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12.3 Derive the transition matrix e−jM̂z of weakly coupled lines described by Eq. (12.3.2).

12.4 Verify explicitly that Eq. (12.4.6) is the solution of the coupled-mode equations (12.4.1).

12.5 Computer Experiment—Fiber Bragg Gratings. Reproduce the results and graphs of Figures
12.5.2 and 12.5.3.

13
Impedance Matching

13.1 Conjugate and Reflectionless Matching

The Thévenin equivalent circuits depicted in Figs. 11.11.1 and 11.11.3 also allow us to
answer the question of maximum power transfer. Given a generator and a length-d
transmission line, maximum transfer of power from the generator to the load takes
place when the load is conjugate matched to the generator, that is,

ZL = Z∗th (conjugate match) (13.1.1)

The proof of this result is postponed until Sec. 16.4. Writing Zth = Rth + jXth and
ZL = RL+jXL, the condition is equivalent to RL = Rth and XL = −Xth. In this case, half
of the generated power is delivered to the load and half is dissipated in the generator’s
Thévenin resistance. From the Thévenin circuit shown in Fig. 11.11.1, we find for the
current through the load:

IL = Vth

Zth + ZL
= Vth

(Rth +RL)+j(Xth +XL)
= Vth

2Rth

Thus, the total reactance of the circuit is canceled. It follows then that the power de-
livered by the Thévenin generator and the powers dissipated in the generator’s Thévenin
resistance and the load will be:

Ptot = 1

2
Re(V∗thIL)=

|Vth|2
4Rth

Pth = 1

2
Rth|IL|2 = |Vth|2

8Rth
= 1

2
Ptot , PL = 1

2
RL|IL|2 = |Vth|2

8Rth
= 1

2
Ptot

(13.1.2)

Assuming a lossless line (real-valued Z0 and β), the conjugate match condition can
also be written in terms of the reflection coefficients corresponding to ZL and Zth:

ΓL = Γ∗th = Γ∗Ge
2jβd (conjugate match) (13.1.3)

Moving the phase exponential to the left, we note that the conjugate match condition
can be written in terms of the same quantities at the input side of the transmission line:
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Γd = ΓLe−2jβd = Γ∗G � Zd = Z∗G (conjugate match) (13.1.4)

Thus, the conjugate match condition can be phrased in terms of the input quantities
and the equivalent circuit of Fig. 11.9.1. More generally, there is a conjugate match at
every point along the line.

Indeed, the line can be cut at any distance l from the load and its entire left segment
including the generator can be replaced by a Thévenin-equivalent circuit. The conjugate
matching condition is obtained by propagating Eq. (13.1.3) to the left by a distance l, or
equivalently, Eq. (13.1.4) to the right by distance d− l:

Γl = ΓLe−2jβl = Γ∗Ge
2jβ(d−l) (conjugate match) (13.1.5)

Conjugate matching is not the same as reflectionless matching, which refers to match-
ing the load to the line impedance, ZL = Z0, in order to prevent reflections from the
load.

In practice, we must use matching networks at one or both ends of the transmission
line to achieve the desired type of matching. Fig. 13.1.1 shows the two typical situations
that arise.

Fig. 13.1.1 Reflectionless and conjugate matching of a transmission line.

In the first, referred to as a flat line, both the generator and the load are matched
so that effectively, ZG = ZL = Z0. There are no reflected waves and the generator
(which is typically designed to operate into Z0) transmits maximum power to the load,
as compared to the case when ZG = Z0 but ZL �= Z0.

In the second case, the load is connected to the line without a matching circuit
and the generator is conjugate-matched to the input impedance of the line, that is,
Zd = Z∗G. As we mentioned above, the line remains conjugate matched everywhere
along its length, and therefore, the matching network can be inserted at any convenient
point, not necessarily at the line input.

Because the value of Zd depends on ZL and the frequency ω (through tanβd), the
conjugate match will work as designed only at a single frequency. On the other hand, if
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the load and generator are purely resistive and are matched individually to the line, the
matching will remain reflectionless over a larger frequency bandwidth.

Conjugate matching is usually accomplished using L-section reactive networks. Re-
flectionless matching is achieved by essentially the same methods as antireflection coat-
ing. In the next few sections, we discuss several methods for reflectionless and conju-
gate matching, such as (a) quarter-wavelength single- and multi-section transformers;
(b) two-section series impedance transformers; (c) single, double, and triple stub tuners;
and (d) L-section lumped-parameter reactive matching networks.

13.2 Multisection Transmission Lines

Multisection transmission lines are used primarily in the construction of broadband
matching terminations. A typical multisection line is shown in Fig. 13.2.1.

