
15
Radiation Fields

15.1 Currents and Charges as Sources of Fields

Here we discuss how a given distribution of currents and charges can generate and
radiate electromagnetic waves. Typically, the current distribution is localized in some
region of space (for example, currents on a wire antenna.) The current source generates
electromagnetic fields, which can propagate to far distances from the source location.

It proves convenient to work with the electric and magnetic potentials rather than the
E and H fields themselves. Basically, two of Maxwell’s equations allow us to introduce
these potentials; then, the other two, written in terms of these potentials, take a simple
wave-equation form. The two Maxwell equations,

∇∇∇ · B = 0, ∇∇∇× E = −∂B

∂t
(15.1.1)

imply the existence of the magnetic and electric potentials A(r, t) andϕ(r, t), such that
the fields E and B are obtainable by

E = −∇∇∇ϕ− ∂A

∂t

B =∇∇∇× A

(15.1.2)

Indeed, the divergenceless of B implies the existence of A, such that B = ∇∇∇ × A.
Then, Faraday’s law can be written as

∇∇∇× E = −∂B

∂t
= −∇∇∇× ∂A

∂t
⇒ ∇∇∇× (

E+ ∂A

∂t
) = 0

Thus, the quantity E+ ∂A/∂t is curl-less and can be represented as the gradient of
a scalar potential, that is, E+ ∂A/∂t = −∇∇∇ϕ.

The potentials A andϕ are not uniquely defined. For example, they may be changed
by adding constants to them. Even more freedom is possible, known as gauge invariance
of Maxwell’s equations. Indeed, for any scalar function f(r, t), the following gauge
transformation leaves E and B invariant:
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ϕ′ =ϕ− ∂f
∂t

A′ = A+∇∇∇f
(gauge transformation) (15.1.3)

For example, we have for the electric field:

E′ = −∇∇∇ϕ′ − ∂A′

∂t
= −∇∇∇(

ϕ− ∂f
∂t

)− ∂
∂t

(
A+∇∇∇f) = −∇∇∇ϕ− ∂A

∂t
= E

This freedom in selecting the potentials allows us to impose some convenient con-
straints between them. In discussing radiation problems, it is customary to impose the
Lorenz condition:†

∇∇∇ · A+ 1

c2

∂ϕ
∂t

= 0 (Lorenz condition) (15.1.4)

We will also refer to it as Lorenz gauge or radiation gauge. Under the gauge transfor-
mation (15.1.3), we have:

∇∇∇ · A′ + 1

c2

∂ϕ′

∂t
= (∇∇∇ · A+ 1

c2

∂ϕ
∂t

)− ( 1

c2

∂2f
∂t2

−∇2f
)

Therefore, if A,ϕ did not satisfy the constraint (15.1.4), the transformed potentials
A′,ϕ′ could be made to satisfy it by an appropriate choice of the function f , that is, by
choosing f to be the solution of the inhomogeneous wave equation:

1

c2

∂2f
∂t2

−∇2f =∇∇∇ · A+ 1

c2

∂ϕ
∂t

Using Eqs. (15.1.2) and (15.1.4) into the remaining two of Maxwell’s equations,

∇∇∇ · E = 1

ε
ρ, ∇∇∇× B = μJ+ 1

c2

∂E

∂t
(15.1.5)

we find,

∇∇∇ · E =∇∇∇ · (−∇∇∇ϕ− ∂A

∂t
) = −∇2ϕ− ∂

∂t
(∇∇∇ · A)= −∇2ϕ− ∂

∂t
(− 1

c2

∂ϕ
∂t

)

= 1

c2

∂2ϕ
∂t2

−∇2ϕ

and, similarly,

∇∇∇× B− 1

c2

∂E

∂t
=∇∇∇× (∇∇∇× A)− 1

c2

∂
∂t

(−∇∇∇ϕ− ∂A

∂t
)

=∇∇∇× (∇∇∇× A)+∇∇∇( 1

c2

∂ϕ
∂t

)+ 1

c2

∂2A

∂t2

†Almost universally wrongly attributed to H. A. Lorentz instead of L. V. Lorenz. See Refs. [74–80] for the
historical roots of scalar and vector potentials and gauge transformations.
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=∇∇∇× (∇∇∇× A)−∇∇∇(∇∇∇ · A)+ 1

c2

∂2A

∂t2

= 1

c2

∂2A

∂t2
−∇2A

where we used the identity∇∇∇×(∇∇∇×A)=∇∇∇(∇∇∇·A)−∇2A. Therefore, Maxwell’s equations
(15.1.5) take the equivalent wave-equation forms for the potentials:

1

c2

∂2ϕ
∂t2

−∇2ϕ = 1

ε
ρ

1

c2

∂2A

∂t2
−∇2A = μJ

(wave equations) (15.1.7)

To summarize, the densities ρ, J may be thought of as the sources that generate the
potentials ϕ,A, from which the fields E,B may be computed via Eqs. (15.1.2).

The Lorenz condition is compatible with Eqs. (15.1.7) and implies charge conserva-
tion. Indeed, we have from (15.1.7)

( 1

c2

∂2

∂t2
−∇2)(∇∇∇ · A+ 1

c2

∂ϕ
∂t

) = μ∇∇∇ · J+ 1

εc2

∂ρ
∂t

= μ(∇∇∇ · J+ ∂ρ
∂t

)

where we used με = 1/c2. Thus, the Lorenz condition (15.1.4) implies the charge con-
servation law:

∇∇∇ · J+ ∂ρ
∂t

= 0 (15.1.8)

15.2 Retarded Potentials

The main result that we would like to show here is that if the source densities ρ, J are
known, the causal solutions of the wave equations (15.1.7) are given by:

ϕ(r, t) =
∫
V

ρ
(
r′, t − R

c
)

4πεR
d3r′

A(r, t) =
∫
V

μJ
(
r′, t − R

c
)

4πR
d3r′

(retarded potentials) (15.2.1)

where R = |r−r′| is the distance from the field (observation) point r to the source point
r′, as shown in Fig. 15.2.1. The integrations are over the localized volume V in which
the source densities ρ, J are non-zero.

In words, the potentialϕ(r, t) at a field point r at time t is obtainable by superimpos-
ing the fields due to the infinitesimal charge ρ(r′, t′)d3r′ that resided within the volume
element d3r′ at time instant t′, which is R/c seconds earlier than t, that is, t′ = t−R/c.

Thus, in accordance with our intuitive notions of causality, a change at the source
point r′ is not felt instantaneously at the field point r, but takes R/c seconds to get
there, that is, it propagates with the speed of light. Equations (15.2.1) are referred to
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Fig. 15.2.1 Retarded potentials generated by a localized current/charge distribution.

as the retarded potentials because the sources inside the integrals are evaluated at the
retarded time t′ = t −R/c.

To prove (15.2.1), we consider first the solution to the following scalar wave equation
driven by a time-dependent point source located at the origin:

1

c2

∂2u
∂t2

−∇2u = f(t)δ(3)(r) (15.2.2)

where f(t) is an arbitrary function of time and δ(3)(r) is the 3-dimensional delta func-
tion. We show below that the causal solution of Eq. (15.2.2) is:†

u(r, t)= f(t
′)

4πr
=
f
(
t − r
c
)

4πr
= f(t − r

c
)
g(r), where g(r)= 1

4πr
(15.2.3)

with t′ = t − r/c and r = |r|. The function g(r) is recognized as the Green’s function
for the electrostatic Coulomb problem and satisfies:

∇∇∇g = −r̂
1

4πr2
= −r̂

g
r
, ∇2g = −δ(3)(r) (15.2.4)

where r̂ = r/r is the radial unit vector. We note also that because f(t − r/c) depends
on r only through its t-dependence, we have:

∂
∂r
f(t − r/c)= −1

c
∂
∂t
f(t − r/c)= −1

c
ḟ

It follows that∇∇∇f = −r̂ ḟ/c and

∇∇∇2f = −(∇∇∇ · r̂)
ḟ
c
− 1

c
r̂ ·∇∇∇ḟ = −(∇∇∇ · r̂)

ḟ
c
− 1

c
r̂ · (−r̂

f̈
c
) = −2ḟ

cr
+ 1

c2
f̈ (15.2.5)

where we used the result∇∇∇ · r̂ = 2/r.‡ Using Eqs. (15.2.3)–(15.2.5) into the identity:

∇2u = ∇2(fg) = 2∇∇∇f ·∇∇∇g+ g∇2f + f∇2g
†The anticausal, or time-advanced, solution is u(r, t)= f(t + r/c)g(r).
‡Indeed,∇∇∇ · r̂ =∇∇∇ · (r/r)= (∇∇∇ · r)/r + r · (−r̂/r2)= 3/r − 1/r = 2/r.
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we obtain,

∇2u = 2
(−r̂

ḟ
c
) · (−r̂

g
r
)− 2ḟ

cr
g+ 1

c2
f̈g− f(t − r

c
)δ(3)(r)

The first two terms cancel and the fourth term can be written as f(t)δ(3)(r) because
the delta function forces r = 0. Recognizing that the third term is

1

c2

∂2u
∂t2

= 1

c2
f̈g

we have,

∇2u = 1

c2

∂2u
∂t2

− f(t)δ(3)(r)
which shows Eq. (15.2.2). Next, we shift the point source to location r′, and find the
solution to the wave equation:

1

c2

∂2u
∂t2

−∇2u = f(r′, t)δ(3)(r− r′) ⇒ u(r, t)= f(r
′, t −R/c)
4πR

(15.2.6)

where R = |r− r′| and we have allowed the function f to also depend on r′. Note that
here r′ is fixed and the field point r is variable.

