14

S-Parameters

14.1 Scattering Parameters

Linear two-port (and multi-port) networks are characterized by a number of equivalent
circuit parameters, such as their transfer matrix, impedance matrix, admittance matrix,
and scattering matrix. Fig. 14.1.1 shows a typical two-port network.

o—» o
u + two-port + b
P v network V. >0
b <— 1 s 2 e«—a
o—— o

Fig. 14.1.1 Two-port network.

The transfer matrix, also known as the ABCD matrix, relates the voltage and current
at port 1 to those at port 2, whereas the impedance matrix relates the two voltages
V1, V> to the two currents I, I»:T

Vi| |A B Vs
I, “ | C D I,
Vi = Zun Zre b (impedance matrix)
Vo Zoy Zx —I
Thus, the transfer and impedance matrices are the 2X2 matrices:
A B Z1 Zi2
P as1
The admittance matrix is simply the inverse of the impedance matrix, Y = Z~!. The

scattering matrix relates the outgoing waves by, b, to the incoming waves a,, a, that
are incident on the two-port:

(transfer matrix)

(14.1.1)

TIn the figure, I flows out of port 2, and hence —I, flows into it. In the usual convention, both currents
I, I, are taken to flow into their respective ports.
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by | | Su Sw a | S Sie . i
|:b2:|_[521 522][112]’ S—[521 522} (scattering matrix) (14.1.3)

The matrix elements S;1, S12, S21, S22 are referred to as the scattering parameters or
the S-parameters. The parameters S1;, S22 have the meaning of reflection coefficients,
and S»1, S12, the meaning of transmission coefficients.

The many properties and uses of the S-parameters in applications are discussed
in [1135-1174]. One particularly nice overview is the HP application note AN-95-1 by
Anderson [1150] and is available on the web [1847].

We have already seen several examples of transfer, impedance, and scattering ma-
trices. Eq. (11.7.6) or (11.7.7) is an example of a transfer matrix and (11.8.1) is the
corresponding impedance matrix. The transfer and scattering matrices of multilayer
structures, Egs. (6.6.23) and (6.6.37), are more complicated examples.

The traveling wave variables a, b; at port 1 and az, b, at port 2 are defined in terms
of Vi,I; and V', > and a real-valued positive reference impedance Z as follows:

ar = Vi + Zolh a» = Vo —Zyl,
T 2yz 2Tz,
(traveling waves) (14.1.4)
by = Vi = Zoly b, = Vo + Zoly
D Tz

The definitions at port 2 appear different from those at port 1, but they are really
the same if expressed in terms of the incoming current —I>:

Vo—Zoly  Va+ Zo(=12)

a» = =
T 2VZ 2VZ,

by — Vot Zoly Vo= Zo(-I2)
T2z 2VZ,

The term traveling waves is justified below. Egs. (14.1.4) may be inverted to express
the voltages and currents in terms of the wave variables:

Vi :\/Zio(al +by)

(ay — by) I, =

Vo = J?o(az +by)
(14.1.5)

I, = (by — a»)

1 1
VZo VZo

In practice, the reference impedance is chosen to be Zy = 50 ohm. At lower fre-
quencies the transfer and impedance matrices are commonly used, but at microwave
frequencies they become difficult to measure and therefore, the scattering matrix de-
scription is preferred.

The S-parameters can be measured by embedding the two-port network (the device-
under-test, or, DUT) in a transmission line whose ends are connected to a network ana-
lyzer. Fig. 14.1.2 shows the experimental setup.

A typical network analyzer can measure S-parameters over a large frequency range,
for example, the HP 8720D vector network analyzer covers the range from 50 MHz to
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40 GHz. Frequency resolution is typically 1 Hz and the results can be displayed either
on a Smith chart or as a conventional gain versus frequency graph.

Network Analyzer

[our

di—>  —»b
b <+— -«—a

Fig. 14.1.2 Device under test connected to network analyzer.

Fig. 14.1.3 shows more details of the connection. The generator and load impedances
are configured by the network analyzer. The connections can be reversed, with the
generator connected to port 2 and the load to port 1.

DU R— DU R—
I 2 L
o> . C
+ | two-port | + T
Z Vi network v, Z Vzl
_ S _ _
(?7 [ (1
by <— ~— @ “—a

Fig. 14.1.3 Two-port network under test.

The two line segments of lengths I, [ are assumed to have characteristic impedance
equal to the reference impedance Zy. Then, the wave variables a;, b, and a», b, are
recognized as normalized versions of forward and backward traveling waves. Indeed,
according to Eq. (11.7.8), we have:

g VitZh 1 Ve-Zoh 1
2JZo VZo 2JZy VZoy (1416

b = Vi —Zolh _ L\/l, by = Vo + Zol> — LV% h
2JZo VZo 2JZy VZo

Thus, a; is essentially the incident wave at port 1 and b; the corresponding reflected
wave. Similarly, a; is incident from the right onto port 2 and b, is the reflected wave
from port 2.

The network analyzer measures the waves a},b] and aj,b’, at the generator and
load ends of the line segments, as shown in Fig. 14.1.3. From these, the waves at the
inputs of the two-port can be determined. Assuming lossless segments and using the
propagation matrices (11.7.7), we have:
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ar| [ed 0 aj a | [e7 0 a,
07 2 (8107 205 v

where 6, = Bl; and 6, = Bl, are the phase lengths of the segments. Egs. (14.1.7) can be
rearranged into the forms:

by | b} ay | a, e o0
bl (2]l o[

The network analyzer measures the corresponding S-parameters of the primed vari-
ables, that is,

by S St aj ' S St :
= , , ., S = , / (measured S-matrix) (14.1.8)
[bz ] [521 S22 a, Sa1 S22

The S-matrix of the two-port can be obtained then from:

bl _plbr|Cps | | —psp| | = s—psD
b2 L bz a, az

or, more explicitly,

511 512 i _ 8161 0 Slll Sllz ejél 0
821 522_ B 0 eJ02 5'21 S,ZZ 0 elo2

r52j0 U j(61+07
_ |:Suel 1 51z€“ 1+02) :|

(14.1.9)

S’Zlej(51+5z) S’ZZQZJBZ

Thus, changing the points along the transmission lines at which the S-parameters
are measured introduces only phase changes in the parameters.

Without loss of generality, we may replace the extended circuit of Fig. 14.1.3 with the
one shown in Fig. 14.1.4 with the understanding that either we are using the extended
two-port parameters S’, or, equivalently, the generator and segment [; have been re-
placed by their Thévenin equivalents, and the load impedance has been replaced by its
propagated version to distance I>.

two-port
network
S
a)—» —> b2
by <+— -«

Fig. 14.1.4 Two-port network connected to generator and load.
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The actual measurements of the S-parameters are made by connecting to a matched
load, Z; = Zy. Then, there will be no reflected waves from the load, a, = 0, and the
S-matrix equations will give:

b, ) -
b, = S11a1 + Sipax = S11ax > Sui=— = reflection coefficient
ay |l z,=z,
b, . -
by, = So1a1 + Sapap = So1a; = So1 = . = transmission coefficient
11z,=2¢

Reversing the roles of the generator and load, one can measure in the same way the
parameters S;» and S»o.

14.2 Power Flow

Power flow into and out of the two-port is expressed very simply in terms of the traveling
wave amplitudes. Using the inverse relationships (14.1.5), we find:

1 1 1
iRe[Vfll] = 5\611\2 - §|h1|2
(14.2.1)

1 1 1
——Re[ViLL] = ~lax|? — =|bs|?
> e[ 2 2] 2\02\ 2| 2|

The left-hand sides represent the power flow into ports 1 and 2. The right-hand sides
represent the difference between the power incident on a port and the power reflected
from it. The quantity Re[V3I,]/2 represents the power transferred to the load.

Another way of phrasing these is to say that part of the incident power on a port
gets reflected and part enters the port:

1 5 1 5 1

§|f11|2 = 5|b1\2 + ERe[Vfll]

1 1 (14.2.2)
E|b2\2 + ERE[VE‘(—Iz)]

1 2
“la-
2| 2|

One of the reasons for normalizing the traveling wave amplitudes by /Z, in the
definitions (14.1.4) was precisely this simple way of expressing the incident and reflected
powers from a port.

If the two-port is lossy, the power lost in it will be the difference between the power
entering port 1 and the power leaving port 2, that is,

1 1 1 1 1 1
Pioss = ERG[Vfll]—ERe[V§12]= §|t11|2 + §|az|2 - §\b1|2 - §|bz|2

Noting that ata = |a;]? + |a2|? and bb = |b, |2 + |b2|?, and writing b'b = af St Sa,
we may express this relationship in terms of the scattering matrix:

1 1 1 1 1
— Zata _ ThTh = Satq - Zafct — oty _ ¢t
Ploss 2a a 2b b 2a a 2a STSa 2a (I-S'S)a (14.2.3)
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For a lossy two-port, the power loss is positive, which implies that the matrix I — StS
must be positive definite. If the two-port is lossless, P = 0, the S-matrix will be
unitary, that is, StS = 1.

We already saw examples of such unitary scattering matrices in the cases of the equal
travel-time multilayer dielectric structures and their equivalent quarter wavelength mul-
tisection transformers.

14.3 Parameter Conversions

It is straightforward to derive the relationships that allow one to pass from one param-
eter set to another. For example, starting with the transfer matrix, we have:

1 D A AD - BC
Vi = AV, + Bl Vl:A(Ell_EIZ)-FBIZ:EII_iC I
1 D
Vo= I — 21
2 C 1 C 2

I] = CV2 JrDIz

The coefficients of I, I, are the impedance matrix elements. The steps are reversible,
and we summarize the final relationships below:

,_[Zn z2]_1[A ap-5C
| Za Zn | C| 1 D
T:[A B] L[Zn 211222*212221]

C D - 7o 1 Z

We note the determinants det(T)= AD — BC and det(Z)= Z1Z»» — Z12Z»1. The
relationship between the scattering and impedance matrices is also straightforward to
derive. We define the 2X1 vectors:

Va1 _ I | a | b
TP (RS P B ) R

Then, the definitions (14.1.4) can be written compactly as:

(14.3.1)

1 1
= —(V+ ZoD= —==(Z + ZoI)I
a ZZ()( ol) 2\/2—0( ol)
1 1 (14.3.3)
b= ——(V-ZyD)= Z —Zol)I
270( oD 270( ol)

where we used the impedance matrix relationship V = ZI and defined the 2X2 unit
matrix I. It follows then,

1 1
I=(Z+ Zy) ! b= ——"—(Z-Z\D)I=(Z-Z)I)(Z + ZoI) !
27, (Z+Zol)""a = 2\/2—0( ol) ( o) (Z + ZoI) "a

Thus, the scattering matrix S will be related to the impedance matrix Z by

S=(Z—-2Z)(Z+ ZoI)7! ‘ = ’ Z=U-8)"1U+5)Z (14.3.4)
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Explicitly, we have:

-1
5 Z1 — Zo Z12 Z1 + Zy Z12
Z VAYEA Zn Zy + Zy

Zn —Zo Z1p 1| Zoo+Zo  —Zi2
Zn Zyp—Zy | D, —Zn Zy + Zy

where D, = det(Z + Zol)= (Z11 + Zy) (Z2p + Zo)—Z127Z>1. Multiplying the matrix
factors, we obtain:

S=_—
27212y (Z11 + Z0) (Zao — Zo) —Z12Zn

1 [ (Zn1 = 20) (Zap + Zo) —Z12Z21 271270
D,

] (14.3.5)

Similarly, the inverse relationship gives:

Z_

=D,

Zo | (1+811) (1 = S22) +8128521 2512
2855 (1 =811) (1 + S22) +512821

} (14.3.6)

where Dy = det(I — S)= (1 —S11) (1 — S»2) —S12571. Expressing the impedance param-
eters in terms of the transfer matrix parameters, we also find:

A+£—CZO—D 2(AD - BC)
0

P z

(14.3.7)
Da 2

7A+27CZO+D
Zy
B
whereDa=A+Z—+CZO+D.
0

14.4 Input and Output Reflection Coefficients

When the two-port is connected to a generator and load as in Fig. 14.1.4, the impedance
and scattering matrix equations take the simpler forms:

Vi =Znlh by = I'na,
= (14.4.1)
Vo =211 a, =TIrb,

where Zj, is the input impedance at port 1, and 'y, I'; are the reflection coefficients at
port 1 and at the load:

_Zin—2o L:ZL_ZO
Zin + Zo ’ Zy + Zy

The input impedance and input reflection coefficient can be expressed in terms of
the Z- and S-parameters, as follows:

I'in (14.4.2)
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Z12Z2 S128211

Iin=2711— 00— Iin=S1u1+—7— 14.4.3

n=iu- 7 = n=Sut e ( )

The equivalence of these two expressions can be shown by using the parameter
conversion formulas of Egs. (14.3.5) and (14.3.6), or they can be shown indirectly, as
follows. Starting with V, = Z; I, and using the second impedance matrix equation, we
can solve for I, in terms of I;:

Zo)

Vo =Zoly — Zooly = Z1 1 I, =——1 14.4.4
2 2111 221> I, = I 222+ZL1 ( )
Then, the first impedance matrix equation implies:
Z12Z )
Vi=Zunlh—Zpl=\Z1Ww—- ———— |1, = Zinl
1 1141 1242 (11 Zoo + 71 1 inl1
Starting again with V, = Z; I, we find for the traveling waves at port 2:
Vo—Z2ol, Zp— Z
az = = Iz
2w/ZO 2\/20 ZL — ZO
= dp = bz = FLhz
b Vo + Zolo ZL+ZOI Z1 + Zy
2 = = 2
22y 2\ Zy
Using V1 = Ziyl, a similar argument implies for the waves at port 1:
a V1 + Z()I] Zm + ZOI
1= = 1
22y 2~/ Zy Zin — Zo
= bl = - 5 ady = Final
b _VlszII_ZinszI Zin+ZO
! 237, N
It follows then from the scattering matrix equations that:
S
bz = So1ay1 + Sxoar = Sxoaq + SzzFLbz = bz = $a1 (14.4.5)
which implies for b;:
I
by = S11a1 + S1paz = S11a1 + S1201 by = (511 + M) a; =I'ma
1-S8»lp

Reversing the roles of generator and load, we obtain the impedance and reflection
coefficients from the output side of the two-port:

Z12Z2 S$128211¢
Zouwt = Lop — ————— Tout = + — 14.4.
ow=Zn=, | out = S22+ 7 Sulc (14.4.6)
where
Zouwt — Z, Zc— 7
Touw=22—20 rg=2"2° (14.4.7)

Zowt + 2o’ T Ze+ 2o
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ap—m» —»dy
by<— Db

Fig. 14.4.1 Input and output equivalent circuits.

The input and output impedances allow one to replace the original two-port circuit
of Fig. 14.1.4 by simpler equivalent circuits. For example, the two-port and the load can
be replaced by the input impedance Zj, connected at port 1, as shown in Fig. 14.4.1.

Similarly, the generator and the two-port can be replaced by a Thévenin equivalent
circuit connected at port 2. By determining the open-circuit voltage and short-circuit
current at port 2, we find the corresponding Thévenin parameters in terms of the impe-
dance parameters:

Vih= 5"~ Zin="Low =22~ (14.4.8)

14.5 Stability Circles

In discussing the stability conditions of a two-port in terms of S-parameters, the follow-
ing definitions of constants are often used:

A =det(S)= 5115 — S12821

1-— 2 _ ,2+ AZ
K- [S11]° = [S22]° + |A]

(Rollett stability factor)

2|S128211
Uy = ! —*|511 ° (Edwards-Sinsky stability parameter)
[S22 — ASTi| + 185125211
2
Ly = 1—1S2] (14.5.1)

IS11 = ASS,| + 8128211
By =1+ S11l? = |S221? — |A[
By =1+ [Sn1* - |Sul* - Al
Cr=Su1—-A4AS%H, Di=I|Sul*-lA°
C2 =S» —ASY,, Dy =1S»nl*>—-|Al?

The quantity K is the Rollett stability factor [1146], and 1, U2, the Edwards-Sinsky
stability parameters [1149]. The following identities hold among these constants:

672 14. S-Parameters

B? —4]C112 = B3 — 4]C»|? = 4181252112 (K2 - 1)
[C11? = [S128211% + (1 = |S221%) Dy (14.5.2)
IC21? = 1812821 1% + (1 = S111°) D2
For example, noting that S$1,S21 = $11522 — A, the last of Egs. (14.5.2) is a direct
consequence of the identity:
|A—BC|?> - |B-AC*|?> = (1-1|CI?) (AI*> - |BI?) (14.5.3)

We define also the following parameters, which will be recognized as the centers and
radii of the source and load stability circles:

*

cc = C—l , ¥ = M (source stability circle) (14.5.4)
D, [D1]
(& S128

cr = —Z, rp = M (load stability circle) (14.5.5)
D> |D2|

They satisfy the following relationships, which are consequences of the last two of
Egs. (14.5.2) and the definitions (14.5.4) and (14.5.5):

1-1S1ul% = (letl? = r}) Dy
) 5 ) (14.5.6)
1—1821% = (lcgl* —rg) Dy

We note also that using Egs. (14.5.6), the stability parameters L, tp can be written as:

p1 = (lep| = rp)sign(Dy)

(14.5.7)
p2 = (legl — vg)sign(D1)
For example, we have:
= 1= [Sul>  Dao(lel?=rf)  Da(lel>—rf) D, (lcul = r1)
L= - - - 2 _
IC2l + 18128211 [D2llecl + ID2lrr |D2l(lccl +7z) D2l

We finally note that the input and output reflection coefficients can be written in the
alternative forms:
S1280l L S11 - Al
I'in =S + =
1—SnI 1— Sl
S128alc S —Alg
rout = 522 + =
1-S»l¢ 1-Sulg
Next, we discuss the stability conditions. The two-port is unconditionally stable if
any generator and load impedances with positive resistive parts R¢, Ry, will always lead
to input and output impedances with positive resistive parts Rj,, Rout-
Equivalently, unconditional stability requires that any load and generator with [I'7| <
1 and |[I'¢| < 1 will result into || < 1 and [Toge| < 1.
The two-port is termed potentially or conditionally unstable if there are [I';| < 1 and
[I'c| < 1 resulting into |I'iy| = 1 and/or [Tyl > 1.

(14.5.8)
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The load stability region is the set of all I'; that result into |[I'iy| < 1, and the source
stability region, the set of all I'¢ that result into [I'oy| < 1.

In the unconditionally stable case, the load and source stability regions contain the
entire unit-circles |I';| < 1 or |I'¢| < 1. However, in the potentially unstable case, only
portions of the unit-circles may lie within the stability regions and such I'¢, I'; will lead
to a stable input and output impedances.

The connection of the stability regions to the stability circles is brought about by the
following identities, which can be proved easily using Egs. (14.5.1)-(14.5.8):

I —cpl? —r?

1-[pl2= S-S,

in| 11— Splpl2 ° (145.9)
IT'¢ —ccl® —rg -

[1-Sulgl?
For example, the first can be shown starting with Eq. (14.5.8) and using the definitions
(14.5.5) and the relationship (14.5.6):

1 — |Foutl?

1

1= Tyl?=1- S = AL |* 1S~ ALL? — |1 = Sl |?
m 1— Sl [1—Sool|?
_ (1S221? = I1AIP)ITLI? = (Sa2 = AST)IL — (S5, —A*S1)TF +1—|S11?
[1— S22l |?
_ Do|Tp|> = Col', = C5TF +1— |81, 12
[1 - SooIr|?
_ Dz(‘FL‘Z *CikFL *Cikrik + |CL|2 *1’12“) _ D2(|FL *CL|2 *VE)
[1—SooIr|? [1—SooIr|?

It follows from Eq. (14.5.9) that the load stability region is defined by the conditions:
1-Twl?>0 < (IIL—cl>?-r})D2>0

Depending on the sign of D, these are equivalent to the outside or the inside of the
load stability circle of center ¢; and radius r;:

|FL—CL|>}’L, if D, >0
) (load stability region) (14.5.10)
|TL—CL|<T'L, if D, <0

The boundary of the circle |I'; — ¢y | = rp corresponds to |I'j,| = 1. The complement
of these regions corresponds to the unstable region with |I'y,| > 1. Similarly, we find
for the source stability region:

\I'c —cgl >rg, if Dy >0
) (source stability region) (14.5.11)
[I'c —cgl <rg, if D1 <0

In order to have unconditional stability, the stability regions must contain the unit-
circle in its entirety. If D, > 0, the unit-circle and load stability circle must not overlap
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at all, as shown in Fig. 14.5.1. Geometrically, the distance between the points O and A in
the figure is (OA) = |cr| — rr. The non-overlapping of the circles requires the condition
(OA)> 1,o0r, |cr| —rp > 1.

If D, < 0, the stability region is the inside of the stability circle, and therefore, the
unit-circle must lie within that circle. This requires that (OA)= r; — |c.| > 1, as shown
in Fig. 14.5.1.

load
‘/stability T

circles

unit-disk
[Irl<1

i

load
stability
Dy>0, Icrl—rp> 1 regions D,<0, rp—Icrl>1

Fig. 14.5.1 Load stability regions in the unconditionally stable case.

These two conditions can be combined into sign(D>) (|cz| — ¥z) > 1. But, that is
equivalent to p; > 1 according to Eq. (14.5.7). Geometrically, the parameter p; repre-
sents the distance (OA). Thus, the condition for the unconditional stability of the input

is equivalent to:
(unconditional stability condition) (14.5.12)

It has been shown by Edwards and Sinsky [1149] that this single condition (or, alter-
natively, the single condition p> > 1) is necessary and sufficient for the unconditional
stability of both the input and output impedances of the two-port. Clearly, the source
stability regions will be similar to those of Fig. 14.5.1.

If the stability condition is not satisfied, that is, t; < 1, then only that portion of the
unit-circle that lies within the stability region will be stable and will lead to stable input
and output impedances. Fig. 14.5.2 illustrates such a potentially unstable case.

If D, > 0, then u; < 1is equivalent to |cy| — r; < 1, and if D, < 0, it is equivalent
to rp — |cr| < 1. In either case, the unit-circle is partially overlapping with the stability
circle, as shown in Fig. 14.5.2. The portion of the unit-circle that does not lie within the
stability region will correspond to an unstable Zj,.

There exist several other unconditional stability criteria that are equivalent to the
single criterion p; > 1. They all require that the Rollett stability factor K be greater
than unity, K > 1, as well as one other condition. Any one of the following criteria are
necessary and sufficient for unconditional stability [1147]:
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unstable
region

unit-disk
IItl< 1

unstable
region

/V
load
stability
circles

load
stability
Dy>0, lefl-rp<1 regions

Dy<0, rp—lcrl <1

Fig. 14.5.2 Load stability regions in potentially unstable case.

K>1 and |Al<1
K>1 and B; >0
K>1 and B, >0
K>1 and [S12S21] <1—[S1112
K>1 and [S12821] <1—[S»l?

(stability conditions) (14.5.13)

Their equivalence to gy > 1 has been shown in [1149]. In particular, it follows from
the last two conditions that unconditional stability requires |S1;| < 1 and |S»| < 1.
These are necessary but not sufficient for stability.

A very common circumstance in practice is to have a potentially unstable two-port,
but with |S1;] < 1 and |S2| < 1. In such cases, Eq. (14.5.6) implies D> (|c|? — ¥?)> 0,
and the lack of stability requires 1 = sign(D>) (Icz|? —r?) < 1.

Therefore, if D» > 0, then we must have |cr |2 — r% > 0 and |cr| — rp < 1, which
combine into the inequality r; < |cy| < ¥y + 1. This is depicted in the left picture of
Fig. 14.5.2. The geometrical distance (OA)= |cr| — ry satisfies 0 < (OA)< 1, so that
stability circle partially overlaps with the unit-circle but does not enclose its center.

On the other hand, if D» < 0, the two conditions require |cy |2 —rf <Oandr;—|cr| <
1, which imply |cr| < rr < |cr| + 1. This is depicted in the right Fig. 14.5.2. The
geometrical distance (OA)= r; — |cr| again satisfies 0 < (OA) < 1, but now the center
of the unit-circle lies within the stability circle, which is also the stability region.