Fig. 13.2.1 Multi-section transmission line.

It consists of M segments between the main line and the load. The ith segment
is characterized by its characteristic impedance Zi, length li, and velocity factor, or
equivalently, refractive index ni. The speed in the ith segment is ci = c0/ni. The phase
thicknesses are defined by:

δi = βili = ω
ci
li = ω

c0
nili , i = 1,2, . . . ,M (13.2.1)

We may define the electrical lengths (playing the same role as the optical lengths of
dielectric slabs) in units of some reference free-space wavelength λ0 or corresponding
frequency f0 = c0/λ0 as follows:

(electrical lengths) Li = nili
λ0

= li
λi

, i = 1,2, . . . ,M (13.2.2)

where λi = λ0/ni is the wavelength within the ith segment. Typically, the electrical
lengths are quarter-wavelengths, Li = 1/4. It follows that the phase thicknesses can be
expressed in terms of Li as δi =ωnili/c0 = 2πfnili/(f0λ0), or,

(phase thicknesses) δi = βili = 2πLi
f
f0
= 2πLi

λ0

λ
, i = 1,2, . . . ,M (13.2.3)
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where f is the operating frequency and λ = c0/f the corresponding free-space wave-
length. The wave impedances, Zi, are continuous across the M + 1 interfaces and are
related by the recursions:

Zi = Zi
Zi+1 + jZi tanδi
Zi + jZi+1 tanδi

, i =M, . . . ,1 (13.2.4)

and initialized by ZM+1 = ZL. The corresponding reflection responses at the left of each
interface, Γi = (Zi − Zi−1)/(Zi + Zi−1), are obtained from the recursions:

Γi = ρi + Γi+1e−2jδi

1+ ρiΓi+1e−2jδi
, i =M, . . . ,1 (13.2.5)

and initialized at ΓM+1 = ΓL = (ZL − ZM)/(ZL + ZM), where ρi are the elementary
reflection coefficients at the interfaces:

ρi = Zi − Zi−1

Zi + Zi−1
, i = 1,2, . . . ,M + 1 (13.2.6)

where ZM+1 = ZL. The MATLAB function multiline calculates the reflection response
Γ1(f) at interface-1 as a function of frequency. Its usage is:

Gamma1 = multiline(Z,L,ZL,f); % reflection response of multisection line

where Z = [Z0, Z1, . . . , ZM] and L = [L1, L2, . . . , LM] are the main line and segment
impedances and the segment electrical lengths.

The function multiline implements Eq. (13.2.6) and is similar to multidiel, except
here the load impedance ZL is a separate input in order to allow it to be a function of
frequency. We will see examples of its usage below.

13.3 Quarter-Wavelength Chebyshev Transformers

Quarter-wavelength Chebyshev impedance transformers allow the matching of real-
valued load impedances ZL to real-valued line impedances Z0 and can be designed to
achieve desired attenuation and bandwidth specifications.

The design method has already been discussed in Sec. 6.8. The results of that sec-
tion translate verbatim to the present case by replacing refractive indices ni by line
admittances Yi = 1/Zi. Typical design specifications are shown in Fig. 6.8.1.

In an M-section transformer, all segments have equal electrical lengths, Li = li/λi =
nili/λ0 = 1/4 at some operating wavelength λ0. The phase thicknesses of the segments
are all equal and are given by δi = 2πLif/f0, or, because Li = 1/4:

δ = π
2

f
f0

(13.3.1)

The reflection response |Γ1(f)|2 at the left of interface-1 is expressed in terms of
the order-M Chebyshev polynomials TM(x), where x is related to the phase thickness
by x = x0 cosδ:

|Γ1(f)|2 = e2
1T

2
M(x0 cosδ)

1+ e2
1T

2
M(x0 cosδ)

(13.3.2)
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where e1 = e0/TM(x0) and e0 is given in terms of the load and main line impedances:

e2
0 =

(ZL − Z0)2

4ZLZ0
= |ΓL|2

1− |ΓL|2 , ΓL = ZL − Z0

ZL + Z0
(13.3.3)

The parameter x0 is related to the desired reflectionless bandwidth Δf by:

x0 = 1

sin
(
π
4

Δf
f0

) (13.3.4)

and TM(x0) is related to the attenuation A in the reflectionless band by:

A = 10 log10

(
T2
M(x0)+e2

0

1+ e2
0

)
(13.3.5)

Solving for M in terms of A, we have (rounding up to the next integer):

M = ceil

⎛
⎜⎜⎝

acosh
(√

(1+ e2
0)10A/10 − e2

0

)
acosh(x0)