Using linearity, we may form now the linear combination of several such point
sources located at various values of r′ and get the corresponding linear combination
of solutions. For example, the sum of two sources will result in the sum of solutions:

f(r′1, t)δ(3)(r− r′1)+f(r′2, t)δ(3)(r− r′2) ⇒ f(r′1, t −R1/c)
4πR1

+ f(r
′
2, t −R2/c)

4πR2

where R1 = |r− r′1|, R2 = |r− r′2|. More generally, integrating over the whole volume V
over which f(r′, t) is nonzero, we have for the sum of sources:

f(r, t)=
∫
V
f(r′, t)δ(3)(r− r′)d3r′

and the corresponding sum of solutions:

u(r, t)=
∫
V

f(r′, t −R/c)
4πR

d3r′ (15.2.7)

where R = |r− r′|. Thus, this is the causal solution to the general wave equation:

1

c2

∂2u
∂t2

−∇2u = f(r, t) (15.2.8)

The retarded potentials (15.2.1) are special cases of Eq. (15.2.7), applied for f(r, t)=
ρ(r, t)/ε and f(r, t)= μJ(r, t).
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15.3 Harmonic Time Dependence

Since we are primarily interested in single-frequency waves, we will Fourier transform
all previous results. This is equivalent to assuming a sinusoidal time dependence ejωt

for all quantities. For example,

ϕ(r, t)=ϕ(r)ejωt , ρ(r, t)= ρ(r)ejωt , etc.

Then, the retarded solutions (15.2.1) become:

ϕ(r)ejωt =
∫
V

ρ(r′)ejω(t−
R
c )

4πεR
d3r′

Canceling a common factor ejωt from both sides, we obtain for the phasor part of the
retarded potentials, where R = |r− r′|:

ϕ(r) =
∫
V

ρ(r′)e−jkR

4πεR
d3r′

A(r) =
∫
V

μJ(r′)e−jkR

4πR
d3r′

, where k = ω
c

(15.3.1)

The quantity k represents the free-space wavenumber and is related to the wave-
length via k = 2π/λ. An alternative way to obtain Eqs. (15.3.1) is to start with the wave
equations and replace the time derivatives by ∂t → jω. Equations (15.1.7) become then
the Helmholtz equations:

∇2ϕ+ k2ϕ = −1

ε
ρ

∇2A+ k2A = −μJ

(15.3.2)

Their solutions may be written in the convolutional form:†

ϕ(r) =
∫
V

1

ε
ρ(r′)G(r− r′)d3r′

A(r) =
∫
V
μJ(r′)G(r− r′)d3r′

(15.3.3)

where G(r) is the Green’s function for the Helmholtz equation:

∇2G+ k2G = −δ(3)(r) , G(r)= e
−jkr

4πr
(15.3.4)

Replacing ∂/∂t by jω, the Lorenz condition (15.1.4) takes the form:

∇∇∇ · A+ jωμεϕ = 0 (15.3.5)

†The integrals in (15.3.1) or (15.3.3) are principal-value integrals, that is, the limits as δ → 0 of the
integrals over V − Vδ(r), where Vδ(r) is an excluded small sphere of radius δ centered about r. See
Appendix D and Refs. [1419,499,511,638] and [138–142] for the properties of such principal value integrals.
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Similarly, the electric and magnetic fields (15.1.2) become:

E = −∇∇∇ϕ− jωA

H = 1

μ
∇∇∇× A

(15.3.6)

With the help of the Lorenz condition the E-field can be expressed completely in
terms of the vector potential. Solving (15.3.5) for the scalar potential,ϕ = −∇∇∇·A/jωμε,
and substituting in (15.3.6), we find

E = 1

jωμε
∇∇∇(∇∇∇ · A)−jωA = 1

jωμε
[∇∇∇(∇∇∇ · A)+k2A

]

where we usedω2με =ω2/c2 = k2. To summarize, with A(r) computed from Eq. (15.3.1),
the E,H fields are obtained from:

E = 1

jωμε
[∇∇∇(∇∇∇ · A)+k2A

]

H = 1

μ
∇∇∇× A

(15.3.7)

An alternative way of expressing the electric field is:

E = 1

jωμε
[∇∇∇× (∇∇∇× A)−μJ

]
(15.3.8)

This is Ampère’s law solved for E. When applied to a source-free region of space,
such as in the radiation zone, (15.3.8) simplifies into:

E = 1

jωμε
∇∇∇× (∇∇∇× A) (15.3.9)

The fields E,H can also be expressed directly in terms of the sources ρ, J. Indeed,
replacing the solutions (15.3.3) into Eqs. (15.3.6) or (15.3.7), we obtain:

E =
∫
V

[−jωμJG+ 1

ε
ρ∇∇∇′G]dV′ = 1

jωε

∫
V

[
(J ·∇∇∇′)∇∇∇′G+ k2JG

]
dV′

H =
∫
V

J×∇∇∇′GdV′
(15.3.10)

Here, ρ, J stand for ρ(r′), J(r′). The gradient operator∇∇∇ acts inside the integrands
only onG and because that depends on the difference r−r′, we can replace the gradient
with∇∇∇G(r− r′)= −∇∇∇′G(r− r′). Also, we denoted d3r′ by dV′.

In obtaining (15.3.10), we had to interchange the operator∇∇∇ and the integrals over
V. When r is outside the volume V—as is the case for most of our applications—then,
such interchanges are valid. When r lies within V, then, interchanging single∇∇∇’s is still
valid, as in the first expression for E and for H. However, in interchanging double∇∇∇’s,
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additional source terms arise. For example, using Eq. (D.8) of Appendix D, we find by
interchanging the operator∇∇∇×∇∇∇× with the integral for A in Eq. (15.3.8):

E = 1

jωε
[∇∇∇×∇∇∇×

∫
V

JGdV′ − J
] = 1

jωε
[2

3
J+ PV

∫
V
∇∇∇×∇∇∇× (JG)dV′ − J

]

where “PV” stands for “principal value.” Because∇∇∇ does not act on J(r′), we have:

∇∇∇×∇∇∇× (JG)=∇∇∇× (∇∇∇G× J)= (J ·∇∇∇)∇∇∇G− J∇2G = (J ·∇∇∇′)∇∇∇′G+ k2JG

where in the last step, we replaced∇∇∇ by −∇∇∇′ and ∇2G = −k2G. It follows that:

E = 1

jωε

[
PV

∫
V

[
(J ·∇∇∇′)∇∇∇′G+ k2JG

]
dV′ − 1

3
J
]
, (r lies in V) (15.3.11)

In Sec. 18.10, we consider Eqs. (15.3.10) further in connection with Huygens’s prin-
ciple and vector diffraction theory.

Next, we present three illustrative applications of the techniques discussed in this
section: (a) Determining the fields of linear wire antennas, (b) The fields produced by
electric and magnetic dipoles, and (c) the Ewald-Oseen extinction theorem and the mi-
croscopic origin of the refractive index. Then, we go on in Sec. 15.7 to discuss the
simplification of the retarded potentials (15.3.3) for radiation problems.

15.4 Fields of a Linear Wire Antenna

Eqs. (15.3.7) simplify considerably in the special practical case of a linear wire antenna,
that is, a thin cylindrical antenna. Figure 15.4.1 shows the geometry in the case of a
z-directed antenna of finite length with a current I(z′) flowing on it.

