumination efficiency eill = eatl espl will be:

eill = 1

π
cot2

(
ψ0

2

)
∣∣∣∣∣
∫ ψ0

0

∫ 2π

0

√
Ufeed(ψ,χ) tan

ψ
2
dψdχ

∣∣∣∣∣
2

∫ π
0

∫ 2π

0
Ufeed(ψ,χ)sinψdψdχ

(21.8.12)
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An example of a feed pattern that approximates practical patterns is the following
azimuthally symmetric radiation intensity [21]:

Ufeed(ψ,χ)=
⎧⎪⎨
⎪⎩
U0 cos4ψ, if 0 ≤ ψ ≤ π

2
0 , if

π
2
< ψ ≤ π

(21.8.13)

For this example, the SPL, ATL, and ILL can be computed in closed form:

espl = 1− cos5ψ0

eatl = 40 cot2(ψ0/2)
[
sin4(ψ0/2)+ ln

(
cos(ψ0/2)

)]2

1− cos5ψ0

eill = 40 cot2(ψ0/2)
[
sin4(ψ0/2)+ ln

(
cos(ψ0/2)

)]2

(21.8.14)

The edge illumination is from Eq. (21.8.4):

|Ea(ψ0)|
|Ea(0)| =

1+ cosψ0

2
cos2ψ0 (21.8.15)

Fig. 21.8.1 shows a plot of Eqs. (21.8.14) and (21.8.15) versus ψ0. The ATL is a
decreasing and the SPL an increasing function ofψ0. The product eill = eatl espl reaches
the maximum value of 0.82 at ψ0 = 53.31o. The corresponding edge illumination is
0.285 or −10.9 dB. The F/D ratio is cot(ψ0/2)/4 = 0.498.
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Fig. 21.8.1 Tradeoff between ATL and SPF.

This example gives rise to the rule of thumb that the best tradeoff between ATL and
SPL for parabolic reflectors is achieved when the edge illumination is about −11 dB.

The value 0.82 for the efficiency is an overestimate. Taking into account other losses,
the aperture efficiency of practical parabolic reflectors is typically of the order of 0.55–
0.65. Expressing the physical area in terms of the diameter D, we can summarize the
gain of a parabolic antenna:

G = ea 4πA
λ2

= ea
(
πD
λ

)2

, with ea = 0.55–0.65 (21.8.16)
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As we discussed in Sec. 16.3, the 3-dB beamwidth of a reflector antenna with diameter
D can be estimated by rule of thumb [1692]:

Δθ3dB = 70o λ
D

(21.8.17)

The beamwidth depends also on the edge illumination. Typically, as the edge attenu-
ation increases, the beamwidth widens and the sidelobes decrease. By studying various
reflector sizes, types, and feeds Komen [1693] arrived at the following improved approx-
imation for the 3-dB width, which takes into account the edge illumination:

Δθ3dB =
(
1.05oAedge + 55.95o)

λ
D

(21.8.18)

where Aedge is the edge attenuation in dB, that is, Aedge = −20 log10

[|Ea(ψ0)/Ea(0)|
]
.

For example, for Aedge = 11 dB, the angle factor becomes 67.5o.

21.9 Aperture-Field and Current-Distribution Methods

In the previous section, we used energy flow considerations to determine the magnitude
|Ea| of the aperture field. To determine its direction and phase, we need to start from
the field radiated by the feed antenna and trace its path as it propagates as a spherical
wave to the reflector surface, gets reflected there, and then propagates as a plane wave
along the z-direction to the aperture plane.

Points on the reflector surface will be parametrized by the spherical coordinates
R,ψ,χ as shown in Figs. 21.7.1 and 21.7.2, and points in the radiation zone of the
reflector antenna, by the usual r,θ,φ.

Let R̂, ψ̂ψψ,χ̂χχ be the unit vectors in the R,ψ,χ directions. The relationships of R,ψ,χ
to the conventional polar coordinates of the x′y′z′ coordinate system are: R = r′,
ψ = θ′, but χ = −φ′, so that the unit vectors are R̂ = r̂′, ψ̂ψψ = θ̂θθ′, and χ̂χχ = −φ̂φφ′. (The
primed system has x̂′ = x̂, ŷ′ = −ŷ, and x̂′ = −ẑ.) In terms of the unprimed system:

R̂ = x̂ sinψ cosχ+ ŷ sinψ sinχ− ẑ cosψ

ψ̂ψψ = x̂ cosψ cosχ+ ŷ cosψ sinχ+ ẑ sinψ

χ̂χχ = −x̂ sinχ+ ŷ cosχ

(21.9.1)

and conversely,
x̂ = R̂ sinψ cosχ+ ψ̂ψψ cosψ cosχ− χ̂χχ sinχ

ŷ = R̂ sinψ sinχ+ ψ̂ψψ cosψ sinχ+ χ̂χχ cosχ

ẑ = −R̂ cosψ+ ψ̂ψψ sinψ

(21.9.2)

Because the reflector is assumed to be in the radiation zone of the feed, the most
general field radiated by the feed, and incident at the point R,ψ,χ on the reflector
surface, will have the form:

E i = e
−jkR

R
f i(ψ,χ) (incident field) (21.9.3)
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Because of the requirement R̂ ·E i = 0, the vector function f i must satisfy R̂ · f i = 0.
As expected for radiation fields, the radial dependence on R is decoupled from the
angular dependence on ψ,χ. The corresponding magnetic field will be:

H i = 1

η
R̂× E i = 1

η
e−jkR

R
R̂× f i(ψ,χ) (21.9.4)

The feed’s radiation intensity Ufeed is related to f i through the definition:

Ufeed(ψ,χ)= R2 1

2η
∣∣E i

∣∣2 = 1

2η
∣∣f i(ψ,χ)

∣∣2
(21.9.5)

Assuming that the incident field is reflected locally like a plane wave from the reflec-
tor’s perfectly conducting surface, it follows that the reflected fields E r,H r must satisfy
the following relationships, where where n̂ is the normal to the reflector:

n̂× E r = −n̂× E i , n̂ · E r = n̂ · E i

n̂×H r = n̂×H i , n̂ ·H r = −n̂ ·H i
(21.9.6)

These imply that |E r| = |E i|, |H r| = |H i|, and that:

E r = −E i + 2n̂(n̂ · E i)

H r = H i − 2n̂(n̂ ·H i)
(21.9.7)

Thus, the net electric field E i+E r is normal to the surface. Fig. 21.9.1 depicts these
geometric relationships, assuming for simplicity that E i is parallel to ψ̂ψψ.

Fig. 21.9.1 Geometric relationship between incident and reflected electric fields.

The proof of Eq. (21.9.7) is straightforward. Indeed, using n̂× (E i+E r)= 0 and the
BAC-CAB rule, we have:

0 = (n̂× (E i + E r)
)× n̂ = E i + E r − n̂(n̂ · E i + n̂ · E r)= E i + E r − n̂(2 n̂ · E i)

It follows now that the reflected field at the point (R,ψ,χ) will have the form:

E r = e
−jkR

R
f r(ψ,χ) (reflected field) (21.9.8)
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where f r satisfies |f r| = |f i| and:

f r = −f i + 2n̂(n̂ · f i) (21.9.9)

The condition R̂ · f i = 0 implies that ẑ · f r = 0, so that f r and E r are perpendicular
to the z-axis, and parallel to the aperture plane. To see this, we note that the normal
n̂, bisecting the angle ∠OPA in Fig. 21.9.1, will form an angle of ψ/2 with the z axis, so
that ẑ · n̂ = cos(ψ/2). More explicitly, the vector n̂ can be expressed in the form:

n̂ = −R̂ cos
ψ
2
+ ψ̂ψψ sin

ψ
2
= ẑ cos

ψ
2
− (x̂ cosχ+ ŷ sinχ)sin

ψ
2

(21.9.10)

Then, using Eq. (21.9.2), it follows that:

ẑ · f r = −ẑ · f i + 2(ẑ · n̂)(n̂ · f i)

= −(−R̂ cosψ+ ψ̂ψψ sinψ)·f i + 2 cos
ψ
2
(−R̂ cos

ψ
2
+ ψ̂ψψ sin

ψ
2
)·f i

= −(ψ̂ψψ · f i)
[

sinψ− 2 cos
ψ
2

sin
ψ
2

]
= 0

Next, we obtain the aperture field Ea by propagating E r as a plane wave along the
z-direction by a distance h to the aperture plane:

Ea = e−jkhE r = e
−jk(R+h)

R
f r(ψ,χ)

But for the parabola, we have R+ h = 2F. Thus, the aperture field is given by:

Ea = e
−2jkF

R
fa(ψ,χ) (aperture field) (21.9.11)

where we defined fa = f r , so that:

fa = −f i + 2n̂(n̂ · f i) (21.9.12)

Because |fa| = |f r| = |f i| =
√

2ηUfeed, it follows that Eq. (21.9.11) is consistent with
Eq. (21.8.2). As plane waves propagating in the z-direction, the reflected and aperture
fields are Huygens sources. Therefore, the corresponding magnetic fields will be:

H r = 1

η
ẑ× E r , Ha = 1

η
ẑ× Ea

The surface currents induced on the reflector are obtained by noting that the total
fields are E i + E r = 2n̂(n̂ · E i) and H i +H r = 2H i − 2n̂(n̂ ·H i). Thus, we have:

J s = n̂× (H i +H r)= 2 n̂×H i = 2

η
e−jkR

R
R̂× f i

Jms = −n̂× (E i + E r)= 0
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21.10 Radiation Patterns of Reflector Antennas

The radiation patterns of the reflector antenna are obtained either from the aperture
fields Ea,Ha integrated over the effective aperture using Eq. (18.4.2), or from the cur-
rents J s and Jms = 0 integrated over the curved reflector surface using Eq. (18.4.1).