⎞
⎟⎟⎠ (13.3.6)

where A is in dB and is measured from dc, or equivalently, with respect to the reflec-
tion response |ΓL| of the unmatched line. The maximum equiripple level within the
reflectionless band is given by

|Γ1|max = |ΓL|10−A/20 ⇒ A = 20 log10

( |ΓL|
|Γ1|max

)
(13.3.7)

This condition can also be expressed in terms of the maximum SWR within the
desired bandwidth. Indeed, setting Smax = (1 + |Γ1|max)/(1 − |Γ1|max) and SL =
(1+ |ΓL|)/(1− |ΓL|), we may rewrite (13.3.7) as follows:

A = 20 log10

( |ΓL|
|Γ1|max

)
= 20 log10

(
SL − 1

SL + 1

Smax + 1

Smax − 1

)
(13.3.8)

where we must demand Smax < SL or |Γ1|max < |ΓL|. The MATLAB functions chebtr,
chebtr2, and chebtr3 implement the design steps. In the present context, they have
usage:

[Y,a,b] = chebtr(Y0,YL,A,DF); % Chebyshev multisection transformer design

[Y,a,b,A] = chebtr2(Y0,YL,M,DF); % specify order and bandwidth

[Y,a,b,DF] = chebtr3(Y0,YL,M,A); % specify order and attenuation

The outputs are the admittances Y = [Y0, Y1, Y2, . . . , YM,YL] and the reflection
and transmission polynomials a,b. In chebtr2 and chebtr3, the order M is given. The
designed segment impedances Zi, i = 1,2, . . . ,M satisfy the symmetry properties:

ZiZM+1−i = Z0ZL , i = 1,2, . . . ,M (13.3.9)
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Fig. 13.3.1 One, two, and three-section quarter-wavelength transformers.

Fig. 13.3.1 depicts the three cases of M = 1,2,3 segments. The case M = 1 is
used widely and we discuss it in more detail. According to Eq. (13.3.9), the segment
impedance satisfies Z2

1 = Z0ZL, or,

Z1 =
√
Z0ZL (13.3.10)

This implies that the reflection coefficients at interfaces 1 and 2 are equal:

ρ1 = Z1 − Z0

Z1 + Z0
= ZL − Z1

ZL + Z1
= ρ2 (13.3.11)

Because the Chebyshev polynomial of order-1 is T1(x)= x, the reflection response
(13.3.2) takes the form:

|Γ1(f)|2 = e2
0 cos2 δ

1+ e2
0 cos2 δ

(13.3.12)

Using Eq. (13.3.11), we can easily verify that e0 is related to ρ1 by

e2
0 =

4ρ2
1

(1− ρ2
1)2

Then, Eq. (13.3.12) can be cast in the following equivalent form, which is recognized
as the propagation of the load reflection response Γ2 = ρ2 = ρ1 by a phase thickness δ
to interface-1:

|Γ1(f)|2 =
∣∣∣∣∣ρ1(1+ z−1)

1+ ρ2
1z−1

∣∣∣∣∣
2

(13.3.13)

where z = e2jδ. The reflection response has a zero at z = −1 or δ = π/2, which occurs
at f = f0 and at odd multiples of f0. The wave impedance at interface-1 will be:

Z1 = Z1
ZL + jZ1 tanδ
Z0 + jZL tanδ

(13.3.14)
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Using Eq. (13.3.10), we obtain the matching condition at f = f0, or at δ = π/2:

Z1 = Z2
1

ZL
= Z0 (13.3.15)

Example 13.3.1: Single-section quarter wavelength transformer. Design a single-section trans-
former that will match a 200-ohm load to a 50-ohm line at 100 MHz. Determine the band-
width over which the SWR on the line remains less than 1.5.

Solution: The quarter-wavelength section has impedance Z1 =
√
ZLZ0 =

√
200 · 50 = 100 ohm.

The reflection response |Γ1(f)| and the SWR S(f)= (1+|Γ1(f)|
)
/
(
1−|Γ1(f)|

)
are plotted

in Fig. 13.3.1 versus frequency.
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Fig. 13.3.2 Reflection response and line SWR of single-section transformer.