We have written a number of MATLAB functions that facilitate working with S-
parameters. They are described in detail later on:

smat reshape S-parameters into S-matrix

Sparam calculate stability parameters

sga‘i n calculate transducer, available, operating, and unilateral power gains
smatch calculate simultaneous conjugate match for generator and load

g‘i n,gout calculate input and output reflection coefficients

smith draw a basic Smith chart

smithcir draw a stability or gain circle on Smith chart

SgC'i rc determine stability and gain circles

nfcirc determine noise figure circles

nfig calculate noise figure
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The MATLAB function sparam calculates the stability parameters u1, K, |Al|, By, B2,

as well as the parameters Cy, C2, D1, D». It has usage:
[K,mu,D,B1,B2,C1,C2,D1,D2] = sparam(S);

% stability parameters

The function sgcirc calculates the centers and radii of the source and load stability
circles. It also calculates gain circles to be discussed later on. Its usage is:

[cL,rL] sgcirc(S,’1");
[cG,rG] = sgcirc(S,’s’);

% load or Zj, stability circle

% source or Zoyt stability circle

The MATLAB function smith draws a basic Smith chart, and the function smithcir
draws the stability circles:

smith(n); % draw four basic types of Smith charts, n = 1,2, 3,4
smith; % default Smith chart corresponding to n = 3

smithcir(c,r,max,width);
smithcir(c,r,max);
smithcir(c,r);

% draw circle of center ¢ and radius r
% equivalent to linewidth width=1
% draw full circle with linewidth width=1

The parameter max controls the portion of the stability circle that is visible outside
the Smith chart. For example, max = 1.1 will display only that portion of the circle that
has |I'| < 1.1.

Example 14.5.1: The Hewlett-Packard AT-41511 NPN bipolar transistor has the following S-
parameters at 1 GHz and 2 GHz [1848]:

S =0.482-149°, S5 =5.189489°, Si» =0.0732£43°, S =0.492-39°
S11 =0.462162°, So1 =2.7742£59°, S12 =0.103245°, S =0.422-47°

Determine the stability parameters, stability circles, and stability regions.

Solution: The transistor is potentially unstable at 1 GHz, but unconditionally stable at 2 GHz.
The source and load stability circles at 1 GHz are shown in Fig. 14.5.3.

source ___—»

stability load
circle «— stability
circle

Fig. 14.5.3 Load and source stability circles at 1 GHz.

The MATLAB code used to generate this graph was:
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S = smat([0.48 -149 5.189 89 0.073 43 0.49 -39]); % form S-matrix

[K,mu,D,B1,B2,C1,C2,D1,D2] = sparam(S); % stability parameters
[cL,rL] sgcirc(S,’1");

= % stability circles
[cG,rG] = sgcirc(S,’s’);

smith; % draw basic Smith chart
smithcir(cL, rL, 1.1, 1.5); % draw stability circles
smithcir(cG, rG, 1.1, 1.5);

The computed stability parameters at 1 GHz were:
[K,uy,1Al,By,B2,Dy,D>]= [0.781, 0.847, 0.250, 0.928, 0.947, 0.168, 0.178]

The transistor is potentially unstable because K < 1 even though [A| < 1, By > 0, and
B, > 0. The load and source stability circle centers and radii were:

cp =2.978451.75°, ¥y =2.131

ce = 3.098£162.24°, rg =2.254

Because both D, and D, are positive, both stability regions will be the portion of the Smith
chart that lies outside the stability circles. For 2 GHz, we find:

[K, 1, Al By, B2, Dy, D>]= [1.089, 1.056, 0.103, 1.025, 0.954, 0.201, 0.166]

cp =2.779£50.12°, rp =1.723
c; = 2.4734-159.36°, r¢ =1.421

The transistor is stable at 2 GHz, with both load and source stability circles being com-
pletely outside the unit-circle. m]

Problem 14.2 presents an example for which the D, parameter is negative, so that
the stability regions will be the insides of the stability circles. At one frequency, the
unit-circle is partially overlapping with the stability circle, while at another frequency,
it lies entirely within the stability circle.

14.6 Power Gains

The amplification (or attenuation) properties of the two-port can be deduced by com-
paring the power Pj, going into the two-port to the power P; coming out of the two-port
and going into the load. These were given in Eq. (14.2.1) and we rewrite them as:

1 1
Py, = 3 Re[V{I]= ERinul |2 (power into two-port)
(14.6.1)

1 1 .
P, = 2 Re[ViI]= ERL |I,]? (power out of two-port and into load)
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where we used V| = Zj,Ili, Vo = Z;I,, and defined the real parts of the input and
load impedances by Ry, = Re(Zj,) and Ry = Re(Zy). Using the equivalent circuits of
Fig. 14.4.1, we may write I, I» in terms of the generator voltage V¢ and obtain:

P = l |VG|2Rin
" 2 |Zin+ZG|2
) ) ) (14.6.2)
p, = 1 |[Vml*Ry _ 1 IVGI"Ri|Zo |

21 Zow + 2112 2 | (Zn1 + Z6) (Zow + Z1) |2

Using the identities of Problem 14.1, P; can also be written in the alternative forms:

IVGI2RL1Zo1 |2 IVGI2R1|Zo: |?

p 1 1
P _ 1
2 | (Zop + Z1) (Zin + Zg) |2 2\ (Zn1 + Z6) (Zoo + Z1) = Z12Zn }2

(14.6.3)

The maximum power that can be delivered by the generator to a connected load
is called the available power of the generator, P,,, and is obtained when the load is
conjugate-matched to the generator, that is, Payg = Pin when Zip = Z&.

Similarly, the available power from the two-port network, Py, is the maximum
power that can be delivered by the Thévenin-equivalent circuit of Fig. 14.4.1 to a con-
nected load, that is, Pauv = P when Z; = 31‘1 = ZX It follows then from Eq. (14.6.2)
that the available powers will be:

P = max Py, = I;/Ig(l;z (available power from generator)
Val? (14.6.4)
Pan = max P = 3 Rtout (available power from network)
Using Eq. (14.4.8), P,y can also be written as:
Vel? Z> 2
Pan = 8Rout m (14.6.5)

The powers can be expressed completely in terms of the S-parameters of the two-
port and the input and output reflection coefficients. With the help of the identities of
Problem 14.1, we find the alternative expressions for Pj, and Py :

IVel2 (1 - ITinl?) |1 — T2
87, [1—TinlGl?
[Vgl12 (1= ITL1?) 11 = Tgl?[S2 12
8Z0 | (1 —Tinl¢)(1—Sanly)|®
_ Vel (1—1I1?)|1 —Tgl?]Sal?
8Z0 | (1 —Towl) (1 -SnTg) |’
_ Vel? (1—1IL1?)11 = Igl?1Sal?
8Z0 | (1—-S81l'¢) (1 —Soalr)=S128nTel|’

Similarly, we have for P,y and Pay:

Pin=

Py =

(14.6.6)
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P Vgl? 11 —TIg|?
W67 87y 1 [I¢l?
(14.6.7)
P = Veg|? |1 -TI¢|%|Sxl?
avN —

8Zy (1—ITowl?)1 —Suulcl?

It is evident that Py, Pay are obtained from Py,, Py by setting I'iy = I 2 and I'; =
Ik, which are equivalent to the conjugate-match conditions.

Three widely used definitions for the power gain of the two-port network are the
transducer power gain Gr, the available power gain G4, and the power gain G, also
called the operating gain. They are defined as follows:

power out of network P

Gr= . :
maximum power in Pac

(transducer power gain)

maximum power out  Pyn

Gg = - -
maximum power in P

(available power gain) (14.6.8)

power out of network Py . .
Gp = - = (operating power gain)
power into network Pin

Each gain is expressible either in terms of the Z-parameters of the two-port, or in
terms of its S-parameters. In terms of Z-parameters, the transducer gain is given by the
following forms, obtained from the three forms of P in Egs. (14.6.2) and (14.6.3):

4RGRLIZx |?
Gr = .
| (Zoo + Z1) (Zin + Zg) |
4RGRL 1712
_ GRL|Z21| ! (14.6.9)
| (le + ZG) (Zout + ZL) {
_ 4RGRL1Z211?
| (Zy1 + Z6) (Zoo + Z1) ~Z12Zo1 |
And, in terms of the S-parameters:
1-1|I¢l? > 11T
Gr = S -
T 1 =Tl 62 521 [1—SxIr|?
1-1Igl? » 1—1IL)?
= [S21] 14.6.10
=Sl 2 1= Tyl 2 (14.6.10
_ (1= I6l*)[S211%(1 = |I'L1?)
| (1= 8S11T¢) (1= Saal1) =S12821 TGl |
Similarly, we have for G, and Gp:
Rg Zn |* 1-|Igl|? 2 1
Ga = = 518211 3
Rout le+ZG |1_511FG| 1_|Fout|
(14.6.11)
G _ Ry Zn  |° 1 150112 1— I )?
P Rin | Zoo+ 71 1= [Tinl2 7% 1= Soulp |2
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The transducer gain Gt is, perhaps, the most representative measure of gain for
the two-port because it incorporates the effects of both the load and generator impe-
dances, whereas G, depends only on the generator impedance and G, only on the load
impedance.

If the generator and load impedances are matched to the reference impedance Zj,
sothat Zg = Z; = Zpand I'¢ = I'ty = 0, and Iy, = S11, Tour = S22, then the power gains
reduce to:

. |S21 |2 [S21 |2
e e 1SalP L iSal? 14612
Gr =151, Ga 1— 1802’ Cp 1— 151112 (012

A unilateral two-port has by definition zero reverse transmission coefficient, that is,
S12 = 0. In this case, the input and output reflection coefficients simplify into:
I'in =511, Tou=3S2 (unilateral two-port) (14.6.13)

The expressions of the power gains simplify somewhat in this case:

1-1Igl? o 1|12
Gry = S
fu |1—511FG|2| 21l [1—SxIr|?
1- ‘FG‘Z 2 1 . .
Gau = S unilateral gains 14.6.14
a |1—511FG|2| 21| 1—1[S2/? ( gains) ( )
1 1-|Ip)?
Gpu = Snl?
LG |511\2| 21| [1 - SooIr|?

For both the bilateral and unilateral cases, the gains G, G, are obtainable from Gt
by setting I't, = 'ty and I'ip = I Z‘;, respectively, as was the case for P,y and Payg.

The relative power ratios Pi,/Pay and Pp /P,y measure the mismatching between
the generator and the two-port and between the load and the two-port. Using the defi-
nitions for the power gains, we obtain the input and output mismatch factors:

Pin _ GT 4RinRG (1—|Fin|2)(l—|fg|2)

r = (14.6.15)

M., = = =
" Pac Gy |Zin+ ZgI2 1 - Tinlg|?

i _ ﬁ _ 4R outR L _ (1= [Foul?) (1= 1TLI%) (14.6.16)
PaVN Ga |Zout+ZL|2 |1_Fr)utFL|2

The mismatch factors are always less than or equal to unity (for positive Rj, and
Rout.) Clearly, Mi, = 1 under the conjugate-match condition Zi, = Z 2 orlin=1 2, and
Mow = 1if Z; = Z%, or I't = I's,,. The mismatch factors can also be written in the
following forms, which show more explicitly the mismatch properties:

Mow =

2 2

Fin_F?E Fout_rz(
Mipy=1—-| ———— Moyyw=1- | —7+7 14.6.17
n L= Tnlg| @ Mo 1= Foul's (14617
These follow from the identity:
|1 —ITo|* = Iy = T51° = (1= T %) (1= T2)?) (14.6.18)
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The transducer gain is maximized when the two-port is simultaneously conjugate
matched, that is, when I, = F’g} and I'y = I'},. Then, Miy = Moy = 1 and the three
gains become equal. The common maximum gain achieved by simultaneous matching
is called the maximum available gain (MAG):

GT,max = Ga,max = Gp,max = GMAG (14-6-19)

Simultaneous matching is discussed in Sec. 14.8. The necessary and sufficient con-
dition for simultaneous matching is K > 1, where K is the Rollett stability factor. It can
be shown that the MAG can be expressed as:

(maximum available gain) (14.6.20)

Guag = EZ]: (K -VK?-1)
12

The maximum stable gain (MSG) is the maximum value Gyag can have, which is
achievable when K = 1:

[S21]
[S12]

Gusg = (maximum stable gain) (14.6.21)

In the unilateral case, the MAG is obtained either by setting I'c = Iy, = S7; and
I't =T}, =S5, inEq. (14.6.14), or by a careful limiting process in Eq. (14.6.20), in which
K — o so that both the numerator factor K — /K2 — 1 and the denominator factor |S;»|
tend to zero. With either method, we find the unilateral MAG:

Grinc = [S211°
(1= 1S 12) (1 - [S2212)

The maximum unilateral input and output gain factors are:

=G11S211°G>,  (unilateral MAG)  (14.6.22)

1 1
1-1Sul?’ G2 1— 18212
They are the maxima of the input and output gain factors in Eq. (14.6.14) realized
with conjugate matching, that is, with I'c = S§, and I'L = S3,. For any other values
of the reflection coefficients (such that [I'¢| < 1 and I'z| < 1), we have the following
inequalities, which follow from the identity (14.6.18):

Gy (14.6.23)

1-Igl? - 1 1-Ie)? - 1
[1-Sulgl? ™~ 1-|Sul?’ [1—SxI'r|? ™~ 118217
Often two-ports, such as most microwave transistor amplifiers, are approximately
unilateral, that is, the measured S-parameters satisfy |S;2| < |S»21|. To decide whether
the two-port should be treated as unilateral, a figure of merit is used, which is essentially
the comparison of the maximum unilateral gain to the transducer gain of the actual
device under the same matching conditions, that is, I'c = ST, and I'y = S3,.
For these matched values of I';;, ', the ratio of the bilateral and unilateral transducer
gains can be shown to have the form:
Gt 1

= =\ U
= G 1-UP

(14.6.24)

_ S1285215%15%,
(1= 181112) (1 = 152212)

(14.6.25)
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The quantity |U| is known as the unilateral figure of merit. If the relative gain ratio
gy 1s near unity (typically, within 10 percent of unity), the two-port may be treated as
unilateral.