The assumption that the radius of the wire is much smaller than its length means ef-
fectively that the current density J(r′)will be z-directed and confined to zero transverse
dimensions, that is,

J(r′)= ẑ I(z′)δ(x′)δ(y′) (current on thin wire antenna) (15.4.1)

In the more realistic case of an antenna of finite radius a, the current density will
be confined to flow on the cylindrical surface of the antenna, that is, at radial distance
ρ = a. Assuming cylindrical symmetry, the current density will be:

J(r′)= ẑ I(z′)δ(ρ′ − a) 1

2πa
(15.4.2)

This case is discussed in more detail in Chap. 24. In both cases, integrating the
current density over the transverse dimensions of the antenna gives the current:

∫
J(x′, y′, z′)dx′dy′ =

∫
J(ρ′,φ′, z′)ρ′dρ′dφ′ = ẑ I(z′)

Because of the cylindrical symmetry of the problem, the use of cylindrical coordi-
nates is appropriate, especially in determining the fields near the antenna (cylindrical
coordinates are reviewed in Sec. 15.8.) On the other hand, that the radiated fields at
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Fig. 15.4.1 Thin wire antenna.

far distances from the antenna are best described in spherical coordinates. This is so
because any finite current source appears as a point from far distances.

Inserting Eq. (15.4.1) into Eq. (15.3.1), it follows that the vector potential will be z-
directed and cylindrically symmetric. We have,

A(r) =
∫
V

μJ(r′)e−jkR

4πR
d3r′ = ẑ

μ
4π

∫
V
I(z′)δ(x′)δ(y′)

e−jkR

R
dx′dy′dz′

= ẑ
μ

4π

∫
L
I(z′)

e−jkR

R
dz′

where R = |r− r′| = √
ρ2 + (z− z′)2, as shown in Fig. 15.4.1. The z′-integration is over

the finite length of the antenna. Thus, A(r)= ẑAz(ρ, z), with

Az(ρ, z)= μ
4π

∫
L
I(z′)

e−jkR

R
dz′ , R =

√
ρ2 + (z− z′)2 (15.4.3)

This is the solution of the z-component of the Helmholtz equation (15.3.2):

∇2Az + k2Az = −μI(z)δ(x)δ(y)

Because of the cylindrical symmetry, we can set ∂/∂φ = 0. Therefore, the gradient
and Laplacian operators are ∇∇∇ = ρ̂ρρ∂ρ + ẑ∂z and ∇2 = ρ−1∂ρ(ρ∂ρ)+∂2

z. Thus, the
Helmholtz equation can be written in the form:

1

ρ
∂ρ(ρ∂ρAz)+∂2

zAz + k2Az = −μI(z)δ(x)δ(y)

Away from the antenna, we obtain the homogeneous equation:

1

ρ
∂ρ(ρ∂ρAz)+∂2

zAz + k2Az = 0 (15.4.4)

Noting that∇∇∇ · A = ∂zAz, we have from the Lorenz condition:
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ϕ = − 1

jωμε
∂zAz (scalar potential of wire antenna) (15.4.5)

The z-component of the electric field is from Eq. (15.3.7):

jωμεEz = ∂z(∇∇∇ · A)+k2Az = ∂2
zAz + k2Az

and the radial component:

jωμεEρ = ∂ρ(∇∇∇ · A)= ∂ρ∂zAz
Using B =∇∇∇×A = (ρ̂ρρ∂ρ+ ẑ∂z)×(ẑAz)= (ρ̂ρρ× ẑ)∂ρAz = −φ̂φφ∂ρAz, it follows that

the magnetic field has only a φ-component given by Bφ = −∂ρAz. To summarize, the
non-zero field components are all expressible in terms of Az as follows:

jωμεEz = ∂2
zAz + k2Az

jωμεEρ = ∂ρ∂zAz
μHφ = −∂ρAz

(fields of a wire antenna) (15.4.6)

Using Eq. (15.4.4), we may re-express Ez in the form:

jωμεEz = − 1

ρ
∂ρ(ρ∂ρAz)= μ 1

ρ
∂ρ(ρHφ) (15.4.7)

This is, of course, equivalent to the z-component of Ampère’s law. In fact, an even
more convenient way to construct the fields is to use the first of Eqs. (15.4.6) to construct
Ez and then integrate Eq. (15.4.7) to getHφ and then use the ρ-component of Ampère’s
law to get Eρ. The resulting system of equations is:

jωμεEz = ∂2
zAz + k2Az

∂ρ(ρHφ) = jωερEz
jωεEρ = −∂zHφ

(15.4.8)

In Chap. 24, we use (15.4.6) to obtain the Hallén and Pocklington integral equations
for determining the current I(z) on a linear antenna, and solve them numerically. In
Chap. 25, we use (15.4.8) under the assumption that the current I(z) is sinusoidal to
determine the near fields, and use them to compute the self and mutual impedances
between linear antennas. The sinusoidal assumption for the current allows us to find
Ez, and hence the rest of the fields, without having to find Az first!

15.5 Fields of Electric and Magnetic Dipoles

Finding the fields produced by time-varying electric dipoles has been historically impor-
tant and has served as a prototypical example for radiation problems.
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We consider a point dipole located at the origin, in vacuum, with electric dipole
moment p. Assuming harmonic time dependence ejωt, the corresponding polarization
(dipole moment per unit volume) will be: P(r)= pδ(3)(r). We saw in Eq. (1.3.18) that
the corresponding polarization current and charge densities are:

J = ∂P

∂t
= jωP , ρ = −∇∇∇ · P (15.5.1)

Therefore,
J(r)= jωpδ(3)(r) , ρ(r)= −p ·∇∇∇δ(3)(r) (15.5.2)

Because of the presence of the delta functions, the integrals in Eq. (15.3.3) can be
done trivially, resulting in the vector and scalar potentials:

A(r) = μ0

∫
jωpδ(3)(r′)G(r− r′)dV′ = jωμ0 pG(r)

ϕ(r) = − 1

ε0

∫ [
p ·∇∇∇′δ(3)(r′)]G(r− r′)dV′ = − 1

ε0
p ·∇∇∇G(r)

(15.5.3)

where the integral forϕwas done by parts. Alternatively,ϕ could have been determined
from the Lorenz-gauge condition∇∇∇ · A+ jωμ0ε0ϕ = 0.

The E,H fields are computed from Eq. (15.3.6), or from (15.3.7), or away from the
origin from (15.3.9). We find, where k2 =ω2/c2

0 =ω2μ0ε0 :

E(r) = 1

ε0
∇∇∇× [∇∇∇G(r)×p

] = 1

ε0

[
k2 p+ (p ·∇∇∇)∇∇∇]

G(r)

H(r) = jω∇∇∇G(r)×p

(15.5.4)

for r �= 0. The Green’s function G(r) and its gradient are:

G(r)= e
−jkr

4πr
, ∇∇∇G(r)= −r̂

(
jk+ 1

r
)
G(r)= −r̂

(
jk+ 1

r
)e−jkr

4πr

where r = |r| and r̂ is the radial unit vector r̂ = r/r. Inserting these into Eq. (15.5.4), we
obtain the more explicit expressions:

E(r) = 1

ε0

(
jk+ 1

r
)[3r̂(r̂ · p)−p

r

]
G(r)+ k

2

ε0
r̂× (p× r̂)G(r)

H(r) = jω(
jk+ 1

r
)
(p× r̂)G(r)

(15.5.5)

If the dipole is moved to location r0, so that P(r)= pδ(3)(r− r0), then the fields are
still given by Eqs. (15.5.4) and (15.5.5), with the replacement G(r)→ G(R) and r̂ → R̂,
where R = r− r0.

Eqs. (15.5.5) describe both the near fields and the radiated fields. The limitω = 0 (or
k = 0) gives rise to the usual electrostatic dipole electric field, decreasing like 1/r3. On
the other hand, as we discuss in Sec. 15.7, the radiated fields correspond to the terms
decreasing like 1/r. These are (with η0 =

√
μ0/ε0):
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E rad(r) = k
2

ε0
r̂× (p× r̂)G(r)= k

2

ε0
r̂× (p× r̂)

e−jkr

4πr

H rad(r) = jω jk(p× r̂)G(r)= k2

η0ε0
(r̂× p)

e−jkr

4πr

(15.5.6)

They are related by η0H rad = r̂ × E rad, which is a general relationship for radia-
tion fields. The same expressions can also be obtained quickly from Eq. (15.5.4) by the
substitution rule∇∇∇ → −jkr̂, discussed in Sec. 15.10.

The near-field, non-radiating, terms in (15.5.5) that drop faster than 1/r are impor-
tant in the new area of near-field optics [534–554,1339–1342,1350–1353]. Nanometer-
sized dielectric tips (constructed from a tapered fiber) act as tiny dipoles that can probe
the evanescent fields from objects, resulting in a dramatic increase (by factors of ten)
of the resolution of optical microscopy beyond the Rayleigh diffraction limit and down
to atomic scales.