The reflection coefficient of the unmatched line and the maximum tolerable reflection
response over the desired bandwidth are:

ΓL = ZL − Z0

ZL + Z0)
= 200− 50

200+ 50
= 0.6 , |Γ1|max = Smax − 1

Smax + 1
= 1.5− 1

1.5+ 1
= 0.2

It follows from Eq. (13.3.7) that the attenuation in dB over the desired band will be:

A = 20 log10

( |ΓL|
|Γ1|max

)
= 20 log10

(
0.6
0.2

)
= 9.54 dB

Because the number of sections and the attenuation are fixed, we may use the MATLAB
function chebtr3. The following code segment calculates the various design parameters:

Z0 = 50; ZL = 200;
GL = z2g(ZL,Z0); Smax = 1.5;

f0 = 100; f = linspace(0,2*f0,401); % plot over [0,200] MHz

A = 20*log10(GL*(Smax+1)/(Smax-1)); % Eq. (13.3.8)

[Y,a,b,DF] = chebtr3(1/Z0, 1/ZL, 1, A); % note, M = 1

Z = 1./Y; Df = f0*DF; L = 1/4; % note, Z = [Z0, Z1, ZL]
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G1 = abs(multiline(Z(1:2), L, ZL, f/f0)); % reflection response |Γ1(f)|

S = swr(G1); % calculate SWR versus frequency

plot(f,G1); figure; plot(f,S);

The reflection response |Γ1(f)| is computed by multiline with frequencies normalized
to the desired operating frequency of f0 = 100 MHz. The impedance inputs to multiline

were [Z0, Z1] and ZL and the electrical length of the segment was L = 1/4. The resulting
bandwidth is Δf = 35.1 MHz. The reflection polynomials are:

b = [b0, b1]= [ρ1, ρ1] , a = [a0, a1]= [1, ρ2
1] , ρ1 = Z1 − Z0

Z1 + Z0
= 1

3

Two alternative ways to compute the reflection response are by using MATLAB’s built-in
function freqz, or the function dtft:

delta = pi * f/f0/2;
G1 = abs(freqz(b,a,2*delta));
% G1 = abs(dtft(b,2*delta) ./ dtft(a,2*delta));

where 2δ = πf/f0 is the digital frequency, such that z = e2jδ. The bandwidth Δf can be
computed from Eqs. (13.3.4) and (13.3.5), that is,

A = 10 log10

(
x2

0 + e2
0

1+ e2
0

)
⇒ x0 =

√
(1+ e2

0)10A/10 − e2
0 , Δf = f0

4

π
asin

(
1

x0

)

where we replaced T1(x0)= x0. ��

Example 13.3.2: Three- and four-section quarter-wavelength Chebyshev transformers. Design
a Chebyshev transformer that will match a 200-ohm load to a 50-ohm line. The line SWR
is required to remain less than 1.25 over the frequency band [50,150] MHz.

Repeat the design if the SWR is required to remain less than 1.1 over the same bandwidth.

Solution: Here, we let the design specifications determine the number of sections and their
characteristic impedances. In both cases, the unmatched reflection coefficient is the same
as in the previous example, ΓL = 0.6. Using Smax = 1.25, the required attenuation in dB is
for the first case:

A = 20 log10

(
|ΓL| Smax + 1

Smax − 1

)
= 20 log10

(
0.6

1.25+ 1

1.25− 1

)
= 14.65 dB

The reflection coefficient corresponding to Smax is |Γ1|max = (1.25−1)/(1.25+1)= 1/9 =
0.1111. In the second case, we use Smax = 1.1 to find A = 22.0074 dB and |Γ1|max =
(1.1− 1)/(1.1+ 1)= 1/21 = 0.0476.

In both cases, the operating frequency is at the middle of the given bandwidth, that is,
f0 = 100 MHz. The normalized bandwidth is ΔF = Δf/f0 = (150 − 50)/100 = 1. With
these values of A,ΔF, the function chebtr calculates the required number of sections and
their impedances. The typical code is as follows:
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Z0 = 50; ZL = 200;
GL = z2g(ZL,Z0); Smax = 1.25;

f1 = 50; f2 = 150; % given bandedge frequencies

Df = f2-f1; f0 = (f2+f1)/2; DF = Df/f0; % operating frequency and bandwidth

A = 20*log10(GL*(Smax+1)/(Smax-1)); % attenuation of reflectionless band

[Y,a,b] = chebtr(1/Z0, 1/ZL, A, DF); % Chebyshev transformer design

Z = 1./Y; rho = n2r(Y); % impedances and reflection coefficients

For the first case, the resulting number of sections is M = 3, and the corresponding output
vector of impedancesZ, reflection coefficients at the interfaces, and reflection polynomials
a,b are:

Z = [Z0, Z1, Z2, Z3, ZL]= [50, 66.4185, 100, 150.5604, 200]