We discuss in detail only the aperture-field case. The radiation fields at some large
distance r in the direction defined by the polar angles θ,φ are given by Eq. (18.5.3). The
unit vector r̂ in the direction of θ,φ is shown in Fig. 21.7.2. We have:

Eθ = jk e
−jkr

2πr
1+ cosθ

2

[
fx cosφ+ fy sinφ

]

Eφ = jk e
−jkr

2πr
1+ cosθ

2

[
fy cosφ− fx sinφ

] (21.10.1)

where the vector f = x̂ fx + ŷ fy is the Fourier transform over the aperture:

f(θ,φ)=
∫ a

0

∫ 2π

0
Ea(ρ′, χ) ejk·r

′
ρ′dρ′dχ (21.10.2)

The vector r′ lies on the aperture plane and is given in cylindrical coordinates by
r′ = ρ′ρ̂ρρ = ρ′(x̂ cosχ+ ŷ sinχ). Thus,

k · r′ = kρ′(x̂ cosφ sinθ+ ŷ sinφ sinθ+ ẑ cosθ)·(x̂ cosχ+ ŷ sinχ)

= kρ′ sinθ(cosφ cosχ+ sinφ sinχ)= kρ′ sinθ cos(φ− χ)
It follows that:

f(θ,φ)=
∫ a

0

∫ 2π

0
Ea(ρ,χ) ejkρ sinθ cos(φ−χ)ρdρdχ (21.10.3)

We may convert this into an integral over the feed anglesψ,χ by using Eq. (21.9.11)
and dρ = Rdψ, ρ = 2F tan(ψ/2), and ρdρ = 2FR tan(ψ/2)dψ. Then, the 1/R factor
in Ea is canceled, resulting in:

f(θ,φ)= 2Fe−2jkF
∫ ψ0

0

∫ 2π

0
fa(ψ,χ)e2jkF tan ψ

2 sinθ cos(φ−χ) tan
ψ
2
dψdχ (21.10.4)

Given a feed pattern f i(ψ,χ), the aperture pattern fa(ψ,χ) is determined from
Eq. (21.9.12) and the integrations in (21.10.4) are done numerically.

Because of the condition R̂ · f i = 0, the vector f i will have components only along
the ψ̂ψψ and χ̂χχ directions. We assume that f i has the following more specific form:

f i = ψ̂ψψF1 sinχ+ χ̂χχF2 cosχ (y-polarized feeds) (21.10.5)

where F1, F2 are functions of ψ,χ, but often assumed to be functions only of ψ, repre-
senting the patterns along the principal planes χ = 90o and χ = 0o.

Such feeds are referred to as “y-polarized” and include y-directed dipoles, and
waveguides and horns in which the electric field on the horn aperture is polarized along
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the y direction (the x-polarized case is obtained by a rotation, replacing χ by χ+ 90o.)
Using Eqs. (21.9.1) and (21.9.10), the corresponding pattern fa can be worked out:

fa = −ŷ
[
F1 sin2 χ+ F2 cos2 χ

]− x̂
[
(F1 − F2)cosχ sinχ

]
(21.10.6)

If F1 = F2, we have fa = −ŷF1. But if F1 �= F2, the aperture field Ea develops a
“cross-polarized” component along the x direction. Various definitions of cross polar-
ization have been discussed by Ludwig [1698].

As examples, we consider the cases of a y-directed Hertzian dipole feed, and waveg-
uide and horn feeds. Adapting their radiation patterns given in Sections 17.2, 21.1, and
21.3, to the R,ψ,χ coordinate system, we obtain the following feed patterns, which are
special cases of (21.10.5):

f i(ψ,χ)= Fd
(
ψ̂ψψ cosψ sinχ+ χ̂χχ cosχ

)
(dipole feed)

f i(ψ,χ)= Fw(ψ,χ)
(
ψ̂ψψ sinχ+ χ̂χχ cosχ

)
(waveguide feed)

f i(ψ,χ)= Fh(ψ,χ)
(
ψ̂ψψ sinχ+ χ̂χχ cosχ

)
(horn feed)

(21.10.7)

where Fd is the constant Fd = −jη(Il)/2λ, and Fw,Fh are given by:

Fw(ψ,χ) = − jabE0

πλ
(1+ cosψ)

cos(πvx)
1− 4v2

x

sin(πvy)
πvy

Fh(ψ,χ) = − jABE0

8λ
(1+ cosψ)F1(vx,σa)F0(vy,σb)

(21.10.8)

where I, l are the current and length of the Hertzian dipole, a,b and A,B are the di-
mensions of the waveguide and horn apertures, and vx = (a/λ)sinψ cosχ, vy =
(b/λ)sinψ sinχ for the waveguide, and vx = (A/λ)sinψ cosχ, vy = (B/λ)sinψ sinχ,
for the horn, and F1, F0 are the horn pattern functions defined in Sec. 21.3. The corre-
sponding aperture patterns fa are in the three cases:

fa(ψ,χ)= −ŷFd
[
cosψ sin2 χ+ cos2 χ

]− x̂Fd
[
(cosψ− 1)sinχ cosχ

]
fa(ψ,χ)= −ŷFw(ψ,χ)

fa(ψ,χ)= −ŷFh(ψ,χ)

(21.10.9)

In the general case, a more convenient form of Eq. (21.10.6) is obtained by writing it
in terms of the sum and difference patterns:

A = F1 + F2

2
, B = F1 − F2

2
� F1 = A+ B , F2 = A− B (21.10.10)

Using some trigonometric identities, we may write (21.10.6) in the form:

fa = −ŷ
(
A− B cos 2χ

)− x̂
(
B sin 2χ

)
(21.10.11)

In general, A,B will be functions ofψ,χ (as in the waveguide and horn cases.) If we
assume that they are functions only ofψ, then the χ-integration in the radiation pattern

1076 21. Aperture Antennas

integral (21.10.4) can be done explicitly leaving an integral overψ only. Using (21.10.11)
and the Bessel-function identities,

∫ 2π

0
eju cos(φ−χ)