A magnetic dipole at the origin, with magnetic dipole moment m, will be described
by the magnetization vector M = mδ(3)(r). According to Sec. 1.3, the corresponding
magnetization current will be J =∇∇∇×M =∇∇∇δ(3)(r)×m. Because∇∇∇· J = 0, there is no
magnetic charge density, and hence, no scalar potentialϕ. The vector potential will be:

A(r)= μ0

∫
∇∇∇′δ(3)(r′)×mG(r− r′)dV′ = μ0∇∇∇G(r)×m (15.5.7)

It then follows from Eq. (15.3.6) that:

E(r) = −jωμ0∇∇∇G(r)×m

H(r) =∇∇∇× [∇∇∇G(r)×m
] = [

k2 m+ (m ·∇∇∇)∇∇∇]
G(r)

(15.5.8)

which become explicitly,

E(r) = jωμ0
(
jk+ 1

r
)
(r̂×m)G(r)

H(r) = (
jk+ 1

r
)[3r̂(r̂ ·m)−m

r

]
G(r)+k2 r̂× (m× r̂)G(r)

(15.5.9)

The corresponding radiation fields are:

E rad(r) = jωμ0 jk(r̂×m)G(r)= η0k2(m× r̂)
e−jkr

4πr

H rad(r) = k2 r̂× (m× r̂)G(r)= k2 r̂× (m× r̂)
e−jkr

4πr

(15.5.10)

We note that the fields of the magnetic dipole are obtained from those of the electric
dipole by the duality transformations E → H, H → −E, ε0 → μ0, μ0 → ε0, η0 → 1/η0, and
p → μ0 m, that latter following by comparing the terms P and μ0M in the constitutive
relations (1.3.16). Duality is discussed in more detail in Sec. 18.2.

The electric and magnetic dipoles are essentially equivalent to the linear and loop
Hertzian dipole antennas, respectively, which are discussed in sections 17.2 and 17.8.
Problem 15.4 establishes the usual results p = Q d for a pair of charges ±Q separated
by a distance d, and m = ẑ IS for a current loop of area S.
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Example 15.5.1: We derive explicit expressions for the real-valued electric and magnetic fields
of an oscillating z-directed dipole p(t)= p ẑ cosωt. And also derive and plot the electric
field lines at several time instants. This problem has an important history, having been
considered first by Hertz in 1889 in a paper reprinted in [58].

Restoring the ejωt factor in Eq. (15.5.5) and taking real parts, we obtain the fields:

EEE(r) = p[k sin(kr −ωt)+ cos(kr −ωt)
r

]3r̂(r̂ · ẑ)−ẑ

4πε0r2
+ pk

2 r̂× (ẑ× r̂)
4πε0r

cos(kr −ωt)

HHH(r) = pω[−k cos(kr −ωt)+ sin(kr −ωt)
r

][ ẑ× r̂

4πr

]

In spherical coordinates, we have ẑ = r̂ cosθ−θ̂θθ sinθ. This gives 3 r̂(r̂· ẑ)−ẑ = 2 r̂ cosθ+
θ̂θθ sinθ, r̂× (ẑ× r̂)= −θ̂θθ sinθ, and ẑ× r̂ = φ̂φφ sinθ. Therefore, the non-zero components
of EEE andHHH are Er,Eφ and Hφ :

Er(r) = p
[
k sin(kr −ωt)+ cos(kr −ωt)

r
][ 2 cosθ

4πε0r2

]

Eθ(r) = p
[
k sin(kr −ωt)+ cos(kr −ωt)

r
][ sinθ

4πε0r2

]
− pk

2 sinθ
4πε0r

cos(kr −ωt)

Hφ(r) = pω
[−k cos(kr −ωt)+ sin(kr −ωt)

r
][ sinθ

4πr

]

By definition, the electric field is tangential to its field lines. A small displacement dr along
the tangent to a line will be parallel toEEE at that point. This implies that dr×EEE = 0, which
can be used to determine the lines. Because of the azimuthal symmetry in the φ variable,
we may look at the field lines that lie on the xz-plane (that is, φ = 0). Then, we have:

dr×EEE = (r̂dr + θ̂θθr dθ)×(r̂Er + θ̂θθEθ)= φ̂φφ(drEθ − r dθEr)= 0 ⇒ dr
dθ

= rErEθ

This determines r as a function of θ, giving the polar representation of the line curve. To
solve this equation, we rewrite the electric field in terms of the dimensionless variables
u = kr and δ =ωt, defining E0 = pk3/4πε0:

Er = E0
2 cosθ
u2

[
sin(u− δ)+ cos(u− δ)

u

]

Eθ = −E0
sinθ
u

[
cos(u− δ)− cos(u− δ)

u2
− sin(u− δ)

u

]

We note that the factors within the square brackets are related by differentiation:

Q(u) = sin(u− δ)+ cos(u− δ)
u

Q′(u) = dQ(u)
du

= cos(u− δ)− cos(u− δ)
u2

− sin(u− δ)
u

Therefore, the fields are:

Er = E0
2 cosθ
u2

Q(u) , Eθ = −E0
sinθ
u
Q′(u)
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It follows that the equation for the lines in the variable u will be:

du
dθ

= uErEθ = −2 cotθ
[
Q(u)
Q′(u)

]
⇒ d

dθ
[
lnQ(u)

] = −2 cotθ = − d
dθ

[
ln sin2 θ

]

which gives:
d
dθ

ln
[
Q(u)sin2 θ

] = 0 ⇒ Q(u)sin2 θ = C

where C is a constant. Thus, the electric field lines are given implicitly by:

[
sin(u− δ)+ cos(u− δ)

u

]
sin2 θ =

[
sin(kr −ωt)+ cos(kr −ωt)

kr

]
sin2 θ = C
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Fig. 15.5.1 Electric field lines of oscillating dipole at successive time instants.

Ideally, one should solve for r in terms of θ. Because this is not possible in closed form,
we prefer to think of the lines as a contour plot at different values of the constant C. The
resulting graphs are shown in Fig. 15.5.1. They were generated at the four time instants
t = 0, T/8, T/4, and 3T/8, where T is the period of oscillation, T = 2π/ω. The x, z
distances are in units of λ and extend to 1.5λ. The dipole is depicted as a tiny z-directed
line at the origin. The following MATLAB code illustrates the generation of these plots:

rmin = 1/8; rmax = 1.6; % plot limits in wavelengths λ
Nr = 61; Nth = 61; N = 6; % meshpoints and number of contour levels

t = 1/8; d = 2*pi*t; % time instant t = T/8

[r,th] = meshgrid(linspace(rmin,rmax,Nr), linspace(0,pi,Nth));
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u = 2*pi*r; % r is in units of λ
z = r.*cos(th); x = r.*sin(th); % cartesian coordinates in units of λ

C = (cos(u-d)./u + sin(u-d)) .* sin(th).^2; % contour levels

contour([-x; x], [z; z], [C; C], N); % right and left-reflected contours with N levels

We observe how the lines form closed loops originating at the dipole. The loops eventually
escape the vicinity of the dipole and move outwards, pushing away the loops that are ahead
of them. In this fashion, the field gets radiated away from its source. The MATLAB file
dipmovie.m generates a movie of the evolving field lines lasting from t = 0 to t = 8T. ��

15.6 Ewald-Oseen Extinction Theorem

The reflected and transmitted fields of a plane wave incident on a dielectric were deter-
mined in Chapters 5 and 7 by solving the wave equations in each medium and matching
the solutions at the interface by imposing the boundary conditions.

Although this approach yields the correct solutions, it hides the physics. From the
microscopic point of view, the dielectric consists of polarizable atoms or molecules,
each of which is radiating in vacuum in response to the incident field and in response
to the fields radiated by the other atoms. The total radiated field must combine with
the incident field so as to generate the correct transmitted field. This is the essence of
the Ewald-Oseen extinction theorem [497–533]. The word “extinction” refers to the can-
cellation of the incident field inside the dielectric. It is interesting to note that Feynman
had implicitly used this cancellation condition in his intuitive derivation of the Fresnel
reflection coefficients for oblique incidence [518]. This point was recently emphasized
and developed further by Reali [533].