ρρρ = [ρ1, ρ2, ρ3, ρ4]= [0.1410, 0.2018, 0.2018, 0.1410]

b = [b0, b1, b2, b3]= [0.1410, 0.2115, 0.2115, 0.1410]

a = [a0, a1, a2, a3]= [1, 0.0976, 0.0577, 0.0199]

In the second case, we find M = 4 sections with design parameters:

Z = [Z0, Z1, Z2, Z3, Z4, ZL]= [50, 59.1294, 81.7978, 122.2527, 169.1206, 200]

ρρρ = [ρ1, ρ2, ρ3, ρ4, ρ5]= [0.0837, 0.1609, 0.1983, 0.1609, 0.0837]

b = [b0, b1, b2, b3, b4]= [0.0837, 0.1673, 0.2091, 0.1673, 0.0837]

a = [a0, a1, a2, a3, a4]= [1, 0.0907, 0.0601, 0.0274, 0.0070]

The reflection responses and SWRs are plotted versus frequency in Fig. 13.3.3. The upper
two graphs corresponds to the case, Smax = 1.25, and the bottom two graphs, to the case
Smax = 1.1.

The reflection responses |Γ1(f)| can be computed either with the help of the function
multiline, or as the ratio of the reflection polynomials:

Γ1(z)= b0 + b1z−1 + · · · + bMz−M

a0 + a1z−1 + · · · + aMz−M
, z = e2jδ, δ = π

2

f
f0

The typical MATLAB code for producing these graphs uses the outputs of chebtr:

f = linspace(0,2*f0,401); % plot over [0,200] MHz

M = length(Z)-2; % number of sections

L = ones(1,M)/4; % quarter-wave lengths

G1 = abs(multiline(Z(1:M+1), L, ZL, f/f0)); % ZL is a separate input

G1 = abs(freqz(b, a, pi*f/f0)); % alternative way of computing G1

S = swr(G1); % SWR on the line

plot(f,G1); figure; plot(f,S);
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Fig. 13.3.3 Three and four section transformers.

In both cases, the section impedances satisfy the symmetry properties (13.3.9) and the
reflection coefficients ρρρ are symmetric about their middle, as discussed in Sec. 6.8.

We note that the reflection coefficients ρi at the interfaces agree fairly closely with the
reflection polynomial b—equating the two is equivalent to the so-called small-reflection
approximation that is usually made in designing quarter-wavelength transformers [822].
The above values are exact and do not depend on any approximation. ��

13.4 Two-Section Dual-Band Chebyshev Transformers

Recently, a two-section sixth-wavelength transformer has been designed [1131,1132]
that achieves matching at a frequency f1 and its first harmonic 2f1. Each section has
length λ/6 at the design frequency f1. Such dual-band operation is desirable in certain
applications, such as GSM and PCS systems. The transformer is depicted in Fig. 13.4.1.

Here, we point out that this design is actually equivalent to a two-section quarter-
wavelength Chebyshev transformer whose parameters have been adjusted to achieve
reflectionless notches at both frequencies f1 and 2f1.

Using the results of the previous section, a two-section Chebyshev transformer will
have reflection response:
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|Γ1(f)|2 = e2
1T

2
2(x0 cosδ)

1+ e2
1T

2
2(x0 cosδ)

, δ = π
2

f
f0

(13.4.1)

where f0 is the frequency at which the sections are quarter-wavelength. The second-
order Chebyshev polynomial is T2(x)= 2x2−1 and has roots at x = ±1/

√
2. We require

that these two roots correspond to the frequencies f1 and 2f1, that is, we set:

x0 cosδ1 = 1√
2
, x0 cos 2δ1 = − 1√

2
, δ1 = π

2

f1

f0
(13.4.2)

Fig. 13.4.1 Two-section dual-band Chebyshev transformer.

These conditions have the unique solution (such that x0 ≥ 1):

x0 =
√

2 , δ1 = π
3
= π

2

f1

f0
⇒ f0 = 3

2
f1 (13.4.3)

Thus, at f1 the phase length is δ1 = π/3 = 2π/6, which corresponds to section
lengths of l1 = l2 = λ1/6, where λ1 = v/f1, and v is the propagation speed. Defining
also λ0 = v/f0, we note that λ0 = 2λ1/3. According to Sec. 6.6, the most general two-
section reflection response is expressed as the ratio of the second-order polynomials:

Γ1(f)= B1(z)
A1(z)

= ρ1 + ρ2(1+ ρ1ρ3)z−1 + ρ3z−2

1+ ρ2(ρ1 + ρ3)z−1 + ρ1ρ3z−2
(13.4.4)

where

z = e2jδ , δ = π
2

f
f0
= π

3

f
f1

(13.4.5)

and we used the relationship 2f0 = 3f1 to express δ in terms of f1. The polynomial
B1(z) must have zeros at z = e2jδ1 = e2πj/3 and z = e2j(2δ1) = e4πj/3 = e−2πj/3, hence,
it must be (up to the factor ρ1):