[
cosnχ
sinnχ

]
dχ = 2πjn

[
cosnφ
sinnφ

]
Jn(u) (21.10.12)

we obtain:

f(θ,φ)= −ŷ
[
fA(θ)−fB(θ)cos 2φ

]− x̂
[
fB(θ)sin 2φ

]
(21.10.13)

where the functions fA(θ) and fB(θ) are defined by:

fA(θ) = 4πFe−2jkF
∫ ψ0

0
A(ψ)J0

(
4πF
λ

tan
ψ
2

sinθ
)

tan
ψ
2
dψ

fB(θ) = −4πFe−2jkF
∫ ψ0

0
B(ψ)J2

(
4πF
λ

tan
ψ
2

sinθ
)

tan
ψ
2
dψ

(21.10.14)

Using Eq. (21.10.13) and some trigonometric identities, we obtain:

fx cosφ+ fy sinφ = −(fA + fB)sinφ

fy cosφ− fx sinφ = −(fA − fB)cosφ

It follows that the radiation fields (21.10.1) are given by:

Eθ = −j e
−jkr

λr
1+ cosθ

2

[
fA(θ)+fB(θ)

]
sinφ

Eφ = −j e
−jkr

λr
1+ cosθ

2

[
fA(θ)−fB(θ)

]
cosφ

(21.10.15)

Example 21.10.1: Parabolic Reflector with Hertzian Dipole Feed. We compute numerically the
gain patterns for a y-directed Hertzian dipole feed. We take F = 10λ andD = 40λ, so that
F/D = 0.25 and ψ0 = 90o. These choices are similar to those in [1696].

Ignoring the constant Fd in (21.10.7), we have F1(ψ)= cosψ and F2(ψ)= 1. Thus, the
sum and difference patters are A(ψ)= (cosψ + 1)/2 and B(ψ)= (cosψ − 1)/2. Up to
some overall constants, the required gain integrals will have the form:

fA(θ)=
∫ ψ0

0
FA(ψ,θ)dψ , fB(θ)=

∫ ψ0

0
FB(ψ,θ)dψ (21.10.16)

where

FA(ψ,θ) = (1+ cosψ)J0

(
4πF
λ

tan
ψ
2

sinθ
)

tan
ψ
2

FB(ψ,θ) = (1− cosψ)J2

(
4πF
λ

tan
ψ
2

sinθ
)

tan
ψ
2

(21.10.17)

The integrals are evaluated numerically using Gauss-Legendre quadrature integration, which
approximates an integral as a weighted sum [1790]:

fA(θ)=
N∑
i=1

wi FA(ψi, θ)= wTFA
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where wi,ψi are the Gauss-Legendre weights and evaluation points within the integration
interval [0,ψ0], where FA is the column vector with ith component FA(ψi, θ).

For higher accuracy, this interval may be subdivided into a number of subintervals, the
quantities wi,ψi are then determined on each subinterval, and the total integral is evalu-
ated as the sum of the integrals over all the subintervals.

We have written a MATLAB function, quadrs, that determines the quantities wi,ψi over
all the subintervals. It is built on the function quadr, which determines the weights over
a single interval.
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Fig. 21.10.1 Parabolic reflector patterns with dipole feed.

The following MATLAB code evaluates and plots in Fig. 21.10.1 the E- andH-plane patterns
(21.10.15) over the polar angles 0 ≤ θ ≤ 5o.

F = 10; D = 40; psi0 = 2*acot(4*F/D); % F/D = 0.25, ψ0 = 90o

ab = linspace(0, psi0, 5); % 4 integration subintervals in [0,ψ0]
[w,psi] = quadrs(ab); % quadrature weights and evaluation points

% uses 16 weights per subinterval

c = cos(psi); t = tan(psi/2); % cosψ, tan(ψ/2) at quadrature points

th = linspace(0, 5, 251); % angle θ in degrees over 0 ≤ θ ≤ 5o

for i=1:length(th),
u = 4*pi*F*sin(th(i)*pi/180); % u = 2kF sinθ
FA = (1+c) .* besselj(0, u*t) .* t; % integrand of fA(θ)
fA(i) = w’ * FA; % integral evaluated at θ
FB = (1-c) .* besselj(2, u*t) .* t; % integrand of fB(θ)
fB(i) = w’ * FB;

end

gh = abs((1+cos(th*pi/180)).*(fA-fB)); gh = gh/max(gh); % gain patterns

ge = abs((1+cos(th*pi/180)).*(fA+fB)); ge = ge/max(ge);

plot(-th,ge,’-’, th,ge, ’-’, -th,gh,’--’,th,gh,’--’);

The graph on the right hasψ0 = 90o andD = 80λ, resulting in a narrower main beam. ��
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Example 21.10.2: Parabolic Reflector with Waveguide Feed. We calculate the reflector radiation
patterns for a waveguide feed radiating in the TE10 mode with a y-directed electric field.
The feed pattern was given in Eq. (21.10.7). Ignoring some overall constants, we have with
vx = (a/λ)sinψ cosχ and vy = (b/λ)sinψ sinχ:

f i = (1+ cosψ)
cos(πvx)
1− 4v2

x

sin(πvy)
πvy

(ψ̂ψψ sinχ+ χ̂χχ cosχ) (21.10.18)