The MATLAB function sgain computes the transducer, available, and operating
power gains, given the S-parameters and the reflection coefficients I'g, I';. In addition,
it computes the unilateral gains, the maximum available gain, and the maximum stable
gain. It also computes the unilateral figure of merit ratio (14.6.25). It has usage:

Gt sgain(S,gG,gl);
Ga = sgain(S,gG,’a’);
Gp = sgain(S,gL,’p’);

transducer power gain at given I'¢;, I'f,
available power gain at given I'g with I'; = 'y
operating power gain at given I'y, with I'c = I'y

Gmag = sgain(S); maximum available gain (MAG)
Gmsg = sgain(S,’msg’); maximum stable gain (MSG)

Gu = sgain(S,’u’);

Gl = sgain(S,’ui’);
G2 = sgain(S,’uo’);
gu = sgain(S,’ufm’);

maximum unilateral gain, Eq. (14.6.22)
maximum unilateral input gain, Eq. (14.6.23)
maximum unilateral output gain, Eq. (14.6.23)
unilateral figure of merit gain ratio, Eq. (14.6.25)

The MATLAB functions gin and gout compute the input and output reflection coef-
ficients from S and I', I';. They have usage:

Gin = gin(S,gL);
Gout = gout(S,gQ);

input reflection coefficient, Eq. (14.4.3)

output reflection coefficient, Eq. (14.4.6)

Example 14.6.1: A microwave transistor amplifier uses the Hewlett-Packard AT-41410 NPN
bipolar transistor with the following S-parameters at 2 GHz [1848]:

S11=0.612165°, Sy =3.72£59°, Si» =0.05242°, Sy =0.452-48°
Calculate the input and output reflection coefficients and the various power gains, if the

amplifier is connected to a generator and load with impedances Z; = 10 — 20j and Z =
30 + 40j ohm.

Solution: The following MATLAB code will calculate all the required gains:

Z0 = 50; % normalization impedance
ZG = 10+20j; ¢G = z29(ZG,Z0); %Ic = —0.50 +0.50j = 0.71.£135°
ZL = 30-40j; gL = z29(ZL,Z0); %I = —0.41-0.43j = 0.59£-133.15°

S = smat([0.61 165 3.72 59 0.05 42 0.45 -48]); % reshape S into matrix

Gin = gin(S,gL);
Gout = gout(S,gG);

%Tin = 0.54£162.300
% Tout = 0.452£—67.46°

Gt = sgain(S,gG,glL); % Gt = 4.71,0r,6.73 dB
Ga = sgain(S,qG,’a’); % Gg = 11.44, or, 10.58 dB
Gp = sgain(S,gL,’p’); % Gp = 10.51, or, 10.22 dB
Gu = sgain(S,’u’); % Gy = 27.64,0r,14.41 dB
Gl = sgain(S,’ui’); %G1 = 1.59, or, 2.02 dB
G2 = sgain(S,’uo’); % Gp = 1.25, or, 0.98 dB
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gu = sgain(S,’ufm’); % gy = 1.23,or, 0.89 dB

Gmag = sgain(S); % GMAG = 41.50, or, 16.18 dB
Gmsg = sgain(S,’msg’); % GMmsG = 74.40, or, 18.72 dB

The amplifier cannot be considered to be unilateral as the unilateral figure of merit ratio
gu = 1.23 is fairly large (larger than 10 percent from unity.)

The amplifier is operating at a gain of Gt = 6.73 dB, which is far from the maximum value
of Gyag = 16.18 dB. This is because it is mismatched with the given generator and load
impedances.

To realize the optimum gain Gyac the amplifier must ‘see’ certain optimum generator
and load impedances or reflection coefficients. These can be calculated by the MATLAB
function smatch and are found to be:

I'c =0.82£-162.67° = Zg=g2z(Zg,Zy)=512-7.54jQ
I't =0.752£52.57° > Zp =g2z(Z1,Zy) = 33.66 + 91.48j O

The design of such optimum matching terminations and the function smatch are discussed
in Sec. 14.8. The functions g2z and z2g were discussed in Sec. 11.7 . O

14.7 Generalized S-Parameters and Power Waves

The practical usefulness of the S-parameters lies in the fact that the definitions (14.1.4)
represent forward and backward traveling waves, which can be measured remotely by
connecting a network analyzer to the two-port with transmission lines of characteristic
impedance equal to the normalization impedance Z,. This was depicted in Fig. 14.1.3.

A generalized definition of S-parameters and wave variables can be given by using
in Eq. (14.1.4) two different normalization impedances for the input and output ports.

Anticipating that the two-port will be connected to a generator and load of impedan-
ces Zg and Z;, a particularly convenient choice is to use Zg for the input normalization
impedance and Z; for the output one, leading to the definition of the power waves (as
opposed to traveling waves) [1137-1139,1141]:

a = Vi+Zgh , Vo—Zi1
! 2JRg 2 2JR.
(power waves) (14.7.1)
b, _Vl—Z(*;11 b, 7V2+Ziklz
' 2JRg 2 2JR;

We note that the b-waves involve the complex-conjugates of the impedances. The
quantities R¢, Ry are the resistive parts of Z, Z; and are assumed to be positive. These
definitions reduce to the conventional traveling ones if Z; = Z; = Z,.

These “wave” variables can no longer be interpreted as incoming and outgoing waves
from the two sides of the two-port. However, as we see below, they have a nice interpre-
tation in terms of power transfer to and from the two-port and simplify the expressions
for the power gains. Inverting Egs. (14.7.1), we have:
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\% —L(Z*a’+Z by) VV—L(Z*a'-s-Zb')
1= JRe ca1 Gby 2= JRL L4 LD;
1 1 (14.7.2)
I, = ——(a} - Db I, = —— (b5 — a,
1 \/ITG(al 1) 2 \/E( 2 az)

The power waves can be related directly to the traveling waves. For example, ex-
pressing Egs. (14.7.1) and (14.1.5) in matrix form, we have for port-1:

I R R B W R e 1

It follows that:
a, | 1 1 Ze || Zo Zo a or
by | " 2JRcZy | 1 -ZE 1 -1]| b ’

a’l _ 1 Zo+Zs Zo—Zg a (14.7.3)
by | 2JRgZo | Zo—2¢ Zo+ZE || ba "
The entries of this matrix can be expressed directly in terms of the reflection coeffi-

cient I'i. Using the identities of Problem 14.3, we may rewrite Eq. (14.7.3) and its inverse
as follows::

ay | 1 el®c ~Igel®e | [ a;
R N v B O )

a; _ 1 e’J“bG [‘Gejd’(} a’l
by | 1= [Igl2 | [tePe  elPc b

where, noting that the quantity |1 — I'¢|/ (1 — I'i;) is a pure phase factor, we defined:

(14.7.4)

7ZG—ZO '¢G:‘1—1—(;|7 1*Fg

_ _ = 14.7.5
7 Zo+ Zo 1-T¢  |1-Tg| ( )
Similarly, we have for the power and traveling waves at port-2:
aé _ 1 ej¢L _FLej¢L a»
b,’Z - n= |[‘L|2 _Fi‘e_jd’L e‘j¢L b2
) ) (14.7.6)
a» B 1 e’J({bl. rLeJ(I’I. aé
by | I- I 2| IfePr el b
where
VAA : 1-T 1-TFf
o= Zo g LTl L (14.7.7)

_ZL+Z()’ 1—FL_|1—FL‘
The generalized S-parameters are the scattering parameters with respect to the
power wave variables, that is,
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by S St ai / -
’ = ’ ’ ’ = b =S"a (1478)
[ b, ] [ So1 S a,

To relate S’ to the conventional scattering matrix S, we define the following diagonal
matrices:

ej¢G 0
_|Te O _| v1=1II¢l? _|Fe O
r= [ N ] F= . o =10 F (14.7.9)
N1=|Ig|?
Using these matrices, it follows from Egs. (14.7.4) and (14.7.6):
ay =Fg(a, —I'ghy) ,
, = a =F(a-TIb) (14.7.10)
a, = Fr(a, —I'tbhy)
b, =Ff(by —Tfay)
LZPCT ORI B (b —T*a) (14.7.11)

b,2 =Fik (bg —Fikaz)
Using b = Sa, we find
a=F@@-I'b)=F(I-IS)a = a=({-TIS)'Fla
b =F*(S-TI*)a=F*(S-T*)(I-TS)"'F'a’ =S§a

where [ is the 2X2 unit matrix. Thus, the generalized S-matrix is:

S =F*S-I*)(I-TS)"'F! (14.7.12)

We note that S’ = S when Zg = Z; = Zy, that is, when I'¢c = I'y = 0. The explicit
expressions for the matrix elements of S’ can be derived as follows:
g = (S —IE) (1= Spl't) +821S120L o-2be
U (1 -81T6) (1= Sal1)=S12Sulel L

(14.7.13a)
o _ (s —Tf) A =Sule)+SnSilc o-2idr
# (1=SuT¢) (1= Spl't) =S12Sa T¢It
Sl = N1 = Tgl12 S y1 — ITL]? e J(bc+dr)
(1= Sule) 1 - Saal) —S12Sal It (14.7.13b)

12812 V1 = [Tg|? )
(1=8111'6¢) (1 = So2I't) =S128a0 It
The S, S5, parameters can be rewritten in terms of the input and output reflection
coefficients by using Eq. (14.13.2) and the following factorization identities:

!
Si2 =

(S11=TE) (1 = Sool 1) +S21S120L = (Tim — T'E) (1 = Sp2T71)
(Soo = TF) (A = S1l¢)+SaSi2l'c = Tow —IT) (1 —S1l¢)

It then follows from Eq. (14.7.13) that:
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mer’g _2j Fout_rz< —2j
G p-2be gl = SOUUT L p-2jdr 14.7.14
l—l"ml"(,- 22 1_FoutFL ( )

Therefore, the mismatch factors (14.6.17) are recognized to be:

4
S =

Mg =1-|81,1>, Mp=1-]S5|? (14.7.15)

The power flow relations (14.2.1) into and out of the two-port are also valid in terms
of the power wave variables. Using Eq. (14.7.2), it can be shown that:

1 1, 1.,
Py, = gRe[VikIl]: E|f11|Z - E|I91|Z
1 (14.7.16)

1 1 7 !
P = RelViL]= E'b2|2 - Elazl2

In the definitions (14.7.1), the impedances Z, Z; are arbitrary normalization param-
eters. However, if the two-port is actually connected to a generator V; with impedance
Z¢ and a load Z;, then the power waves take particularly simple forms.