B1(z)= ρ1
(
1− e2πj/3z−1)(1− e−2πj/3z−1) = ρ1(1+ z−1 + z−2) (13.4.6)

Comparing this with (13.4.4), we arrive at the conditions:

ρ3 = ρ1 , ρ2(1+ ρ1ρ3)= ρ1 ⇒ ρ2 = ρ1

1+ ρ2
1

(13.4.7)

We recall from the previous section that the condition ρ1 = ρ3 is equivalent to
Z1Z2 = Z0ZL. Using (13.4.7) and the definition ρ2 = (Z2 − Z1)/(Z2 + Z1), or its
inverse, Z2 = Z1(1+ ρ2)/(1− ρ2), we have:

ZLZ0 = Z1Z2 = Z2
1

1+ ρ2

1− ρ2
= Z2

1
ρ2

1 + ρ1 + 1

ρ2
1 − ρ1 + 1

= Z2
1

3Z2
1 + Z2

0

Z2
1 + 3Z2

0
(13.4.8)
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where in the last equation, we replaced ρ1 = (Z1−Z0)/(Z1+Z0). This gives a quadratic
equation in Z2

1. Picking the positive solution of the quadratic equation, we find:

Z1 =
√
Z0

6

[
ZL − Z0 +

√
(ZL − Z0)2+36ZLZ0

]
(13.4.9)

Once Z1 is known, we may compute Z2 = ZLZ0/Z1. Eq. (13.4.9) is equivalent to the
expression given by Monzon [1132].

The sections are quarter-wavelength at f0 and sixth-wavelength at f1, that is, l1 =
l2 = λ1/6 = λ0/4. We note that the frequency f0 lies exactly in the middle between f1

and 2f1. Viewed as a quarter-wavelength transformer, the bandwidth will be:

sin
(
π
4

Δf
f0

)
= 1

x0
= 1√

2
⇒ Δf = f0 = 1.5f1 (13.4.10)

which spans the interval [f0 − Δf/2, f0 + Δf/2]= [0.75f1,2.25f1]. Using T2(x0)=
2x2

0 − 1 = 3 and Eq. (13.3.6), we find the attenuation achieved over the bandwidth Δf :

√
(1+ e2

0)10A/10 − e2
0 = T2(x0)= 3 ⇒ A = 10 log10

(
9+ e2

0

1+ e2
0

)
(13.4.11)

As an example, we consider the matching of ZL = 200 Ω to Z0 = 50 Ω. The section
impedances are found from Eq. (13.4.9) to be: Z1 = 80.02 Ω, Z2 = 124.96 Ω. More
simply, we can invoke the function chebtr2 with M = 2 and ΔF = Δf/f0 = 1.

Fig. 13.4.2 shows the designed reflection response normalized to its dc value, that
is, |Γ1(f)|2/|Γ1(0)|2. The response has exact zeros at f1 and 2f1. The attenuation was
A = 7.9 dB. The reflection coefficients were ρ1 = ρ3 = 0.2309 and ρ2 = ρ1/(1+ ρ2

1)=
0.2192, and the reflection polynomials:

B1(z)= 0.2309(1+ z−1 + z−2) , A1(z)= 1+ 0.1012z−1 + 0.0533z−2
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Fig. 13.4.2 Reflection response |Γ1(f)|2 normalized to unity gain at dc.

The reflection response can be computed using Eq. (13.4.1), or using the MATLAB
function multiline, or the function freqz and the computed polynomial coefficients.
The following code illustrates the computation using chebtr2:
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Z0 = 50; ZL = 100; x0 = sqrt(2); e0sq = (ZL-Z0)^2/(4*ZL*Z0); e1sq = e0sq/9;

[Y,a1,b1,A] = chebtr2(1/Z0, 1/ZL, 2, 1); % a1 = [1, 0.1012, 0.0533]
% b1 = [0.2309, 0.2309, 0.2309]

Z = 1./Y; rho = n2r(Z0*Y); % Z = [50, 80.02, 124.96, 200]
% ρ = [0.2309, 0.2192, 0.2309]

f = linspace(0,3,301); % f is in units of f1
delta = pi*f/3; x = x0*cos(delta); T2 = 2*x.^2-1;

G1 = e1sq*T2.^2 ./ (1 + e1sq*T2.^2);

% G1 = abs(multiline(Z(1:3), [1,1]/6, ZL, f)).^2; % alternative calculation

% G1 = abs(freqz(b1,a1, 2*delta)).^2; % alternative calculation

% G1 = abs(dtft(b1,2*delta)./dtft(a1,2*delta)).^2; % alternative calculation

plot(f, G1/G1(1));

The above design method is not restricted to the first and second harmonics. It can
be generalized to any two frequencies f1, f2 at which the two-section transformer is
required to be reflectionless [1133,1134].