To avoid the double integration in the ψ and χ variables, we follow Jones’ procedure
[1696] of choosing the a,b such that the E- and H-plane illuminations of the paraboloid
are essentially identical. This is accomplished when a is approximately a = 1.37b. Then,
the above feed pattern may be simplified by replacing it by its E-plane pattern:

f i = (1+ cosψ)
sin(πvy)
πvy

(ψ̂ψψ sinχ+ χ̂χχ cosχ) (21.10.19)

where vy = (b/λ)sinψ. Thus, F1 = F2 and

A(ψ)= (1+ cosψ)
sin(πb sinψ/λ)
πb sinψ/λ

and B(ψ)= 0 (21.10.20)

The radiated field is given by Eq. (21.10.15) with a normalized gain:

g(θ)=
∣∣∣∣∣1+ cosθ

2

fA(θ)
fA(0)

∣∣∣∣∣
2

(21.10.21)

where fA(θ) is defined up to a constant by Eq. (21.10.14):

fA(θ)=
∫ ψ0

0
A(ψ)J0

(
4πF
λ

tan
ψ
2

sinθ
)

tan
ψ
2
dψ (21.10.22)

We choose a parabolic antenna with diameter D = 40λ and subtended angle of ψ0 = 60o,
so that F = D cot(ψ0/2)/4 = 17.3205λ. The length b of the waveguide is chosen such as
to achieve an edge illumination of −11 dB on the paraboloid. This gives the condition on
b, where the extra factor of (1+ cosψ) arises from the space attenuation factor 1/R:

|E i(ψ0)|
|E i(0)| =

(
1+ cosψ0

2

)2
∣∣∣∣∣ sin(πb sinψ0/λ)

πb sinψ0/λ

∣∣∣∣∣ = 10−11/20 = 0.2818 (21.10.23)

It has solution b = 0.6958λ and therefore, a = 1.37b = 0.9533λ. The illumination effi-
ciency given in Eq. (21.8.12) may be taken to be a measure of the overall aperture efficiency
of the reflector. Because 2ηUfeed = |f i|2 = |fa|2 = |A(ψ)|2, the integrals in (21.8.12) may
be calculated numerically, giving ea = 0.71 and a gain of 40.5 dB.

The pattern function fA(θ)may be calculated numerically as in the previous example. The
left graph in Fig. 21.10.2 shows the E- and H-plane illumination patterns versus ψ of the
actual feed given by (21.10.18), that is, the normalized gains:

gE(ψ) =
∣∣∣∣∣(1+ cosψ)2

4

sin(πb sinψ/λ)
πb sinψ/λ

∣∣∣∣∣
2

gH(ψ) =
∣∣∣∣∣(1+ cosψ)2

4

cos(πa sinψ/λ)
1− 4(πa sinψ/λ)2

∣∣∣∣∣
2
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Fig. 21.10.2 Feed illumination and reflector radiation patterns.

They are essentially identical provided a = 1.37b (the graph actually plots the square
roots of these quantities.) The right graph shows the calculated radiation pattern g(θ)
(or, rather its square root) of the paraboloid.

The following MATLAB code solves (21.10.23) for b, and then calculates the illumination
pattern and the reflector pattern:

F = 17.3205; D = 40; psi0 = 2*acot(4*F/D); % ψ0 = 60o

f = inline(’(1+cos(x)).^2/4 * abs(sinc(b*sin(x))) - A’,’b’,’x’,’A’);
Aedge = 11;
b = fzero(f,0.8,optimset(’display’,’off’), psi0, 10^(-Aedge/20));
a = 1.37 * b;

psi = linspace(-psi0, psi0, 201); ps = psi * 180/pi;

gE = abs((1+cos(psi)).^2/4 .* sinc(b*sin(psi)));
gH = abs((1+cos(psi)).^2/4 .* dsinc(a*sin(psi)));

figure; plot(ps,gE,’-’, ps,gH,’--’);

[w,psi] = quadrs(linspace(0, psi0, 5)); % quadrature weights and points

s = sin(psi); c = cos(psi); t = tan(psi/2);
A = (1+c) .* sinc(b*s); % the pattern A(ψ)

thd = linspace(0, 5, 251); th = thd*pi/180;

for i=1:length(th),
u = 4*pi*F*sin(th(i));
FA = A .* besselj(0, u*t) .* t;
fA(i) = w’ * FA;

end

g = abs((1+cos(th)) .* fA); g = g/max(g);

figure; plot(-thd,g,’-’, thd,g);
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The 3-dB width was calculated from Eq. (21.8.18) and is placed on the graph. The angle
factor was 1.05Aedge + 55.95 = 67.5, so that Δθ3dB = 67.5oλ/D = 67.5/40 = 1.69o. The
gain-beamwidth product is p = G(Δθ3dB)2= 1040.5/10 (1.69o)2= 32 046 deg2. ��

Example 21.10.3: Parabolic Reflector with Horn Feed. Fig. 21.10.3 shows the illumination and
reflector patterns if a rectangular horn antenna feed is used instead of a waveguide. The
design requirements were again that the edge illumination be -11 dB and that D = 40λ
and ψ0 = 60o. The illumination pattern is (up to a scale factor):

f i = (1+ cosψ)F1(vx,σa)F0(vy,σb) (ψ̂ψψ sinχ+ χ̂χχ cosχ)