Let E(r) be the incident field, E rad(r) the total radiated field, and E ′(r) the trans-
mitted field in the dielectric. Then, the theorem states that (for r inside the dielectric):

E rad(r)= E ′(r)−E(r) ⇒ E ′(r)= E(r)+E rad(r) (15.6.1)

We will follow a simplified approach to the extinction theorem as in Refs. [518–532]
and in particular [532]. We assume that the incident field is a uniform plane wave, with
TE or TM polarization, incident obliquely on a planar dielectric interface, as shown in
Fig. 15.6.1. The incident and transmitted fields will have the form:

E(r)= E0 e−j k·r , E ′(r)= E ′0 e−j k
′·r (15.6.2)

The expected relationships between the transmitted and incident waves were sum-
marized in Eqs. (7.7.1)–(7.7.5). We will derive the same results from the present ap-
proach. The incident wave vector is k = kx ẑ + kz ẑ with k = ω/c0 = ω√ε0μ0, and
satisfies k · E0 = 0. For the transmitted wave, we will find that k′ = kx ẑ+ k′z ẑ satisfies
k′ · E ′0 = 0 and k′ = ω/c = ω√εμ0 = kn, so that c = c0/n, where n is the refractive
index of the dielectric, n = √

ε/ε0.
The radiated field is given by Eq. (15.3.10), where J is the current due to the polariza-

tion P, that is, J = Ṗ = jωP. Although there is no volume polarization charge density,†

†ρ = −∇∇∇ · P vanishes for the type of plane-wave solutions that we consider here.
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Fig. 15.6.1 Elementary dipole at r′ contributes to the local field at r.

there may be a surface polarization density ρs = n̂ ·P on the planar dielectric interface.
Because n̂ = −ẑ, we will have ρs = −ẑ ·P = −Pz. Such density is present only in the TM
case [532]. The corresponding volume term in Eq. (15.3.10) will collapse into a surface
integral. Thus, the field generated by the densities J, ρs will be:

E rad(r)= −jωμ0

∫
V

J(r′)G(r− r′)dV′ + 1

ε0

∫
S
ρs(r′)∇∇∇′G(r− r′)dS′

where G(r)= e−jkr/4πr is the vacuum Green’s function having k =ω/c0, and V is the
right half-space z ≥ 0, and S, the xy-plane. Replacing J, ρs in terms of the polarization
and writing∇∇∇′G = −∇∇∇G, and moving∇∇∇ outside the surface integral, we have:

E rad(r)=ω2μ0

∫
V

P(r′)G(r− r′)dV′ + 1

ε0
∇∇∇

∫
S
Pz(r′)G(r− r′)dS′ (15.6.3)

We assume that the polarization P(r′) is induced by the total field inside the di-
electric, that is, we set P(r′)= ε0χE ′(r′), where χ is the electric susceptibility. Setting
k2 =ω2μ0ε0, Eq. (15.6.3) becomes:

E rad(r)= k2 χ
∫
V

E ′(r′)G(r− r′)dV′ + χ∇∇∇
∫
S
E′z(r′)G(r− r′)dS′ (15.6.4)

Evaluated at points r on the left of the interface (z < 0), E rad(r) should generate
the reflected field. Evaluated within the dielectric (z ≥ 0), it should give Eq. (15.6.1),
resulting in the self-consistency condition:

k2 χ
∫
V

E ′(r′)G(r− r′)dV′ + χ∇∇∇
∫
S
E′z(r′)G(r− r′)dS′ = E ′(r)−E(r) (15.6.5)

Inserting Eq. (15.6.2), we obtain the condition:

k2 χE ′0
∫
V
e−j k

′·r′G(r− r′)dV′ +χE′z0∇∇∇
∫
S
e−j k

′·r′G(r− r′)dS′ = E ′0 e−j k
′·r−E0 e−j k·r

The vector k′ = k′x x̂ + k′z ẑ may be assumed to have k′x = kx, which is equivalent
to Snel’s law. This follows easily from the phase matching of the ejkxx factors in the
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above equation. Then, the integrals over S and V can be done easily using Eqs. (D.14)
and (D.16) of Appendix D, with (D.14) being evaluated at z′ = 0 and z ≥ 0:

∫
V
e−j k

′·r′G(r− r′)dV′ = e−j k
′·r

k′2 − k2
− e−j k·r

2kz(k′z − kz)∫
S
e−j k

′·r′G(r− r′)dS′ = e
−j k·r

2jkz
⇒ ∇∇∇

∫
S
e−j k

′·r′G(r− r′)dS′ = −ke−j k·r

2kz

(15.6.6)

The self-consistency condition reads now:

k2 χE ′0

[
e−j k

′·r

k′2 − k2
− e−j k·r

2kz(k′z − kz)

]
− χE′z0

ke−j k·r

2kz
= E ′0 e−j k

′·r − E0 e−j k·r

Equating the coefficients of like exponentials, we obtain the two conditions:

k2 χ
k′2 − k2

E ′0 = E ′0 ⇒ k2 χ
k′2 − k2

= 1 ⇒ k′2 = k2(1+ χ)= k2n2 (15.6.7)

k2 χ
2kz(k′z − kz) E ′0 +

χk

2kz
E′z0 = E0 (15.6.8)

The first condition implies that k′ = kn, wheren = √
1+ χ = √

ε/ε0. Thus, the phase
velocity within the dielectric is c = c0/n. Replacing χ = (k′2 − k2)/k2 = (k′2z − k2

z)/k2,
we may rewrite Eq. (15.6.8) as:

k′2z − k2
z

2kz(k′z − kz) E ′0 +
(k′2z − k2

z)k
2kz k2

E′z0 = E0 , or,

E ′0 +
k

k2
(k′z − kz)E′z0 =

2kz
k′z + kz E0 (15.6.9)

This implies immediately the transversality condition for the transmitted field, that
is, k′ · E ′0 = 0. Indeed, using k · E0 = 0 for the incident field, we find:

k · E ′0 +
k · k

k2
(k′z − kz)E′z0 =

2kz
k′z + kz k · E0 = 0 ⇒ k · E ′0 + (k′z − kz)E′z0 = 0

or, explicitly, kxE′x0 + kzE′z0 + (k′z − kz)E′z0 = kxE′x0 + k′zE′z0 = k′ · E ′0 = 0. Replacing
(k′z − kz)E′z0 = −k · E ′0 in Eq. (15.6.9) and using the BAC-CAB rule, we obtain:

E ′0 −
k

k2
(k · E ′0)=

2kz
k′z + kz E0 ⇒ k× (E ′0 × k)

k2
= 2kz
k′z + kz E0 (15.6.10)

It can be shown that Eq. (15.6.10) is equivalent to the transmission coefficient results
summarized in Eqs. (7.7.1)–(7.7.5), for both the TE and TM cases (see also Problem 7.6
and the identities in Problem 7.5.) The transmitted magnetic field H ′(r)= H ′

0 e−j k
′·r

may be found from Faraday’s law∇∇∇× E ′ = −jωμ0 H ′, which readsωμ0 H ′
0 = k′ × E ′0.

Next, we look at the reflected field. For points r lying to the left of the interface
(z ≤ 0), the evaluation of the integrals (15.6.6) gives according to Eqs. (D.14) and (D.16),
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where (D.14) is evaluated at z′ = 0 and z ≤ 0:∫
V
e−j k

′·r′G(r− r′)dV′ = − e−j k−·r

2kz(k′z + kz)∫
S
e−j k

′·r′G(r− r′)dS′ = e
−j k−·r

2jkz
⇒ ∇∇∇

∫
S
e−j k

′·r′G(r− r′)dS′ = −k− e−j k−·r

2kz

where k− denotes the reflected wave vector, k− = kx x̂ − kz ẑ. It follows that the total
radiated field will be:

E rad(r)= k2 χE ′0

[
− e−j k−·r

2kz(k′z + kz)

]
− k− χE′z0

2kz
e−j k−·r = E−0e−j k−·r

where the overall coefficient E−0 can be written in the form:

E−0 = − k2 χ
2kz(k′z + kz) E ′0 −

k− χE′z0
2kz

= kz − k
′
z

2kz

[
E ′0 +

k−(k′z + kz)E′z0
k2

]

where we set χ = (k′2z −k2
z)/k2. Noting the identity k− ·E ′0+ (k′z+kz)E′z0 = k′ ·E ′0 = 0

and k− · k− = k2, we finally find:

E−0 = kz − k
′
z

2kz

[
E ′0 −

k−(k− · E ′0)
k2

]
⇒ k− × (E ′0 × k−)

k2
= 2kz
kz − k′z E−0 (15.6.11)

It can be verified that (15.6.11) is equivalent to the reflected fields as given by
Eqs. (7.7.1)–(7.7.5) for the TE and TM cases. We note also that k− · E−0 = 0.

The conventional boundary conditions are a consequence of this approach. For ex-
ample, Eqs. (15.6.10) and (15.6.11) imply the continuity of the tangential components of
the E-field. Indeed, we find by adding:

E0 + E−0 = E ′0 +
χE′z0
2kz

(k− k−)= E ′0 + χ ẑE′z0

which implies that ẑ× (E0 + E−0)= ẑ× E ′0.
In summary, the radiated fields from the polarizable atoms cause the cancellation of

the incident vacuum field throughout the dielectric and conspire to generate the correct
transmitted field that has phase velocity c = c0/n. The reflected wave does not originate
just at the interface but rather it is the field radiated backwards by the atoms within the
entire body of the dielectric.