It follows from Fig. 14.1.4 that Vs = V1 + ZsI; and V, = Z;I». Therefore, definitions
Eq. (14.7.1) give:

a = Vi+ Zgh Ve

L 2+/R¢ B 2+/R¢

r_Ve-ZiDp

ar = ———— =10

2= "ok, (14.7.17)
+Zfl,  Z+ Zf

py= 2l _Zit iy 2Ry g,

2JR. 2VRL ° 7 2yRy
It follows that the available power from the generator and the power delivered to
the load are given simply by:

Vgl

Pag = SE5 = Zlaj 2
(14.7.18)
P = RilLI? = ) Iby)?
2 272
Because a) = 0, the generalized scattering matrix gives, b] = S};a; and b, = S5, a;.
The power expressions (14.7.16) then become:

1 4 1 4 4 1 4 r
Py = §|a1|2 - E|b1‘2 =(1- |511|2)E|a1|2 =(1- |S11|2)PavG

1 1 1 1 (14.7.19)
PL= §|b’2|2 - Em’z\z = E\bfzIZ = |S§1|2§|ai|2 =155, 1*PavG
It follows that the transducer and operating power gains are:
Py , P |SI21|2
Gr = =187, G,=-~-=—2 (14.7.20)
g PavG 21 P Pin 1_|S11‘2
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These also follow from the explicit expressions (14.7.13) and Eqgs. (14.6.10) and
(14.6.11). We can also express the available power gain in terms of the generalized
S-parameters, that is, G, = [S5,1%/ (1 — |S%,|?). Thus, we summarize:

; 1S5, 12 1S5, 12
Gr=18512, Ga= Gp=—"a"
T | 21‘ a p 1_|511‘2

= o2 (14.7.21)
1— 185/

When the load and generator are matched to the network, that is, I'n = I'¢ and
I't = I}, the generalized reflections coefficients vanish, S7; = S5, = 0, making all the
gains equal to each other.

14.8 Simultaneous Conjugate Matching

We saw that the transducer, available, and operating power gains become equal to the
maximum available gain Gyag when both the generator and the load are conjugately
matched to the two-port, that is, I, = FZ; and I't = I}, Using Eq. (14.5.8), these
conditions read explicitly:
S1281 T S11 — Al
=5+ oaln _ ou L

l—Szer I—SZZFL
S12Saul'c _ Sz —Alg
1—522FG I—Sler

Assuming a bilateral two-port, Egs. (14.8.1) can be solved in the two unknowns I';, I'1
(eliminating one of the unknowns gives a quadratic equation for the other.) The resulting
solutions can be expressed in terms of the parameters (14.5.1):

(14.8.1)
F;f = 522 +

By F4/B3 —4|Cy |
Ig=——"+———
2C,
(simultaneous conjugate match) (14.8.2)
;B B3 — 4|C, |2
L= 20,

where the minus signs are used when B; > 0 and B, > 0, and the plus signs, otherwise.

A necessary and sufficient condition for these solutions to have magnitudes |I'¢| < 1
and |[I'z] < 1 is that the Rollett stability factor be greater than unity, K > 1. This is
satisfied when the two-port is unconditionally stable, which implies that K > 1 and
By > 0,By, > 0.

A conjugate match exists also when the two-port is potentially unstable, but with
K > 1. Necessarily, this means that B; < 0, B, < 0, and also |A| > 1. Such cases are
rare in practice. For example, most microwave transistors have either K > 1 and are
stable, or, they are potentially unstable with K < 1 and |A| < 1.

If the two-port is unilateral, S;» = 0, then the two equations (14.8.1) decouple, so
that the optimum conjugately matched terminations are:

I'c=S8%, I'L=S5% (unilateral conjugate match) (14.8.3)
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The MATLAB function smatch implements Egs. (14.8.2). It works only if K > 1. Its
usage is as follows:

[gG,gL] = smatch(S);

% conjugate matched terminations I'¢;, I'f,

To realize such optimum conjugately matched terminations, matching networks
must be used at the input and output of the two-port as shown in Fig. 14.8.1.

The input matching network can be thought as being effectively connected to the
impedance Zj, = Z{ at its output terminals. It must transform Zj, into the actual
impedance of the connected generator, typically, Zy = 50 ohm.

The output matching network must transform the actual load impedance, here Zj,
into the optimum load impedance Z; = Z%,,.

input two-port output
matching | «— Zg network Z, —> matching
network S network
E3 £
Zin="2g Zp = Zoyt

Fig. 14.8.1 Input and output matching networks.

The matching networks may be realized in several possible ways, as discussed in
Chap. 13. Stub matching, quarter-wavelength matching, or lumped L-section or II-
section networks may be used. In designing the matching networks, it proves convenient
to first design the reverse network as mentioned in Sec. 13.13.

Fig. 14.8.2 shows the procedure for designing the output matching network using
a reversed stub matching transformer or a reversed quarter-wave transformer with a
parallel stub. In both cases the reversed network is designed to transform the load
impedance Z;* into Zj.

Example 14.8.1: A microwave transistor amplifier uses the Hewlett-Packard AT-41410 NPN
bipolar transistor having S-parameters at 2 GHz [1848]:

Si11 =0.612165°, S»; =3.72259°, S1»> =0.05242°, Sy, =0.45-,-48°

Determine the optimum conjugately matched source and load terminations, and design
appropriate input and output matching networks.

Solution: This is the continuation of Example 14.6.1. The transistor is stable with K = 1.1752
and |A| = 0.1086. The function smatch gives:

[, ' ]=smatch(S) = TI¢=0.81792-162.6697°, I =0.7495,52.5658°
The corresponding source, load, input, and output impedances are (with Zy = 50):

Ze =75 =5.1241 - 7.5417j Q, Zp = ZX, = 33.6758 + 91.4816j Q
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Fig. 14.8.3 Optimum load and source reflection coefficients.

The locations of the optimum reflection coefficients on the Smith chart are shown in
Fig. 14.8.3. For comparison, the unilateral solutions of Eq. (14.8.3) are also shown.

We consider three types of matching networks: (a) microstrip single-stub matching net-
works with open shunt stubs, shown in Fig. 14.8.4, (b) microstrip quarter-wavelength
matching networks with open A/8 or 3A/8 stubs, shown in Fig. 14.8.5, and (c) L-section
matching networks, shown in 14.8.6.

50 Q 0.0247A 0.2346A

50Q 50 Q
50Q

g 1 o
(=] - [«
v v

0.1962A
0.1838A

Fig. 14.8.4 Input and output stub matching networks.
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In Fig. 14.8.4, the input stub must transform Zj, to Zy. It can be designed with the help of
the function stubl, which gives the two solutions:
. ,_ | 0.3038 0.4271

dl = stubl (Zin/Zy, 'po’) = [0.1962 010247]

We choose the lower one, which has the shortest lengths. Thus, the stub length is d =

0.1962A and the segment length I = 0.0247A. Both segments can be realized with mi-

crostrips of characteristic impedance Z; = 50 ohm. Similarly, the output matching net-
work can be designed by:

s sy | 03162 0.1194

dl = stubl (Zyy/Zg,’po’) = [0.1838 0.2346]

Again, we choose the lower solutions, d = 0.1838A and I = 0.2346A. The solutions using
shorted shunt stubs are:

0.0538 0.4271

Subl (Zin/ Z0) = [ 0.4462  0.0247

0.0662 0.1194
], stubl(Zom/ZO):[ :|

0.4338 0.2346

Using microstrip lines with alumina substrate (€, = 9.8), we obtain the following values
for the width-to-height ratio, effective permittivity, and wavelength:

u= % = mstripr(€,, Zg) = 0.9711
€Eeff = mstripa(€,,u) = 6.5630
Ao
= = 5.8552 cm
+/€eff

where Ay = 15 cm is the free-space wavelength at 2 GHz. It follows that the actual segment
lengths are d = 1.1486 cm, [ = 0.1447 cm for the input network, and d = 1.0763 cm,
| = 1.3734 cm for the output network.

In the quarter-wavelength method shown in Fig. 14.8.5, we use the function qwt2 to carry
out the design of the required impedances of the microstrip segments. We have for the
input and output networks:

[Z1,Z,]= qwt2(Zin, Zy) = [28.4817,-11.0232] Q
[Z1,Z2]= qwt2(Zout, Zo) = [118.7832,103.8782] Q

For the input case, we find Z, = —11.0232 Q, which means that we should use either a
3A/8-shorted stub or a A/8-opened one. We choose the latter. Similarly, for the output
case, we have Z, = 103.8782 Q, and we choose a 3A/8-opened stub. The parameters of
each microstrip segment are:

Zy= 28.4817Q, u=2.5832, € =7.2325 A =5.578cm,
Zo= 11.0232Q, u=28.9424, € =8.2974, A=5207cm, A/8=0.651cm
7, =118.7832Q, u =0.0656, € =5.8790, A =6.186cm, A/4=1.547 cm
Z> =103.8782Q, u=0.1169, € =7.9503, A =6.149 cm, 3A/8 =2.306 cm

A/4 =1.394 cm
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50 Q 28.48 Q 118.78 Q

+ A4
x
- <

A4
50Q

11.02 Q
|
103.88 Q

3A/8

Fig. 14.8.5 Quarter-wavelength matching networks with A/8-stubs.

500 3.50 pF 0.74 pF

|| ||
N e A
Ly §1.34 nH = Ly <4.61 nH 50 Q

Fig. 14.8.6 Input and output matching with L-sections.

Finally, the designs using L-sections shown in Fig. 14.8.6, can be carried out with the help
of the function Tmatch. We have the dual solutions for the input and output networks:

ey 16.8955 —22.7058

(X1, Xo]= Imatch(Zo, Zin, "n") = {716.8955 7.6223]

57.9268 —107.7472
[X1,X>]= Imatch (Zoy, Zo, 'n’) = [ ]

502.4796 7.6223
According to the usage of Tmatch, the output network transforms Z, into Z%,, but that is
equal to Z; as required.

Choosing the first rows as the solutions in both cases, the shunt part X; will be inductive
and the series part X», capacitive. At 2 GHz, we find the element values:

X 1
Ly =21 =13445nH, C; = ——— = 3.5047 pF
w wX>
Xl 1
L, =21 =46097nH, C,=-—— =0.7386 pF
w wX>

The output network, but not the input one, also admits a reversed L-section solution:

71.8148 68.0353
[X1, X2]= Imatch(Zout, Zo, '’ )= |: :|

—71.8148 114.9280
The essential MATLAB code used to generate the above results was as follows:

20 = 50; f = 2; w=2*pi*f; 1a0 = 30/f; er = 9.8; % f in GHz

S = smat([0.61 165 3.72 59 0.05 42 0.45 -481); % S-matrix
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[gG,gL] = smatch(S); % simultaneous conjugate match
smith; % draw Fig. 14.8.3

plot(gG, ’.’); plot(conj(S(1,1)), '0’);

plot(gL, ’.’); plot(conj(S(2,2)), ’0’);

ZG = g2z(gG,Z0); Zin = conj(ZG);
ZL = g2z(gL,Z0); Zout conj(ZL);

d1l = stub1(Zin/Z0, ’po’);
dl stubl(Zout/Z0, ’po’);

% single-stub design

% microstrip w/h ratio
% effective permittivity
% wavelength within microstrip

u = mstripr(er,Z0);

eff = mstripa(er,u);

la = 1a0/sqrt(eff);
[Z1,Z2] = qwt2(Zin, Z0); % quarter-wavelength with A/8 stub
[71,722] = qwt2(Zout, Z0);

X12 = Imatch(Z0,Zin,’n’); L1 = X12(1,1)/w; C1 = -1/(w * X12(1,2))*1le3;
X12 = Imatch(Zout,Z0,’n’); L2 = X12(1,1)/w; C2 = -1/(w * X12(1,2))*1le3;
X12 = 1match(Zout,Z0,’r’); % L, C in units of nH and pF

One could replace the stubs with balanced stubs, as discussed in Sec. 13.9, or use II- or
T-sections instead of L-sections. m]

14.9 Power Gain Circles

For a stable two-port, the maximum transducer gain is achieved at single pair of points
I'g, I't. When the gain G is required to be less than Gyag, there will be many possible
pairs I'g, 't at which the gain G is realized. The locus of such points I'¢ and I'; on the
I'-plane is typically a circle of the form:

II'-cl=r (14.9.1)

where c, r are the center and radius of the circle and depend on the desired value of the
gain G.

In practice, several types of such circles are used, such as unilateral, operating, and
available power gain circles, as well as constant noise figure circles, constant SWR circles,
and others.

The gain circles allow one to select appropriate values for I';, I'; that, in addition to
providing the desired gain, also satisfy other requirements, such as striking a balance
between minimizing the noise figure and maximizing the gain.