Possible applications are the matching of dual-band antennas operating in the cellu-
lar/PCS, GSM/DCS, WLAN, GPS, and ISM bands, and other dual-band RF applications for
which the frequency f2 is not necessarily 2f1.

We assume that f1 < f2, and define r = f2/f1, where r can take any value greater
than unity. The reflection polynomial B1(z) is constructed to have zeros at f1, f2:

B1(z)= ρ1
(
1− e2jδ1z−1)(1− e2jδ2z−1) , δ1 = πf1

2f0
, δ2 = πf2

2f0
(13.4.12)

The requirement that the segment impedances, and hence the reflection coefficients
ρ1, ρ2, ρ3, be real-valued implies that the zeros of B1(z) must be conjugate pairs. This
can be achieved by choosing the quarter-wavelength normalization frequency f0 to lie
half-way between f1, f2, that is, f0 = (f1 + f2)/2 = (r + 1)f1/2. This implies that:

δ1 = π
r + 1

, δ2 = rδ1 = π− δ1 (13.4.13)

The phase length at any frequency f will be:

δ = π
2

f
f0
= π
r + 1

f
f1

(13.4.14)

The section lengths become quarter-wavelength at f0 and 2(r + 1)-th wavelength at f1:

l1 = l2 = λ0

4
= λ1

2(r + 1)
(13.4.15)

It follows now from Eq. (13.4.13) that the zeros of B1(z) are complex-conjugate pairs:

e2jδ2 = e2j(π−δ1) = e−2jδ1 (13.4.16)

Then, B1(z) takes the form:

B1(z)= ρ1
(
1− e2jδ1z−1)(1− e−2jδ1z−1) = ρ1

(
1− 2 cos 2δ1 z−1 + z−2) (13.4.17)
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Comparing with Eq. (13.4.4), we obtain the reflection coefficients:

ρ3 = ρ1 , ρ2 = −2ρ1 cos 2δ1

1+ ρ2
1

(13.4.18)

Proceeding as in (13.4.8) and using the identity tan2 δ1 = (1−cos 2δ1)/(1+cos 2δ1),
we find the following equation for the impedance Z1 of the first section:

ZLZ0 = Z1Z2 = Z2
1

1+ ρ2

1− ρ2
= Z2

1
ρ2

1 − 2ρ1 cos 2δ1 + 1

ρ2
1 + 2ρ1 cos 2δ1 + 1

= Z2
1
Z2

1 tan2 δ1 + Z2
0

Z2
1 + Z2

0 tan2 δ1
(13.4.19)

with solution for Z1 and Z2:

Z1 =
√

Z0

2 tan2 δ1

[
ZL − Z0 +

√
(ZL − Z0)2+4ZLZ0 tan4 δ1

]
, Z2 = Z0ZL

Z1
(13.4.20)

Equations (13.4.13), (13.4.15), and (13.4.20) provide a complete solution to the two-
section transformer design problem. The design equations have been implemented by
the MATLAB function dualband:

[Z1,Z2,a1,b1] = dualband(Z0,ZL,r); % two-section dual-band Chebyshev transformer

where a1,b1 are the coefficients ofA1(z) and B1(z). Next, we show that B1(z) is indeed
proportional to the Chebyshev polynomial T2(x). Setting z = e2jδ, where δ is given by
(13.4.14), we find:

B1(z) = ρ1
(
z+ z−1 − 2 cos 2δ1

)
z−1 = ρ1

(
2 cos 2δ− 2 cos 2δ1

)
e−2jδ

= 4ρ1
(
cos2 δ− cos2 δ1

)
e−2jδ = 4ρ1 cos2 δ1

( cos2 δ
cos2 δ1

− 1
)
e−2jδ

= 4ρ1 cos2 δ1
(
2x2

0 cos2 δ− 1
)
e−2jδ = 4ρ1 cos2 δ1T2(x0 cosδ)e−2jδ

(13.4.21)

where we defined:

x0 = 1√
2 cosδ1

(13.4.22)

We may also show that the reflection response |Γ1(f)|2 is given by Eq. (13.4.1). At
zero frequency, δ = 0, we have T2(x0)= 2x2