Next, we discuss another simplified approach based on radiating dipoles [523]. It
has the additional advantage that it leads to the Lorentz-Lorenz or Clausius-Mossotti
relationship between refractive index and polarizability. General proofs of the extinction
theorem may be found in [497–517] and [638].

The dielectric is viewed as a collection of dipoles pi at locations ri. The dipole mo-
ments are assumed to be induced by a local (or effective) electric field E loc(r) through
pi = αε0E loc(ri), where α is the polarizability.† The field radiated by the jth dipole pj
is given by Eq. (15.5.4), where G(r) is the vacuum Green’s function:

Ej(r)= 1

ε0
∇∇∇×∇∇∇× [

pj G(r− rj)
]

†Normally, the polarizability is defined as the quantity α′ = αε0.
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The field at the location of the ith dipole due to all the other dipoles will be:

E rad(ri)=
∑
j �=i

Ej(ri)= 1

ε0

∑
j �=i
∇∇∇i ×∇∇∇i ×

[
pj G(ri − rj)

]
(15.6.12)

where∇∇∇i is with respect to ri. Passing to a continuous description, we assumeN dipoles
per unit volume, so that the polarization density will be P(r′)= N p(r′)= Nαε0E loc(r′).
Then, Eq. (15.6.12) is replaced by the (principal-value) integral:

E rad(r)= 1

ε0

∫
V

[
∇∇∇×∇∇∇× [

P(r′)G(r− r′)
]]

r′ �=r
dV′ (15.6.13)

Using Eq. (D.7) of Appendix D, we rewrite:

E rad(r)= 1

ε0
∇∇∇×∇∇∇×

∫
V

P(r′)G(r− r′)dV′ − 2

3ε0
P(r) (15.6.14)

and in terms of the local field (Nα is dimensionless):

E rad(r)= Nα∇∇∇×∇∇∇×
∫
V

E loc(r′)G(r− r′)dV′ − 2

3
NαE loc(r) (15.6.15)

According to the Ewald-Oseen extinction requirement, the radiated field must can-
cel the incident field E(r) while generating the local field E loc(r), that is, E rad(r)=
E loc(r)−E(r). This leads to the self-consistency condition:

Nα∇∇∇×∇∇∇×
∫
V

E loc(r′)G(r− r′)dV′ − 2

3
NαE loc(r)= E loc(r)−E(r) (15.6.16)

Assuming a plane-wave solution E loc(r)= E ′1 e−j k
′·r, we obtain:

Nα∇∇∇×∇∇∇× E ′1
∫
V
e−j k

′·rG(r− r′)dV′ − 2

3
NαE ′1 e−j k

′·r = E ′1 e−j k
′·r − E0 e−j k·r

For r within the dielectric, we find as before:

Nα∇∇∇×∇∇∇× E ′1

[
e−j k

′·r

k′2 − k2
− e−j k·r

2kz(k′z − kz)

]
− 2

3
NαE ′1 e−j k

′·r = E ′1 e−j k
′·r − E0 e−j k·r

Nα∇∇∇×∇∇∇× E ′1

[
e−j k

′·r

k′2 − k2
− e−j k·r

2kz(k′z − kz)

]
= (

1+ 2

3
Nα

)
E ′1 e−j k

′·r − E0 e−j k·r

Performing the∇∇∇ operations, we have:

Nα
[

k′ × (E ′1 × k′)
k′2 − k2

e−j k
′·r − k× (E ′1 × k)

2kz(k′z − kz)e
−j k·r

]
= (

1+ 2

3
Nα

)
E ′1 e−j k

′·r − E0 e−j k·r

Equating the coefficients of the exponentials, we obtain the two conditions:

Nα
k′ × (E ′1 × k′)
k′2 − k2

= (
1+ 2

3
Nα

)
E ′1 (15.6.17)

Nα
k× (E ′1 × k)
2kz(k′z − kz) = E0 (15.6.18)
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The first condition implies immediately that k′·E ′1 = 0, therefore, using the BAC-CAB
rule, the condition reads:

Nαk′2

k′2 − k2
E ′1 =

(
1+ 2

3
Nα

)
E ′1 ⇒ Nαk′2

k′2 − k2
= 1+ 2

3
Nα (15.6.19)

Setting k′ = kn, Eq. (15.6.19) implies the Lorentz-Lorenz formula:

Nαn2

n2 − 1
= 1+ 2

3
Nα ⇒ n2 − 1

n2 + 2
= 1

3
Nα (15.6.20)

We must distinguish between the local field E loc(r) and the measured or observed
field E ′(r), the latter being a “screened” version of the former. To find their relationship,
we define the susceptibility by χ = n2 − 1 and require that the polarization P(r) be
related to the observed field by the usual relationship P = ε0χE ′. Using the Lorentz-
Lorenz formula and P = Nαε0 E loc, we find the well-known relationship [638]:

E loc = E ′ + P

3ε0
(15.6.21)

From NαE loc = P/ε0 = χE ′, we have NαE ′1 = χE ′0. Then, the second condition
(15.6.18) may be expressed in terms of E ′0:

χk× (E ′0 × k)
2kz(k′z − kz) = E0 ⇒ k× (E ′0 × k)

k2
= 2kz
k′z + kz E0 (15.6.22)

which is identical to Eq. (15.6.10). Thus, the self-consistent solution for E ′(r) is identical
to that found previously.

Finally, we obtain the reflected field by evaluating Eq. (15.6.13) at points r to the left
of the interface. In this case, there is no 2P/3ε0 term in (15.6.14) and we have:

E rad(r) = Nα∇∇∇×∇∇∇×
∫
V

E loc(r′)G(r− r′)dV′ = χ∇∇∇×∇∇∇×
∫
V

E ′(r′)G(r− r′)dV′

= χ∇∇∇×∇∇∇× E ′0
∫
V
e−j k

′·r′ G(r− r′)dV′ = χ∇∇∇×∇∇∇× E ′0

[
− e−j k−·r

2k(k′z + kz)

]

= −χk− × (E ′0 × k−)
2kz(k′z + kz) e−j k−·r = kz − k

′
z

2kz
k− × (E ′0 × k−)

k2
e−j k−·r = E−0 e−j k−·r

which agrees with Eq. (15.6.11).

15.7 Radiation Fields

The retarded solutions (15.3.3) for the potentials are quite general and apply to any
current and charge distribution. Here, we begin making a number of approximations
that are relevant for radiation problems. We are interested in fields that have radiated
away from their current sources and are capable of carrying power to large distances
from the sources.
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The far-field approximation assumes that the field point r is very far from the current
source. Here, “far” means much farther than the typical spatial extent of the current
distribution, that is, r� r′. Because r′ varies only over the current source we can state
this condition as r � l, where l is the typical extent of the current distribution (for
example, for a linear antenna, l is its length.) Fig. 15.7.1 shows this approximation.

Fig. 15.7.1 Far-field approximation.

As shown in Fig. 15.7.1, at far distances the sides PP′ and PQ of the triangle PQP′ are
almost equal. But the side PQ is the difference OP−OQ. Thus,R 
 r−r̂·r′ = r−r′ cosψ,
where ψ is the angle between the vectors r and r′.

A better approximation may be obtained with the help of the small-x Taylor series
expansion

√
1+ x 
 1+ x/2− x2/8. Expanding R in powers of r′/r, and keeping terms

up to second order, we obtain:

R = |r− r′| =
√
r2 − 2rr′ cosψ+ r′2 = r

√
1− 2

r′

r
cosψ+ r

′2

r2


 r
(

1− r
′

r
cosψ+ r

′2

2r2
− 1

8

(−2
r′

r
cosψ+ r

′2

r2

)2

)


 r(1− r
′

r
cosψ+ r

′2

2r2
− r

′2

2r2
cos2ψ)

)
or, combining the last two terms:

R = r − r′ cosψ+ r
′2

2r
sin2ψ, for r� r′ (15.7.2)

Thus, the first-order approximation is R = r − r′ cosψ = r − r̂ · r′. Using this
approximation in the integrands of Eqs. (15.3.1), we have:

ϕ(r)

∫
V

ρ(r′)e−jk(r−r̂·r′)

4πε(r − r̂ · r′)
d3r′

Replacing R = r − r̂ · r′ 
 r in the denominator, but not in the exponent, we obtain
the far-field approximation to the solution:
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ϕ(r)= e
−jkr

4πεr

∫
V
ρ(r′)ejk r̂·r′ d3r′

BecauseR is approximated differently in the denominator and the exponent, it might
be argued that we are not making a consistent approximation. Indeed, for multipole
expansions, it is not correct to ignore the r̂·r′ term from the denominator. However, the
procedure is correct for radiation problems, and generates those terms that correspond
to propagating waves.