The E- and H-plane illumination patterns are virtually identical over the angular range
0 ≤ ψ ≤ ψ0, provided one chooses the horn sides such that A = 1.48B. Then, the
illumination field may be simplified by replacing it by the E-plane pattern and the length B
is determined by requiring that the edge illumination be -11 dB. Therefore, we work with:

f i = (1+ cosψ)F0(vy,σb) (ψ̂ψψ sinχ+ χ̂χχ cosχ) , vy = Bλ sinψ

Then, A(ψ)= (1 + cosψ)F0(vy,σb) and B(ψ)= 0 for the sum and difference patterns.
The edge illumination condition reads now:

(
1+ cosψ0

2

)2 ∣∣∣∣F0(B sinψ0/λ,σb)
F0(0, σb)

∣∣∣∣ = 10−11/20

Its solution is B = 0.7806λ, and henceA = 1.48B = 1.1553λ. The left graph in Fig. 21.10.3
shows the E- and H-plane illumination gain patterns of the actual horn feed:

gE(ψ) =
∣∣∣∣∣(1+ cosψ)2

4

F0(B sinψ/λ,σb)
F0(0, σb)

∣∣∣∣∣
2

gH(ψ) =
∣∣∣∣∣(1+ cosψ)2

4

F1(A sinψ/λ,σa)
F1(0, σa)

∣∣∣∣∣
2

They are seen to be almost identical. The right graph shows the reflector radiation pattern
computed numerically as in the previous example. The following MATLAB code illustrates
this computation:

[w,psi] = quadrs(linspace(0, psi0, 5)); % 4 subintervals in [0,ψ0]

s = sin(psi); c = cos(psi); t = tan(psi/2); % evaluate at quadrature points

Apsi = (1+c) .* (diffint(B*s, sb, 0)); % the pattern A(ψ)

thd = linspace(0, 8, 251); th = thd*pi/180;

for i=1:length(th),
u = 4*pi*F*sin(th(i));
FA = Apsi .* besselj(0, u*t) .* t;
fA(i) = w’ * FA;

end

g = abs((1+cos(th)) .* fA); g = g/max(g);

figure; plot(-thd,g,’-’, thd,g);
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The horn’s σ-parameters were chosen to have the usual optimum values of σa = 1.2593
and σb = 1.0246. The 3-dB width is the same as in the previous example, that is, 1.69o

and is shown on the graph. The computed antenna efficiency is now ea = 0.67 and the
corresponding gain 40.24 dB, so that p = G(Δθ3dB)2= 1040.24/10 (1.69o)2= 30 184 deg2

for the gain-beamwidth product. ��
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Fig. 21.10.3 Feed and reflector radiation patterns.

Example 21.10.4: Here, we compare the approximate symmetrized patterns of the previous
two examples with the exact patterns obtained by performing the double-integration over
the aperture variables ψ,χ.

Both the waveguide and horn examples have a y-directed two-dimensional Fourier trans-
form pattern of the form:

fA(θ,φ)= fy(θ,φ)=
∫ ψ0

0

∫ 2π

0
FA(ψ,χ,θ,φ)dψdχ (21.10.24)

where the integrand depends on the feed pattern A(ψ,χ):

FA(ψ,χ,θ,φ)= A(ψ,χ)ej2kF tan(ψ/2)sinθ cos(φ−χ) tan
ψ
2

(21.10.25)

and, up to constant factors, the function A(ψ,χ) is given in the two cases by:

A(ψ,χ) = (1+ cosψ)
cos(πvx)
1− 4v2

x

sin(πvy)
πvy

A(ψ,χ) = (1+ cosψ)F1(vx,σa)F0(vy,σb)
(21.10.26)

where vx = (a/λ)sinψ cosχ and vy = (b/λ)sinψ sinχ for the waveguide case, and
vx = (A/λ)sinψ cosχ and vy = (B/λ)sinψ sinχ for the horn.

Once, fA(θ,φ) is computed, we obtain the (un-normalized) H- and E-plane radiation pat-
terns for the reflector by setting φ = 0o and 90o, that is,

gH(θ)=
∣∣(1+ cosθ) fA(θ,0o)

∣∣2, gE(θ)=
∣∣(1+ cosθ) fA(θ,90o)

∣∣2
(21.10.27)
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The numerical evaluation of Eq. (21.10.24) can be done with two-dimensional Gauss-Legendre
quadratures, approximating the integral by the double sum:

fA(θ,φ)=
N1∑
i=1

N2∑
j=1

w1i FA(ψi, χj)w2j = wT1 FAw2 (21.10.28)

where {w1i,ψi} and {w2j, χj} are the quadrature weights and evaluation points over the
intervals [0,ψ0] and [0,2π], and FA is the matrix FA(ψi, χj). The function quadrs, called
on these two intervals, will generate these weights.
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Fig. 21.10.4 Exact and approximate reflector radiation patterns.