The MATLAB function sgci rc calculates the stability circles as well as the operating,
available, and unilateral gain circles. Its complete usage is:

[c,r] = sgcirc(S,’s’);
[c,r] = sgcirc(S,’1’);
[c,r] = sgcirc(S,’p’,G);
[c,r] = sgcirc(S,’a’,q);

% source stability circle
% load stability circle
% operating power gain circle

% available power gain circle
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[c,r] = sgcirc(S,’ui’,G); % unilateral input gain circle
[c,r] = sgcirc(S,’uo’,0); % unilateral output gain circle

where in the last four cases G is the desired gain in dB.

14.10 Unilateral Gain Circles

We consider only the unconditionally stable unilateral case, which has |S;| < 1 and
|S22] < 1. The dependence of the transducer power gain on I'; and I'; decouples and
the value of the gain may be adjusted by separately choosing I'¢ and I';. We have from
Eq. (14.6.14):

1-1Igl? 1— I
[1-S1ulcl? [1—Salr|?
The input and output gain factors G, G| satisfy the inequalities (14.6.24). Concen-

trating on the output gain factor, the corresponding gain circle is obtained as the locus

of points I'; that will lead to a fixed value, say G; = G, which necessarily must be less
than the maximum G» given in Eq. (14.6.23), that is,

Gr [S21 17 =Gg S22 G (14.10.1)

1-|Ig|? 1
B e
[1—SooIr|? 2T Spl?
Normalizing the gain G to its maximum value g = G/G2 = G (1 — |S221%), we may
rewrite (14.10.2) in the form:

(14.10.2)

(1= 1Ie1?) (1= 1S2212)
[1—S2lr|?
This equation can easily be rearranged into the equation of a circle |I'; —c| = r, with
center and radius given by:

—g=<1 (14.10.3)

953, VI=g(1—18521°)
o=  r= (14.10.4)
1-(1-9)IS2l? 1-(1-9)IS2l?

When g = 1 or G = G, the gain circle collapses onto a single point, that is, the
optimum point I'y = §3,. Similarly, we find for the constant gain circles of the input
gain factor:

ast VI—g(1—1811?)
o=  r= (14.10.5)
1-(1-g)ISuul? 1-(1-g)ISul?

where here, g = G/G; = G(1 — |S11]%) and the circles are |I'g — ¢| = r.
Both sets of ¢, ¥ satisfy the conditions |c| < 1 and |c| + r < 1, the latter implying
that the circles lie entirely within the unit circle |I'| < 1, that is, within the Smith chart.

Example 14.10.1: A unilateral microwave transistor has S-parameters:

S11 = 0.82120°, S =4.,60° S12=0, Sy =0.2--30°

14. S-Parameters

The unilateral MAG and the maximum input and output gains are obtained as follows:
Guacg,u = sgain(S,’u’) = 16.66 dB
G, = sgain(S,’ui’)=4.44 dB

G, = sgain(S,’uo’)=0.18 dB

Most of the gain is accounted for by the factor |S»; |2, which is 12.04 dB. The constant input
gain circles for G = 1, 2,3 dB are shown in Fig. 14.10.1. Their centers lie along the ray to
Si,. For example, the center and radius of the 3-dB case were computed by

[c3,r3]= sgeire(S,’ui’,3) = «¢3=0.701£-120°, r3 =0.233

Fig. 14.10.1 Unilateral input gain circles.

Because the output does not provide much gain, we may choose the optimum value I'; =
S¥ = 0.2£30°. Then, with any point I'¢ along the 3-dB input gain circle the total trans-
ducer gain will be in dB:

Gr=Gg+ 1S +Gr =3 +12.04 +0.18 = 15.22 dB

Points along the 3-dB circle are parametrized as I'¢ = c3 + r3e/®, where ¢ is any angle.
Choosing ¢ = arg(S7,) — 7t will correspond to the point on the circle that lies closest to the
origin, that is, I'c = 0.468 £—120°, as shown in Fig. 14.10.1. The corresponding generator
and load impedances will be:

Zc =69.21 +14.42j Q, Z; =23.15-24.02j Q
The MATLAB code used to generate these circles was:

S = smat([0.8, 120, 4, 60, 0, 0, 0.2, -301);

[cl,rl] = sgcirc(S,’ui’,1);
[c2,r2] sgcirc(S,’ui’,2);
[c3,r3] = sgcirc(S,’ui’,3);

smith; smithcir(cl,rl); smithcir(c2,r2); smithcir(c3,r3);

c = exp(-j*angle(S(1,1))); Tine([0,real(c)], [0,imag(c)]);
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gG = ¢3 - r3*exp(j*angle(c3));

plot(conj(5(1,1)),”.7); plot(conj(5(2,2)),".’); plot(gG,’.");

The input and output matching networks can be designed using open shunt stubs as in
Fig. 14.8.4. The stub lengths are found to be (with Zy = 50 Q):

0.1296  0.0029
0.4383 0.0994]

0.3704 0.3304
dl = stub1(Z{/Zy,’po’) = [ ]

_ * ) "y
dl = stubl(Z[ /2y, "po”) = [0.0617 03173
Choosing the shortest lengths, we have for the input network d = 0.1296A, [ = 0.0029A,
and for the output network, d = 0.0617A, I = 0.3173A. Fig. 14.10.2 depicts the complete
matching circuit. m]

50 Q 0.0029A 0.3173A

50 Q E 50 Q

G
= 3 50 Q
g}

50 Q

0.1296 A
0.0617A

Fig. 14.10.2 Input and output stub matching networks.

14.11 Operating and Available Power Gain Circles

Because the transducer power gain G depends on two independent parameters—the
source and load reflection coefficients—it is difficult to find the simultaneous locus of
points for I', I'; that will result in a given value for the gain.

If the generator is matched, I'y, = I 2, then the transducer gain becomes equal to
the operating gain Gt = G, and depends only on the load reflection coefficient I';.
The locus of points I'; that result in fixed values of G, are the operating power gain
circles. Similarly, the available power gain circles are obtained by matching the load
end, I't = I'},;, and varying I'; to achieve fixed values of the available power gain.

Using Egs. (14.6.11) and (14.5.8), the conditions for achieving a constant value, say
G, for the operating or the available power gains are:

1 1[I Su—-AIL
Gp = |S21 12 =G, It=Tpn="_"-
1—|Iinl? [1—SooIr|? 1-Sx»ly
Ga= 1= Ll [S211° ! =G I'f =Tout = S22 = Al R
T =Sull T 1 -Lowl T TE T M T 1Sl
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We consider the operating gain first. Defining the normalized gain g = G/|S2; /%,
substituting Iy, and using the definitions (14.5.1), we obtain the condition:

B 1-Ie)?
I U= S0l = [S1 - ATLI2
_ 1[I
T (IS2212 = 1A12)ITLI2 = (S22 — ASF)TL — (S35 — A*S1)TF +1—|S1112

1—1I1?
Dy|Ip|2 = Col', — C5TF +1 - [S1112

This can be rearranged into the form:

* 1-— 1— 2
|1—'L|2_ ng I—L_ gCZ F;f _ g( ‘Slll )
1+gD> 1+ gD>» 1+ gD>»
and then into the circle form:

2
9°1Ca|? N 1-g(1-1S11l%)

N (1+gD2)2 1+9gD;

*
’FL_ gc;
1+9gD;

Using the identities (14.5.2) and 1 — |S11]% = 2K|S§12521| + D2, which follows from
(14.5.1), the right-hand side of the above circle form can be written as:

g°1Ca|? N 1-g(1-15ul®) _ 9°18128211% — 2gK|[S12821] + 1
(1+gD»)? 1+gD> (1+gD>)?

(14.11.2)

Thus, the operating power gain circle will be |I'; — ¢|? = r? with center and radius:

X 2181252112 = 2gK|[S128211 + 1
o gCs . \/9 1S12821 9K|S12521] (14.11.3)
1+gD> 11+ gD.|

The points I'; on this circle result into the value G, = G for the operating gain.
Such points can be parametrized as I';y = ¢ + rel®, where 0 < ¢ < 2m. As I’y traces
this circle, the conjugately matched source coefficient I'c = I';y will also trace a circle
because [, is related to I'; by the bilinear transformation (14.5.8).

In a similar fashion, we find the available power gain circles to be |I'¢ — c|?> = r?,
where g = G/|S»1|? and:

* 2181252112 = 2gK|[S128211 + 1
c— gCy . \/g 1S12821] 9K|S512521] (14.11.4)
1+gD, 11+ gDl

We recall from Sec. 14.5 that the centers of the load and source stability circles were
¢y = Cy/D; and c¢g = C¥/D;. Tt follows that the centers of the operating power gain
circles are along the same ray as ¢y, and the centers of the available gain circles are
along the same ray as cg.
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For an unconditionally stable two-port, the gain G must be 0 < G < Gyag, with
Guag given by Eq. (14.6.20). It can be shown easily that the quantities under the square
roots in the definitions of the radii r in Egs. (14.11.3) and (14.11.4) are non-negative.
The gain circles lie inside the unit circle for all such values of G. The radii ¥ vanish
when G = Guag, that is, the circles collapse into single points corresponding to the
simultaneous conjugate matched solutions of Eq. (14.8.2).

The MATLAB function sgcirc calculates the center and radii ¢, r of the operating
and available power gain circles. It has usage, where G must be entered in dB:

[c,r] = sgcire(S,’p’,Q);
[c,r] = sgcirc(S,’a’,0);

operating power gain circle

available power gain circle

Example 14.11.1: A microwave transistor amplifier uses the Hewlett-Packard AT-41410 NPN
bipolar transistor with the following S-parameters at 2 GHz [1848]:

S11 = 0.612165°, So1 =3.72259°, S1» =0.05242°, S, = 0.452-48°

Calculate Gyag and plot the operating and available power gain circles for G = 13,14, 15
dB. Then, design source and load matching circuits for the case G = 15 dB by choosing
the reflection coefficient that has the smallest magnitude.

Solution: The MAG was calculated in Example 14.6.1, Gyag = 16.18 dB. The gain circles and the
corresponding load and source stability circles are shown in Fig. 14.11.1. The operating
gain and load stability circles were computed and plotted by the MATLAB statements:

[cl,rl] = sgcirc(S,’p’,13);
[c2,r2] = sgcirc(S,’p’,14);
[c3,r3] = sgcirc(S,’p’,15);
[cL,rL] = sgcirc(S,’1");

% c1 = 0.4443 £52.56°, 1] = 0.5212
% cp = 0.5297 £52.56°, rp = 0.4205
% c3 = 0.6253.£52.56°, r3 = 0.2968
% cp = 2.0600£52.56°, rp = 0.9753

smith; smithcir(cL,rL,1.7); % display portion of circle with [I'f| < 1.7
smithcir(cl,rl); smithcir(c2,r2); smithcir(c3,r3);

G,=13dB ‘o
14 dB load
stability

circle

source
stability

matched .
circle

source

operating power gain circles available power gain circles

Fig. 14.11.1 Operating and available power gain circles.
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The gain circles lie entirely within the unit circle, for example, we have r3 + |c3| = 0.9221 <
1, and their centers lie along the ray of c¢;. As I'; traces the 15-dB circle, the corresponding
I'¢ = I} traces its own circle, also lying within the unit circle. The following MATLAB code
computes and adds that circle to the above Smith chart plots:

phi = Tinspace(0,2*pi,361);
gammal = c3 + r3 * exp(j*phi);
gammaG = conj(gin(S,gammal));
plot(gammaG) ;

% equally spaced angles at 1° intervals
% points on 15-dB operating gain circle
% circle of conjugate matched source points

In particular, the point I'y on the 15-dB circle that lies closest to the origin is I'y =
c3 — r3e/¥83 = (0.3285,52.56°. The corresponding matched load will be I'c = I'}s =
0.6805 2—163.88°. These and the corresponding source and load impedances were com-
puted by the MATLAB statements:

gL = c3 - r3*exp(j*angle(c3)); zL
gG = conj(gin(S,gL));

92z(gL);
zG = 92z(g0);

The source and load impedances normalized to Z, = 50 ohm are:

7 Z
76 = 2% = 0.1938 - 0.1363j, 7z = =& = 1.2590 + 0.7361}
ZU ZO

The matching circuits can be designed in a variety of ways as in Example 14.8.1. Using
open shunt stubs, we can determine the stub and line segment lengths with the help of
the function stubl:

0.3286  0.4122
dl = swbl (25, "po’) = [ 01714 0.0431 }

0.4033  0.0786
dl = stubl(z, "po’) = [00967 02754]

In both cases, we may choose the lower solutions as they have shorter total length d + I.
The available power gain circles can be determined in a similar fashion with the help of
the MATLAB statements:

[c1l,rl] = sgcirc(S,’a’,13);
[c2,r2] = sgcirc(S,’a’,14);
[c3,r3] = sgcirc(S,’a’,15);
[cG,rG] = sgcirc(S,’s’);

% c1 =0.5384£-162.67°, r; = 0.4373
% cp = 0.6227 £—162.67°, ry = 0.3422
%c3 =0.7111£-162.67°, r3 = 0.2337
%ci =1.5748 £-162.67°, rg = 0.5162

smith; smithcir(cG,rG); % plot entire source stability circle
smithcir(cl,rl); smithcir(c2,r2); smithcir(c3,r3);

Again, the circles lie entirely within the unit circle. As I'; traces the 15-dB circle, the
corresponding matched load I'y = I'}, traces its own circle on the I'-plane. It can be
plotted with:

phi = Tinspace(0,2%pi,361);
gammaG = c3 + r3 * exp(j*phi);
gammaLl = conj(gout(S,gammaG));
plot(gammal);

% equally spaced angles at 1° intervals
% points on 15-dB available gain circle
% circle of conjugate matched loads
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In particular, the point I'c = ¢3 — r3e/ 283 = 0.4774 £—162.67° lies closest to the origin.
The corresponding matched load will have I't = I'f = 0.5728.250.76°. The resulting
normalized impedances are:

Z

Z
26 = 25 =0.3609 — 0.1329f, z, = =F = 1.1135 + 1.4704j
Z() Z0

and the corresponding stub matching networks will have lengths:

0.3684 0.3905 0.3488 0.1030
L] 1) * 1) —
stubl (¢, "po”) = [0.1316 0.0613] . stubl(z[, "po”)= [0.1512 0.2560]
The lower solutions have the shortest lengths. For both the operating and available gain
cases, the stub matching circuits will be similar to those in Fig. 14.8.4. [}

When the two-port is potentially unstable (but with |S;;| < 1 and |S22| < 1,) the
stability circles intersect with the unit-circle, as shown in Fig. 14.5.2. In this case, the
operating and available power gain circles also intersect the unit-circle and at the same
points as the stability circles.

We demonstrate this in the specific case of K < 1, |S11| < 1, |S22| < 1, but with
D> > 0, an example of which is shown in Fig. 14.11.2. The intersection of an operating
gain circle with the unit-circle is obtained by setting |I';| = 1 in the circle equation
I['; —c| = r. Writing I';, = ¢/ and ¢ = |c|e/%, we have:

1+ cl2-r2

r’=|It—cl?=1-2|clcos(0r —O.)+|cl> = cos(O; —0.)= 21c]

Similarly, the intersection of the load stability circle with the unit-circle leads to the
relationship:

r?=1|I'.—cr|?>=1-2lcrlcos(0r — O) +lcrl> = cos(0p — 0,,)=

Because ¢ = gC5/(1 + gD3), ¢, = C5 /Dy, and D, > 0, it follows that the phase
angles of ¢ and c; will be equal, 0, = 6.,. Therefore, in order for the load stability
circle and the gain circle to intersect the unit-circle at the same I'; = e/%, the following
condition must be satisfied:

L+lcl?=r? 1+lcl>-rf

cos(0y — 0;)= 21c] = 2ler]

(14.11.5)

Using the identities 1 — [S1;|2 = B, — Dy and 1 — [S1;12 = (Icz|? — ¥#) D>, which
follow from Egs. (14.5.1) and (14.5.6), we obtain:

1+|CL|2—TE 1+ (B> —D5»)/D> B>

2lerl T 21C2l/ID2l T 2]Col

where we used D, > 0. Similarly, Eq. (14.11.2) can be written in the form:

oo Lm0 =ISnl®) e e g - ISul?) 1 g(Ba—D2)-1
1+gD> 1+gD> 1+gD:
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Therefore, we have:

1+|C\2—r2_1+(g(Bz—D2)—1)/(1+gD2) _ Bz
2|c| 291Ca|/11 + gD>| 2|Co|

Thus, Eq. (14.11.5) is satisfied. This condition has two solutions for 6; that cor-
respond to the two points of intersection with the unit-circle. When D, > 0, we have

argc = arg C§ = — arg C,. Therefore, the two solutions for I'; = e/?t will be:
0 B,
Iy =¢e%, 0p=—arg(Cy)+acos (14.11.6)
2|Co|

Similarly, the points of intersection of the unit-circle and the available gain circles
and source stability circle are:

I’G:ejeﬂ, 95=—arg(C1)iacos( B ) (14.11.7)
21Cy|

Actually, these expressions work also when D, < 0 or D; < 0.

Example 14.11.2: The microwave transistor Hewlett-Packard AT-41410 NPN is potentially un-
stable at 1 GHz with the following S-parameters [1848]:

S =0.6£-163°, Sy =7.12£86°, Si2 =0.039£35%, S =0.50£-38°

Calculate Gysg and plot the operating and available power gain circles for G = 20, 21,22
dB. Then, design source and load matching circuits for the 22-dB case by choosing the
reflection coefficients that have the smallest magnitudes.

Solution: The MSG computed from Eq. (14.6.21) is Gysg = 22.61 dB. Fig. 14.11.2 depicts the
operating and available power gain circles as well as the load and source stability circles.
The stability parameters are: K = 0.7667, u; = 0.8643,|A| = 0.1893,D, = 0.3242,D, =
0.2142. The computations and plots are done with the following MATLAB code:!

S = smat([0.60, -163, 7.12, 86, 0.039, 35, 0.50, -38]1); % S-parameters
[K,mu,D,B1,B2,C1,C2,D1,D2] = sparam(S); % stability parameters

Gmsg = db(sgain(S,’msg’)); % GmsG = 22.61 dB

% operating power gain circles:

% cy =0.6418 £50.80°, r; = 0.4768
% cp = 0.7502 £50.80°, 1y = 0.4221
% c3 = 0.8666 £50.80°, r3 = 0.3893
% load and source stability circles:

% cp = 2.1608 £50.80°, rp = 1.2965
% cG = 1.7456 £171.69°, rg = 0.8566

[cl,rl] = sgcirc(S,’p’,20);
[c2,r2] = sgcirc(S,’p’,21);
[c3,r3] = sgcirc(S,’p’,22);

[cL,rL] = sgcirc(S,’17);
[cG,rG] = sgcirc(S,’s’);

smith; smithcir(cL,rL,1.5); smithcir(cG,rG,1.5);
smithcir(cl,rl); smithcir(c2,r2); smithcir(c3,r3);

% plot Smith charts
% plot gain circles

gL = c3 - r3*exp(j*angle(c3));
gG = conj(gin(S,glL));
plot(gL,”.’); plot(gG,’.");

% I'1, of smallest magnitude
% corresponding matched I'

TThe function db converts absolute scales to dB. The function ab converts from dB to absolute units.
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Fig. 14.11.2 Operating and available power gain circles.

% available power gain circles:

% c1 = 0.6809£171.69°, r| = 0.4137
% cp = 0.7786 £171.69°, rp = 0.3582
% c3 = 0.8787 £171.69°, r3 = 0.3228

[cl,rl] = sgcirc(S,’a’,20);
[c2,r2] = sgcirc(S,’a’,21);
[c3,r3] = sgcirc(S,’a’,22);

figure;
smith; smithcir(cL,rL,1.5); smithcir(cG,rG,1.5);
smithcir(cl,rl); smithcir(c2,r2); smithcir(c3,r3);

gG = c3 - r3*exp(j*angle(c3));
gL = conj(gout(S,gG));
plot(gL,’.’); plot(gG,’.");

% I' of smallest magnitude
% corresponding matched I'y

Because D; > 0 and D, > 0, the stability regions are the portions of the unit-circle that
lie outside the source and load stability circles. We note that the operating gain circles
intersect the unit-circle at exactly the same points as the load stability circle, and the
available gain circles intersect it at the same points as the source stability circle.

The value of I'; on the 22-dB operating gain circle that lies closest to the origin is I'; =
c3 — r3e/¥3 = (0.4773 £50.80° and the corresponding matched source is I'c = I, =
0.7632 £167.69°. We note that both I'; and I lie in their respective stability regions.
For the 22-dB available gain circle (also denoted by c3, r3), the closest I';; to the origin will
be I'c = ¢c3 — r3e/ 8 = 0.55592171.69° with a corresponding matched load I'y = 'Y, =
0.7147 £45.81°. Again, both I'y, I'; lie in their stable regions.

Once the I';,I't have been determined, the corresponding matching input and output
networks can be designed with the methods of Example 14.8.1. m]

14.12 Noise Figure Circles

Every device is a source of internally generated noise. The noise entering the device and
the internal noise must be added to obtain the total input system noise. If the device is
an amplifier, the total system noise power will be amplified at the output by the gain of
the device. If the output load is matched, this gain will be the available gain.

702 14. S-Parameters

The internally generated noise is quantified in practice either by the effective noise
temperature T,, or by the noise figure F of the device. The internal noise power is given
by P, = kT.B, where k is the Boltzmann constant and B the bandwidth in Hz. These
concepts are discussed further in Sec. 16.8. The relationship between T, and F is defined
in terms of a standard reference temperature Ty = 290 K (degrees Kelvin):

F=1+_- (14.12.1)

The noise figure is usually quoted in dB, Fqg = 10log;, F. Because the available gain
of a two-port depends on the source impedance Zg, or the source reflection coefficient
I', so will the noise figure.

The optimum source impedance Zgop corresponds to the minimum noise figure
Fmin that can be achieved by the two-port. For other values of Z, the noise figure F is
greater than Fp, and is given by [117-120]:

L Rn
mn RGlzGoptl2
where R = Re(Zg) and Ry, is an equivalent noise resistance. We note that F = Fpn
when Zg = Zgopr. Defining the normalized noise resistance r, = R, /Z, where Z; =
50 ohm, we may write Eq. (14.12.2) in terms of the corresponding source reflection
coefficients:

F=F |Z6 — Zgopt|? (14.12.2)

‘FG _FG()ptl2

F = Fpin +4r
min nll JrFGoptlz(l*uﬁGlZ)

(14.12.3)

The parameters Fuin, Fn, and I'gop: characterize the noise properties of the two-port
and are usually known.

In designing low-noise microwave amplifiers, one would want to achieve the mini-
mum noise figure and the maximum gain. Unfortunately, the optimum source reflection
coefficient I'gop does not necessarily correspond to the maximum available gain.

The noise figure circles and the available gain circles are useful tools that allow one
to obtain a balance between low noise and high gain designs. The noise figure circles
are the locus of points I'; that correspond to fixed values of F. They are obtained by
rewriting Eq. (14.12.3) as the equation of a circle |I'¢ — ¢|?> = r%. We write Eq. (14.12.3)
in the form:

I'c—-T 2 F—Fuin) 1+ T 2
‘ G Goptl _ N, where N = ( mln)‘ Goptl (14.12-4)
1- |FG|2 4rn
which can be rearranged into the circle equation:
‘F _FGopt 2=NZ+N(1_|FG0pt|2)
CTN+1 (N+1)2
Thus, the center and radius of the noise figure circle are:
r N2 + N (1 — |[Tgoptl?
= gt J ( ontl”) (14.12.5)
N+1 N+1
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The MATLAB function nfcirc implements Eq. (14.12.5). Its inputs are the noise
parameters Fuin, ¥n, I'Gopt, and the desired value of F in dB, and its outputs are ¢, r:

[c,r] = nfcirc(F,Fmin,rn,gGopt); % noise figure circles
The function nfig implements Eq. (14.12.3). Its inputs are Fumin, ¥n, I'Gopt, and a
vector of values of I', and its output is the corresponding vector of values of F:

F = nfig(Fmin, rn, gGopt, gG);

% calculate noise figure F in dB

Example 14.12.1: The microwave transistor of Example 14.11.1 has the following noise param-
eters at 2 GHz [1848]: Fiin = 1.6 dB, ry; = 0.16, and I'Gope = 0.26.£172°.