What about the second-order approximation terms? We have dropped them from
both the exponent and the denominator. Because in the exponent they are multiplied
by k, in order to justify dropping them, we must require in addition to r � r′ that
kr′2/r � 1, or in terms of the wavelength: r � 2πr′2/λ. Replacing 2r′ by the typical
size l of the current source,† we have r� πl2/2λ. By convention [115], we replace this
with r� 2l2/λ. Thus, we may state the far-field conditions as:

r� l and r� 2l2

λ
(far-field conditions) (15.7.3)

These conditions define the so-called far-field or Fraunhofer radiation region. They
are easily satisfied for many practical antennas (such as the half-wave dipole) because l
is typically of the same order of magnitude as λ, in which case the second condition is
essentially equivalent to the first. This happens also when l > λ. When l� λ, the first
condition implies the second.

The distance r = 2l2/λ is by convention [115] the dividing line between the far-field
(Fraunhofer) region, and the near-field (Fresnel) region, as shown in Fig. 15.7.2. The far-
field region is characterized by the property that the angular distribution of radiation
is independent of the distance r.

Fig. 15.7.2 Far-field and near-field radiation zones.

Can the first-order term kr̂ · r′ also be ignored from the exponent? This would
require that kr′ � 1, or that r′ � λ. Thus, it can be ignored for electrically “short”

†We envision a sphere of diameter 2r′ = l enclosing the antenna structure.
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antennas, that is, l� λ, or equivalently in the long wavelength or low-frequency limit.
The Hertzian dipole is such an antenna example.

Defining the wavenumber vector k to be in the direction of the field vector r and
having magnitude k, that is, k = kr̂, we may summarize the far-field approximation to
the retarded single-frequency potentials as follows:

ϕ(r) = e
−jkr

4πεr

∫
V
ρ(r′)ej k·r

′
d3r′

A(r) = μe
−jkr

4πr

∫
V

J(r′)ej k·r
′
d3r′

, k = kr̂ (15.7.4)

In these expressions, the radial dependence on r has been separated from the angular
(θ,φ)-dependence, which is given by the integral factors. Since these factors play an
important role in determining the directional properties of the radiated fields, we will
denote them by the special notation:

Q(k) =
∫
V
ρ(r′)ej k·r

′
d3r′

F(k) =
∫
V

J(r′)ej k·r
′
d3r′ (radiation vector)

(15.7.5)

The first is also called the charge form-factor, and the second, the radiation vector.
They are recognized to be the 3-dimensional spatial Fourier transforms of the charge
and current densities. These quantities depend onω or k and the directional unit vector
r̂ which is completely defined by the spherical coordinate angles θ,φ. Therefore, when-
ever appropriate, we will indicate only the angular dependence in these quantities by
writing them as Q(θ,φ),F(θ,φ). In terms of this new notation, the far-field radiation
potentials are:

ϕ(r) = e
−jkr

4πεr
Q(θ,φ)

A(r) = μe
−jkr

4πr
F(θ,φ)

(radiation potentials) (15.7.6)

15.8 Radial Coordinates

The far-field solutions of Maxwell’s equations and the directional patterns of antenna
systems are best described in spherical coordinates.

The definitions of cartesian, cylindrical, and spherical coordinate systems are re-
viewed in Fig. 15.8.1 and are discussed further in Appendix E. The coordinates rep-
resenting the vector r are, respectively, (x, y, z), (ρ,φ, z), and (r,θ,φ) and define
orthogonal unit vectors in the corresponding directions, as shown in the figure.

The relationships between coordinate systems can be obtained by viewing the xy-
plane and zρ-plane, as shown in Fig. 15.8.2. The relationships between cartesian and
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Fig. 15.8.1 Cartesian, cylindrical, and spherical coordinates.

cylindrical coordinates are:

x = ρ cosφ

y = ρ sinφ

ρ̂ρρ = x̂ cosφ+ ŷ sinφ

φ̂φφ = −x̂ sinφ+ ŷ cosφ
(15.8.1)

Fig. 15.8.2 Spherical coordinates viewed from xy-plane and zρ-plane.

Similarly, the relationships of cylindrical to spherical coordinates are:

ρ = r sinθ

z = r cosθ

r̂ = ẑ cosθ+ ρ̂ρρ sinθ

θ̂θθ = −ẑ sinθ+ ρ̂ρρ cosθ

ẑ = r̂ cosθ− θ̂θθ sinθ

ρ̂ρρ = r̂ sinθ+ θ̂θθ cosθ
(15.8.2)

The relationships between cartesian and spherical coordinates are obtained from
(15.8.2) by replacing ρ and ρ̂ρρ in terms of Eq. (15.8.1), for example,

x = ρ cosφ = (r sinθ)cosφ = r sinθ cosφ

r̂ = ρ̂ρρ sinθ+ ẑ cosθ = (x̂ cosφ+ ŷ sinφ)sinθ+ ẑ cosθ
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The resulting relationships are:

x = r sinθ cosφ

y = r sinθ sinφ

z = r cosθ

r̂ = x̂ cosφ sinθ+ ŷ sinφ sinθ+ ẑ cosθ

θ̂θθ = x̂ cosφ cosθ+ ŷ sinφ cosθ− ẑ sinθ

φ̂φφ = −x̂ sinφ+ ŷ cosφ

(15.8.3)

Note again that the radial unit vector r̂ is completely determined by the polar and
azimuthal angles θ,φ. Infinitesimal length increments in each of the spherical unit-
vector directions are defined by:

dlr = dr , dlθ = rdθ , dlφ = r sinθdφ (spherical lengths) (15.8.4)

The gradient operator∇∇∇ in spherical coordinates is:

∇∇∇ = r̂
∂
∂lr

+ θ̂θθ ∂
∂lθ

+ φ̂φφ ∂
∂lφ

= r̂
∂
∂r
+ θ̂θθ1

r
∂
∂θ

+ φ̂φφ 1

r sinθ
∂
∂φ

(15.8.5)

The lengths dlθ and dlφ correspond to infinitesimal displacements in the θ̂θθ and φ̂φφ
directions on the surface of a sphere of radius r, as shown in Fig. 15.8.3. The surface
element dS = r̂dS on the sphere is defined by dS = dlθ dlφ, or,

dS = r2 sinθdθdφ (15.8.6)

The corresponding infinitesimal solid angle dΩ subtended by the dθ,dφ cone is:

dS = r2dΩ ⇒ dΩ = dS
r2
= sinθdθdφ (15.8.7)

The solid angle subtended by the whole sphere is in units of steradians:

Ωsphere =
∫ π

0
sinθdθ

∫ 2π

0
dφ = 4π

15.9 Radiation Field Approximation

In deriving the field intensities E and H from the far-field potentials (15.7.6), we must
make one final approximation and keep only the terms that depend on r like 1/r, and
ignore terms that fall off faster, e.g., like 1/r2. We will refer to fields with 1/r dependence
as radiation fields.

The justification for this approximation is shown in Fig. 15.9.1. The power radiated
into a solid angle dΩ will flow through the surface area dS and will be given by dP =
PrdS, where Pr is the radial component of the Poynting vector. Replacing dS in terms
of the solid angle and Pr in terms of the squared electric field, we have:

dP = PrdS =
(

1

2η
|E|2

)
(r2dΩ)

Thus, if the amount of power in the solid angle dΩ is to propagate away without
attenuation with distance r, then the electric field must be such that |E|2r2 ∼ const, or
that |E| ∼ 1/r; similarly, |H| ∼ 1/r. Any terms in E,H that fall off faster than 1/r will
not be capable of radiating power to large distances from their current sources.
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Fig. 15.8.3 Solid angle defined by angles θ,φ.

Fig. 15.9.1 Power radiated into solid angle dΩ.

15.10 Computing the Radiation Fields

At far distances from the localized current J, the radiation fields can be obtained from
Eqs. (15.3.9) by using the radiation vector potential A of Eq. (15.7.6). In computing the
curl of A, we may ignore any terms that fall off faster than 1/r:

∇∇∇× A =∇∇∇×
(
μe−jkr

4πr
F

)
=

(
r̂
∂
∂r
+ angular derivatives

)
×
(
μe−jkr

4πr
F

)

= −jk(r̂× F)
(
μe−jkr

4πr

)
+O

(
1

r2

)
= −j k× A+O

(
1

r2

)

The “angular derivatives” arise from the θ,φ derivatives in the gradient as per
Eq. (15.8.5). These derivatives act on F(θ,φ), but because they already have a 1/r
factor in them and the rest of A has another 1/r factor, these terms will go down like
1/r2. Similarly, when we compute the derivative ∂r[e−jkr/r] we may keep only the
derivative of the numerator because the rest goes down like 1/r2.