Fig. 21.10.4 shows the patterns (21.10.27) of the horn and waveguide cases evaluated nu-
merically and plotted together with the approximate symmetrized patterns of the previous
two examples. The symmetrized patterns agree very well with the exact patterns and fall
between them. The following MATLAB code illustrates this computation for the horn case:

[w1, psi] = quadrs(linspace(0, psi0, Ni)); % quadrature over [0,ψ0], Ni = 5

[w2, chi] = quadrs(linspace(0, 2*pi, Ni)); % quadrature over [0,2π], Ni = 5

sinpsi = sin(psi); cospsi = cos(psi); tanpsi = tan(psi/2);
sinchi = sin(chi); coschi = cos(chi);

for i = 1:length(chi), % build matrix A(ψi,χj) columnwise

Apsi(:,i) = diffint(A*sinpsi*coschi(i), sa, 1) ...
.* diffint(B*sinpsi*sinchi(i), sb, 0);

end
Apsi = repmat(tanpsi.*(1+cospsi), 1, length(psi)) .* Apsi;

th = linspace(0, 8, 401) * pi/180;

for i=1:length(th),
u = 4*pi*F*sin(th(i)); % u = 2kF sinθ
FH = Apsi .* exp(j*u*tanpsi*coschi’); % H-plane, φ = 0o

FE = Apsi .* exp(j*u*tanpsi*sinchi’); % E-plane, φ = 90o

fH(i) = w1’ * FH * w2; % evaluate double integral

fE(i) = w1’ * FE * w2;
end
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gH = abs((1+cos(th)).*fH); gH = gH/max(gH); % radiation patterns

gE = abs((1+cos(th)).*fE); gE = gE/max(gE);

The patterns are plotted in dB, which accentuates the differences among the curves and
also shows the sidelobe levels. In the waveguide case the resulting curves are almost
indistinguishable to be seen as separate. ��

21.11 Dual-Reflector Antennas

Dual-reflector antennas consisting of a main reflector and a secondary sub-reflector are
used to increase the effective focal length and to provide convenient placement of the
feed.

Fig. 21.11.1 shows a Cassegrain antenna† consisting of a parabolic reflector and
a hyperbolic subreflector. The hyperbola is positioned such that its focus F2 coincides
with the focus of the parabola. The feed is placed at the other focus, F1, of the hyperbola.

Fig. 21.11.1 Cassegrain dual-reflector antenna.

The focus F2 is referred to a “virtual focus” of the parabola. Any ray originating from
the point F1 will be reflected by the hyperbola in a direction that appears to have origi-
nated from the focus F2, and therefore, it will be re-reflected parallel to the parabola’s
axis.

To better understand the operation of such an antenna, we consider briefly the re-
flection properties of hyperbolas and ellipses, as shown in Fig. 21.11.2.

The geometrical properties of hyperbolas and ellipses are characterized completely
by the parameters e, a, that is, the eccentricity and the distance of the vertices from
the origin. The eccentricity is e > 1 for a hyperbola, and e < 1 for an ellipse. A circle
corresponds to e = 0 and a parabola can be thought of as the limit of a hyperbola in the
limit e = 1.

†Invented in the 17th century by A. Cassegrain.
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Fig. 21.11.2 Hyperbolic and elliptic reflectors.

The foci are at distances F1 and F2 from a vertex, say from the vertex V2, and are
given in terms of a, e as follows:

F1 = a(e+ 1), F2 = a(e− 1) (hyperbola)
F1 = a(1+ e), F2 = a(1− e) (ellipse)

(21.11.1)

The ray lengths R1 and R2 from the foci to a point P satisfy:

R1 −R2 = 2a (hyperbola)
R1 +R2 = 2a (ellipse)

(21.11.2)

The polar representations of the hyperbola or ellipse may be given in terms of the
polar angles ψ1 or ψ2. We have:

R1 = a(e2 − 1)
e cosψ1 − 1

, R2 = a(e2 − 1)
e cosψ2 + 1

(hyperbola)

R1 = a(1− e2)
1− e cosψ1

, R2 = a(1− e2)
1− e cosψ2

(ellipse)

(21.11.3)

Note that we can write a(e2 − 1)= F1(e − 1)= F2(e + 1). For the hyperbola, the
denominator ofR1 vanishes at the anglesψ1 = ± acos(1/e), corresponding to two lines
parallel to the hyperbola asymptotes.

In the cartesian coordinates x, z (defined with respect to the origin O in the figure),
the equations for the hyperbola and the ellipse are:

(e2 − 1)z2 − x2 = a2(e2 − 1) (hyperbola)
(1− e2)z2 + x2 = a2(1− e2) (ellipse)

(21.11.4)

The semi-major axes are b2 = a2(e2 − 1) or a2(1− e2). Because of the constraints
(21.11.2), the anglesψ1,ψ2 are not independent of each other. For example, solving for
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ψ2 in terms of ψ1, we have in the hyperbolic case:

cosψ2 = e
2 cosψ1 − 2e+ cosψ1

e2 − 2e cosψ1 + 1
(21.11.5)

This implies the additional relationship and the derivative:

1+ cosψ2

e cosψ2 + 1
=
(

1+ cosψ1

e cosψ1 − 1

)(
e− 1

e+ 1

)

dψ2

dψ1
= sinψ1

sinψ2

(
e cosψ2 + 1

e cosψ1 − 1

)2
(21.11.6)

The incident ray R1 reflects off the surface of either the hyperbola or the ellipse as
though the surface is locally a perfect mirror, that is, the local normal bisects the angle
between the incident and reflected rays. The angles of incidence and reflectionφ shown
on the figures are given by:

φ = ψ1 +ψ2

2
(hyperbola)

φ = π
2
− ψ1 +ψ2

2
(ellipse)

(21.11.7)