Determine the matched load I'zop: corresponding to I'gope and calculate the available gain.
Then, plot the noise figure circles for F = 1.7,1.8,1.9, 2.0 dB.

For the 1.8-dB noise figure circle, determine I'¢, I’y that correspond to the maximum pos-
sible available gain and design appropriate input and output matching networks.

Solution: The conjugate matched load corresponding to I'op: is:

SZZ - AFGupt

*
=0.4927 £52.50°
1- Sleropl :|

rLopt:F:ur:[

The value of the available gain at I'gop; iS Ga,opt = 13.66 dB. This is to be compared with the
MAG of 16.18 dB determined in Example 14.11.1. To increase the available gain, we must
also increase the noise figure. Fig. 14.12.1 shows the locations of the optimum reflection
coefficients, as well as several noise figure circles.

The MATLAB code for generating this graph was:’

Fmin=1.6dB
2 =13.7dB

Fig. 14.12.1 Noise figure circles.

S = smat([0.61, 165, 3.72, 59, 0.05, 42, 0.45, -481);

Fmin = 1.6; rn = 0.16; gGopt = p2c(0.26, 172);

TThe function p2c converts from phasor form to cartesian complex form, and the function c2p, from

cartesian to phasor form.
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Gmag = db(sgain(S,’mag’));
Gaopt = db(sgain(S,gGopt,’a’))

% maximum available gain
% available gain at I'Gopt
gLopt = conj(gout(S,gGopt)); % matched load
[c1l,rl] = nfcirc(1.7,Fmin,rn,gGopt);
[c2,r2] = nfcirc(1.8,Fmin,rn,gGopt);
[c3,r3] = nfcirc(1.9,Fmin,rn,gGopt);
[c4,r4] = nfcirc(2.0,Fmin,rn,gGopt);

% noise figure circles

smith; plot([gCopt, glLopt],’.’);
smithcir(cl,rl); smithcir(c2,r2); smithcir(c3,r3); smithcir(c4,r4);

The larger the noise figure F, the larger the radius of its circle. As F increases, so does
the available gain. But as the gain increases, the radius of its circle decreases. Thus, for a
fixed value of F, there will be a maximum value of the available gain corresponding to that
gain circle that has the smallest radius and is tangent to the noise figure circle.

In the extreme case of the maximum available gain, the available gain circle collapses
to a point—the simultaneous conjugate matched point I'c = 0.81792-162.67°— with a
corresponding noise figure of F = 4.28 dB. These results can be calculated by the MATLAB
statements:

gG = smatch(S);
F = nfig(Fmin, rn, gopt, gG);

Thus, we see that increasing the gain comes at the price of increasing the noise figure.
As I'; traces the F = 1.8 dB circle, the available gain G, varies as shown in Fig. 14.12.2.
Points around this circle can be parametrized as I'¢ = ¢» + re/®, with 0 < ¢ < 2m.
Fig. 14.12.2 plots G, versus the angle ¢b. We note that the gain varies between the limits
12.22 < G4 < 14.81 dB.

Available Gain for F = 1.8 dB

G, (dB)

12
0

90 270 360

180
o (degrees)
Fig. 14.12.2 Variation of available gain around the noise figure circle F = 1.8 dB.

The maximum value, G, = 14.81 dB, is reached when I'c = 0.4478 2—169.73°, with a
resulting matched load I'y, = I}, = 0.5574£52.50°. The two points I'g, I';, as well as the
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If the two-port is potentially unstable, one must be check that the resulting solutions
for I'g, I'r both lie in their respective stability regions. Problems 14.6 and 14.7 illustrate
the design of such potentially unstable low noise microwave amplifiers.

14.13 Problems

14.1 Using the relationships (14.4.3) and (14.4.6), derive the following identities:

(Zu +Z6) (Zop + Z1)~Z12Z21 =

(14.13.1)

G,=14.81dB (Zoz + Z1) (Zin + Zg) = (Z11 + Zg) (Zoue + Z1)

(1 =8111¢) (1 =So2l1)=S128n0Tl6lL =
Fig. 14.12.3 Maximum available gain for given noise figure. (14.13.2)
(1 =82I) (1 =Tinlg)=(1-=51Tc) (1 —Toulr)

Using Egs. (14.4.4) and (14.4.5), show that:
G, = 14.81 dB gain circle, which is tangential to the 1.8-dB noise figure circle, are shown

in Fig. 14.12.3. Zn _ __Sn 1-Ti Zn  __Sn 1-T¢ (14.13.3)
The following MATLAB code performs these calculations and plots: Zn+Zr 1-Splil-Tn Zn+Zg 1-Sulgl—Tou
2Zy (1 -Tin) (1 -Tg) 2Zyg (1 =Tow) (1-T1) (14.13.4)
phi = Tlinspace(0,2%pi,721); % angle in 1/2° increments Zin+ Z¢ - 1-Tinlc ’ Zow + Z1. - 1—Toul: e
gG = c2 + r2*exp(j*phi); % I'; around the ¢, 1 circle i B )
G = db(sgain(S,gG,’a’)); % available gain in dB Finally, for the real part Ry = Re(Z), show that:
plot(phi*180/pi, G); 1+T 1—|IL)?
Zi=Zofp > Ri=Zo 5 |I_L|2 (14.13.5)
[Ga,i] = max(G); 9% maximum available gain 1L 1 -1yl
gammaG = gG(i) %L b . ) 14.2 Computer Experiment. The Hewlett-Packard ATF-10136 GaAs FET transistor has the follow-
= ; % I' G for maximum gain . .
gammal = conj(gout(S,gammaG)); % matched load I'y, ing S-parameters at 4 GHz and 8 GHz [1848]:
[ca,ral = sgcirc(s,’a’,Ga); % available gain circle S11 =0.542-120°, So1 = 3.60261°, Si1> =0.1374£31°, S0 = 0.22£-49°
S = 0.604870, So1 = 2.094—320, S = 0.214—360, Soo = 0.322£-48°
smith; smithcir(c2,r2); smithcir(ca,ra);
plot([gammaG,gammaL],’.’); Determine the stability parameters, stability circles, and stability regions at the two frequen-
cies.
The maximum gain and the point of tangency with the noise figure circle are determined by 14.3 Derive the following relationships, where R = Re(Z¢):
direct search, that is, evaluating the gain around the 1.8-dB noise figure circle and finding
Zo+ Zg 1 |1—FG| Zy— Zg I'c ‘1—Fg‘

where it reaches a maximum. - —

2JRcZy J1—1T¢l2 1-T¢ ' 2JR¢Z 1-[Tgl? 1-T¢
The input and output stub matching networks can be designed with the help of the function
stubl. The normalized source and load impedances are: 14.4 Derive Eqgs. (14.7.13) relating the generalized S-parameters of power waves to the conven-
tional S-parameters.

zZ¢ = 1+l _ 0.3840 — 0.0767j, =z, = 1+0 1.0904 + 1.3993j 14.5 Derive the expression Eq. (14.6.20) for the maximum available gain Gwag, and show that it
1-Tg 1-TI is the maximum of all three gains, that is, transducer, available, and operating gains.
The stub matching networks have lengths: 14.6 Computer Experiment. The microwave transistor of Example 14.11.2 has the following noise
parameters at a frequency of 1 GHz [1848]: Fin = 1.3 dB, rp = 0.16, and I'gopt = 0.06 2£49°.
0.3749 0.3977 0.3519  0.0991 Determine the matched load I';op: corresponding to I'gope and calculate the available gain.
stubl(z&, *po’) = , stubl(zf,’po’)= Th lot th ise fi ircles for F = 1.4. 1
0.1251 0.0738 0.1481 0.2250 en, plot the noise figure circles for .4,1.5,1.6 dB.

For the 1.5-dB noise figure circle, determine the values of I',I'; that correspond to the
The lower solutions have shorter total lengths d + I. The implementation of the matching maximum possible available gain.
networks with microstrip lines will be similar to that in Fig. 14.8.4. m] Design microstrip stub matching circuits for the computed values of I'¢,I'r.
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14.7

14.8

Computer Experiment. The Hewlett-Packard ATF-36163 pseudomorphic high electron mo-
bility transistor (PHEMT) has the following S- and noise parameters at 6 GHz [1848]:

S =0.752-131°, S5 =3.95455°, 812 =0.132-12°, S =0.272£-116°

Fuin = 0.66 dB, 1, =0.15, I'Gopt = 0.55288°

Plot the F = 0.7,0.8,0.9 dB noise figure circles. On the 0.7-dB circle, determine the source
reflection coefficient I';; that corresponds to maximum available gain, and then determine
the corresponding matched load coefficient I';.

Design microstrip stub matching circuits for the computed values of I';,I';.

Computer Experiment. In this experiment, you will carry out two low-noise microwave am-
plifier designs, including the corresponding input and output matching networks. The first
design fixes the noise figure and finds the maximum gain that can be used. The second
design fixes the desired gain and finds the minimum noise figure that may be achieved.
The Hewlett-Packard Agilent ATF-34143 PHEMT transistor is suitable for low-noise ampli-
fiers in cellular/PCS base stations, low-earth-orbit and multipoint microwave distribution
systems, and other low-noise applications.

At 2 GHz, its S-parameters and noise-figure data are as follows, for biasing conditions of
Vps =4 Vand Ips = 40 mA:

S11 =0.700£-150°,
So1 =6.002273°,

S12 =0.081£19°
Sor =0.210£-150°

Fuin = 0.22dB, 1, =0.09, I'Gop = 0.66£67°

a. At 2 GHz, the transistor is potentially unstable. Calculate the stability parameters
K, u,A,Dy,D,. Calculate the MSG in dB.
Draw a basic Smith chart and place on it the source and load stability circles (display
only a small portion of each circle outside the Smith chart.)
Then, determine the parts of the Smith chart that correspond to the source and load
stability regions.

b. For the given optimum reflection coefficient I'opt, calculate the corresponding load
reflection coefficient I';op assuming a matched load.
Place the two points I'gopt, I'rope 0N the above Smith chart and determine whether they
lie in their respective stability regions.

c. Calculate the available gain G4,p in dB that corresponds to I'gopt.
Add the corresponding available gain circle to the above Smith chart. (Note that the
source stability circle and the available gain circles intersect the Smith chart at the
same points.)

d. Add to your Smith chart the noise figure circles corresponding to the noise figure
values of F = 0.25,0.30,0.35 dB.
For the case F = 0.35 dB, calculate and plot the available gain G, in dB as I'¢ traces
the noise-figure circle. Determine the maximum value of G, and the corresponding
value of I';.
Place on your Smith chart the available gain circle corresponding to this maximum G.
Place also the corresponding point I';, which should be the point of tangency between
the gain and noise figure circles.
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Calculate and place on the Smith chart the corresponding load reflection coefficient
I't =TI}, Verify that the two points I'¢, I'; lie in their respective stability regions.

In addition, for comparison purposes, place on your Smith chart the available gain
circles corresponding to the values G, = 15 and 16 dB.

. The points I'; and I'; determined in the previous question achieve the maximum gain

for the given noise figure of F = 0.35 dB.

Design input and output stub matching networks that match the amplifier to a 50-ohm
generator and a 50-ohm load. Use “parallel/open” microstrip stubs having 50-ohm
characteristic impedance and alumina substrate of relative permittivity of €, = 9.8.
Determine the stub lengths d, [ in units of A, the wavelength inside the microstrip lines.
Choose always the solution with the shortest total length d + I.

Determine the effective permittivity €¢ of the stubs, the stub wavelength A in cm, and
the width/height ratio, w/h. Then, determine the stub lengths d, [ in cm.

Finally, make a schematic of your final design that shows both the input and output
matching networks (as in Fig.10.8.3.)

. The above design sets F = 0.35 dB and finds the maximum achievable gain. Carry out

an alternative design as follows. Start with a desired available gain of G, = 16 dB and
draw the corresponding available gain circle on your Smith chart.

As I'; traces the portion of this circle that lies inside the Smith chart, compute the
corresponding noise figure F. (Points on the circle can be parametrized by I'c = ¢ +
re/®, but you must keep only those that have |I'g| < 1.)

Find the minimum among these values of F in dB and calculate the corresponding
value of I';. Calculate the corresponding matched I';.

Add to your Smith chart the corresponding noise figure circle and place on it the points
I'gandI;.

g. Design the appropriate stub matching networks as in part 14.8.