Thus, we arrive at the useful rule that to order 1/r, the gradient operator∇∇∇, whenever
it acts on a function of the form f(θ,φ)e−jkr/r, can be replaced by:

∇∇∇ −→ −j k = −jk r̂ (15.10.1)

Applying the rule again, we have:
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∇∇∇× (∇∇∇× A)= −j k× (−j k× A)= (k× A)×k = k2(r̂× A)×r̂ =ω2με(r̂× A)×r̂

Noting thatωμ = ckμ = k√μ/ε = kη and using Eq. (15.3.9), we finally find:

E = −jkη e
−jkr

4πr
(r̂× F)×r̂

H = −jk e
−jkr

4πr
r̂× F

(radiation fields) (15.10.2)

Moreover, we recognize that:

E = ηH× r̂, H = 1

η
r̂× E and

|E|
|H| = η (15.10.3)

We note the similarity to uniform plane waves and emphasize the following properties:

1. {E, H, r̂} form a right-handed vector system.
2. E is always parallel to the transverse part F⊥ of the radiation vector F.
3. H is always perpendicular to the radiation vector F.
4. dc current sources (ω = k = 0) will not radiate.

Fig. 15.10.1 Electric and magnetic fields radiated by a current source.

Figure 15.10.1 illustrates some of these remarks. The radiation vector may be de-
composed in general into a radial part Fr = r̂Fr and a transverse part F⊥. In fact, this
decomposition is obtained from the identity:

F = r̂(r̂ · F)+(r̂× F)×r̂ = r̂Fr + F⊥

Resolving F along the spherical coordinate unit vectors, we have:

F = r̂Fr + θ̂θθFθ + φ̂φφFφ
r̂× F = φ̂φφFθ − θ̂θθFφ

F⊥ = (r̂× F)×r̂ = θ̂θθFθ + φ̂φφFφ
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Thus, only Fθ and Fφ contribute to the fields:

E = −jkη e
−jkr

4πr
[
θ̂θθFθ + φ̂φφFφ

]

H = −jk e
−jkr

4πr
[
φ̂φφFθ − θ̂θθFφ

] (radiation fields) (15.10.4)

Recognizing that r̂× F = r̂× F⊥, we can also write compactly:

E = −jkη e
−jkr

4πr
F⊥

H = −jk e
−jkr

4πr
r̂× F⊥

(radiation fields) (15.10.5)

In general, the radiation vector will have both Fθ and Fφ components, depending on
the nature of the current distribution J. However, in practice there are three important
cases that stand out:

1. Only Fθ is present. This includes all linear antennas and arrays. The z-axis is
oriented in the direction of the antenna, so that the radiation vector only has r
and θ components.

2. Only Fφ is present. This includes loop antennas with the xy-plane chosen as the
plane of the loop.

3. Both Fθ and Fφ are present, but they are carefully chosen to have the phase rela-
tionship Fφ = ±jFθ, so that the resulting electric field will be circularly polarized.
This includes helical antennas used in space communications.

15.11 Problems

15.1 First, prove the differential identity:

∇∇∇′ · [J(r′)ej k·r
′] = j k · J(r′)ej k·r

′ − jωρ(r′)ej k·r′

Then, prove the integral identity:

k ·
∫
V

J(r′)ej k·r
′
d3r′ =ω

∫
V
ρ(r′)ej k·r

′
d3r′

Assume that the charge and current densities are localized within the finite volume V. Fi-
nally, show that the charge form-factor Q and radiation vector F are related by:

r̂ · F = cQ

15.2 Using similar techniques as in the previous problem, prove the following general property,
valid for any scalar function g(r), where V is the volume over which J, ρ are non-zero:

∫
V

J(r′)·∇∇∇′g(r′)d3r′ = jω
∫
V
g(r′)ρ(r′)d3r′
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15.3 It is possible to obtain the fields generated by the source densities ρ, J by working directly
with Maxwell’s equations without introducing the scalar and vector potentials φ,A. Start
with the monochromatic Maxwell’s equations

∇∇∇× E = −jωμH , ∇∇∇×H = J+ jωεE , ∇∇∇ · E = 1

ε
ρ , ∇∇∇ ·H = 0

Show that E,H satisfy the following Helmholtz equations:

(∇2 + k2
)
E = jωμJ+ 1

ε
∇∇∇ρ , (∇2 + k2

)
H = −∇∇∇× J

Show that their solutions are obtained with the help of the Green’s function (15.3.4):

E =
∫
V

[−jωμJG− 1

ε
(∇∇∇′ρ)G]dV′

H =
∫
V

[∇∇∇′ × J
]
GdV′

Although these expressions and Eqs. (15.3.10) look slightly different, they are equivalent.
Explain in what sense this is true.

15.4 The electric and magnetic dipole moments of charge and current volume distributions ρ, J
are defined by:

p =
∫
V

rρ(r)dV , m = 1

2

∫
V

r× J(r)dV

Using these definitions and the integral property of Eq. (C.41) of Appendix C, show that for
two charges ±Q separated by distance d, and for a current I flowing on a closed planar loop
of arbitrary shape and area S lying on the xy-plane, the quantities p,m are given by:

p = Q d

m = ẑ I S

15.5 By performing an inverse Fourier time transform on Eq. (15.5.5), show that the fields pro-
duced by an arbitrary time-varying dipole at the origin, P(r, t)= p(t)δ(3)(r), are given by:

E(r, t) = 1

ε0

( 1

c0

∂
∂t
+ 1

r
)[3r̂

(
r̂ · p(tr)

)− p(tr)
r

]
1

4πr
− 1

ε0c2
0

r̂× (p̈(tr)× r̂)
1

4πr

H(r, t) = ∂
∂t

( 1

c0

∂
∂t
+ 1

r
)(

p(tr)× r̂
) 1

4πr

where tr = t − r/c0 is the retarded time and the time-derivatives act only on p(tr). Show
also that the radiated fields are (with η0 =

√
μ0/ε0):

E rad(r, t) = μ0 r̂× (r̂× p̈(tr))
1

4πr
= η0 H rad(r, t)× r̂

H rad(r, t) = μ0

η0

(
p̈(tr)× r̂

) 1

4πr

15.6 Assume that the dipole of the previous problem is along the z-direction, p(t)= ẑp(t). In-
tegrating the Poynting vectorPPP = E rad ×H rad over a sphere of radius r, show that the total
radiated power from the dipole is given by:

Prad(r, t)= η0

6πc2
0
p̈2(tr)
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15.7 Define a 3×3 matrix J(a) such that the operation J(a)b represents the cross-product a×b.
Show that:

J(a)=
⎡
⎢⎣

0 −az ay
az 0 −ax

−ay ax 0

⎤
⎥⎦

Show that J(a) is a rank-2 matrix with eigenvalues λ = 0 and λ = ±j|a|, where a is assumed
to be real-valued. Show that the eigenvectors corresponding to the non-zero eigenvalues are
given by e = f̂∓j ĝ, where f̂, ĝ are real-valued unit vectors such that {̂f, ĝ, â} is a right-handed
vector system (like {x̂, ŷ, ẑ}), here, â = a/|a|. Show that e · e = 0 and e∗ · e = 2.

A radiator consists of electric and magnetic dipoles p,m placed at the origin. Assuming
harmonic time dependence and adding the radiation fields of Eqs. (15.5.6) and (15.5.10),
show that the total radiated fields can be expressed in terms of the 6×6 matrix operation:

[
E(r)
η0H(r)

]
= −η0 k2 e−jkr

4πr

[
J2(r̂) J(r̂)
−J(r̂) J2(r̂)

][
c0 p
m

]

Show that J(r̂) satisfies the matrix equation J3(r̂)+J(r̂)= 0. Moreover, show that its eigen-
values are λ = 0 and λ = ±j and that the eigenvectors belonging to the two nonzero eigen-
values are given in terms of the polar unit vectors by e = θ̂θθ∓ j φ̂φφ.

Because the matrix J(r̂) is rank-defective, so is the above 6×6 matrix, reflecting the fact
that the radiation fields can only have two polarization states. However, it has been shown
recently [1182] that in a multiple-scattering environment, such as wireless propagation in
cities, the corresponding 6×6 matrix becomes a full-rank matrix (rank 6) allowing the tripling
of the channel capacity over the standard dual-polarization transmission.