To determine the aperture field on the aperture plane passing through F2, we equate
the power within a solid angle dΩ1 = sinψ1dψ1dχ radiated from the feed, to the power
reflected within the cone dΩ2 = sinψ2dψ2dχ from the hyperbola, to the power passing
through the aperture dA = ρdρdχ:

dP = U1(ψ1, χ)dΩ1 = U2(ψ2, χ)dΩ2 = 1

2η
|Ea|2 dA (21.11.8)

where U1 is the radiation intensity of the feed, and U2 the intensity of the virtual feed.
The second of Eqs. (21.11.8) may be solved as in Eq. (21.8.2) giving:

|Ea| = 1

2F
(1+ cosψ2)

√
2ηU2(ψ2, χ) (21.11.9)

where F is the focal length of the parabola. From the first of Eqs. (21.11.8), we find:

√
U2 =

√
U1

√
sinψ1dψ1

sinψ2dψ2
= √U1

e cosψ1 − 1

e cosψ2 + 1
(21.11.10)

Inserting this into Eq. (21.11.9) and using Eqs. (21.11.6), we obtain:

|Ea| = 1

2F

(
e− 1

e+ 1

)
(1+ cosψ1)

√
2ηU1(ψ1, χ) (21.11.11)

Comparing with Eq. (21.8.2), we observe that this is equivalent to a single parabolic
reflector with an effective focal length:

Feff = F e+ 1

e− 1
(21.11.12)

Thus, having a secondary reflector increases the focal length while providing a con-
venient location of the feed near the vertex of the parabola. Cassegrain antenna aperture
efficiencies are typically of the order of 0.65–0.70.
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21.12 Lens Antennas

Dielectric lens antennas convert the spherical wave from the feed into a plane wave
exiting the lens. Fig. 21.12.1 shows two types of lenses, one with a hyperbolic and the
other with elliptic profile.

Fig. 21.12.1 Lens antennas.

The surface profile of the lens is determined by the requirement that the refracted
rays all exit parallel to the lens axis. For example, for the lens shown on the left, the
effective aperture plane is the right side AB of the lens. If this is to be the exiting
wavefront, then each point A must have the same phase, that is, the same optical path
length from the feed.

Taking the refractive index of the lens dielectric to be n, and denoting byR and h the
lengths FP and PA, the constant-phase condition implies that the optical length along
FPA be the same as that for FVB, that is,

R+ nh = F + nh0 (21.12.1)

But, geometrically we have R cosψ+h = F+h0. Multiplying this by n and subtract-
ing Eq. (21.12.1), we obtain the polar equation for the lens profile:

R(n cosψ− 1)= F(n− 1) ⇒ R = F(n− 1)
n cosψ− 1

(21.12.2)

This is recognized from Eq. (21.11.3) to be the equation for a hyperbola with eccen-
tricity and focal length e = n and F1 = F.

For the lens shown on the right, we assume the left surface is a circle of radius R0

and we wish to determine the profile of the exiting surface such that the aperture plane
is again a constant-phase wavefront. We denote by R and h the lengths FA and PA.
Then, R = R0 + h and the constant-phase condition becomes:

R0 + nh+ d = R0 + nh0 (21.12.3)
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where the left-hand side represents the optical path FPAB. Geometrically, we have
R cosψ+ d = F and F = R0 + h0. Eliminating d and R0, we find the lens profile:

R =
F
(
1− 1

n
)

1− 1

n
cosψ

(21.12.4)

which is recognized to be the equation for an ellipse with eccentricity and focal length
e = 1/n and F1 = F.

In the above discussion, we considered only the refracted rays through the dielectric
and ignored the reflected waves. These can be minimized by appropriate antireflection
coatings.

22
Antenna Arrays

22.1 Antenna Arrays

Arrays of antennas are used to direct radiated power towards a desired angular sector.
The number, geometrical arrangement, and relative amplitudes and phases of the array
elements depend on the angular pattern that must be achieved.

Once an array has been designed to focus towards a particular direction, it becomes
a simple matter to steer it towards some other direction by changing the relative phases
of the array elements—a process called steering or scanning.

Figure 22.1.1 shows some examples of one- and two-dimensional arrays consisting
of identical linear antennas. A linear antenna element, say along the z-direction, has
an omnidirectional pattern with respect to the azimuthal angle φ. By replicating the
antenna element along the x- or y-directions, the azimuthal symmetry is broken. By
proper choice of the array feed coefficients an, any desired gain pattern g(φ) can be
synthesized.

If the antenna element is replicated along the z-direction, then the omnidirectionality
with respect toφ is maintained. With enough array elements, any prescribed polar angle
pattern g(θ) can be designed.

In this section we discuss array design methods and consider various design issues,
such as the tradeoff between beamwidth and sidelobe level.

For uniformly-spaced arrays, the design methods are identical to the methods for
designing FIR digital filters in DSP, such as window-based and frequency-sampling de-
signs. In fact, historically, these methods were first developed in antenna theory and
only later were adopted and further developed in DSP.

22.2 Translational Phase Shift

The most basic property of an array is that the relative displacements of the antenna ele-
ments with respect to each other introduce relative phase shifts in the radiation vectors,
which can then add constructively in some directions or destructively in others. This is
a direct consequence of the translational phase-shift property of Fourier transforms: a
translation in space or time becomes a phase shift in the Fourier domain.