0−1 = tan2 δ1. As discussed in Sec. 6.8, the
sum of the coefficients of the polynomial B1(z), or equivalently, its value at dc, δ = 0
or z = 1, must be given by |B1(1)|2 = σ2e2

0, where

σ2 = (1− ρ2
1)(1− ρ2

2)(1− ρ2
3) , e2

0 =
(ZL − Z0)2

4ZLZ0
(13.4.23)

Using Eq. (13.4.21), this condition reads σ2e2
0 = |B1(1)|2 = 16ρ2

1 cos4 δ1T2
2(x0), or,

σ2e2
0 = 16ρ2

1 sin4 δ1. This can be verified with some tedious algebra. Because e2
1 =

e2
0/T

2
2(x0), the same condition reads σ2e2

1 = 16ρ2
1 cos4 δ1.

It follows that |B1(z)|2 = σ2e2
1T

2
2(x). On the other hand, according to Sec. 6.6,

the denominator polynomial A1(z) in (13.4.4) satisfies |A1(z)|2 − |B1(z)|2 = σ2, or,
|A1(z)|2 = σ2 + |B1(z)|2. Therefore,

|Γ1(f)|2 = |B1(z)|2
|A1(z)|2 =

|B1(z)|2
σ2 + |B1(z)|2 =

σ2e2
1T

2
2(x)

σ2 +σ2e2
1T

2
2(x)

= e2
1T

2
2(x)

1+ e2
1T

2
2(x)

(13.4.24)
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Thus, the reflectance is identical to that of a two-section Chebyshev transformer.
However, the interpretation as a quarter-wavelength transformer, that is, a transformer
whose attenuation at f0 is less than the attenuation at dc, is valid only for a limited
range of values, that is, 1 ≤ r ≤ 3. For this range, the parameter x0 defined in (13.4.22)
is x0 ≥ 1. In this case, the corresponding bandwidth about f0 can be meaningfully
defined through Eq. (13.3.4), which gives:

sin

(
π

2(r + 1)
Δf
f1

)
= √2 cosδ1 =

√
2 cos

(
π

r + 1

)
(13.4.25)

For 1 ≤ r ≤ 3, the right-hand side is always less than unity. On the other hand, when
r > 3, the parameter x0 becomes x0 < 1, the bandwidth Δf loses its meaning, and the
reflectance at f0 becomes greater than that at dc, that is, a gain. For any value of r, the
attenuation or gain at f0 can be calculated from Eq. (13.3.5) with M = 2:

A = 10 log10

(
T2

2(x0)+e2
0

1+ e2
0

)
= 10 log10

(
tan4 δ1 + e2

0

1+ e2
0

)
(13.4.26)

The quantity A is positive for 1 < r < 3 or tanδ1 > 1, and negative for r > 3 or
tanδ1 < 1. For the special case of r = 3, we have δ1 = π/4 and tanδ1 = 1, which
gives A = 0. Also, it follows from (13.4.18) that ρ2 = 0, which means that Z1 = Z2 and
(13.4.19) gives Z2

1 = ZLZ0. The two sections combine into a single section of double
length 2l1 = λ1/4 at f1, that is, a single-section quarter wavelength transformer, which,
as is well known, has zeros at odd multiples of its fundamental frequency.

For the case r = 2, we have δ1 = π/3 and tanδ1 =
√

3. The design equation (13.4.20)
reduces to that given in [1132] and the section lengths become λ1/6.

Fig. 13.4.3 shows two examples, one with r = 2.5 and one with r = 3.5, both trans-
forming ZL = 200 into Z0 = 50 ohm.
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Fig. 13.4.3 Dual-band transformers at frequencies {f1,2.5f1} and {f1,3.5f1}.

The reflectances are normalized to unity gain at dc. For r = 2.5, we find Z1 = 89.02
and Z2 = 112.33 ohm, and attenuation A = 2.9 dB. The section lengths at f1 are l1 =
l2 = λ1/(2(2.5+ 1))= λ1/7. The bandwidth Δf calculated from Eq. (13.4.25) is shown
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on the left graph. For the case r = 3.5, we find Z1 = 112.39 and Z2 = 88.98 ohm and
section lengths l1 = l2 = λ1/9. The quantity A is negative, A = −1.7 dB, signifying a
gain at f0. The polynomial coefficients were in the two cases:

r = 2.5, a1 = [1, 0.0650, 0.0788], b1 = [0.2807, 0.1249, 0.2807]
r = 3.5, a1 = [1, −0.0893, 0.1476], b1 = [0.3842, −0.1334, 0.3842]

The bandwidth about f1 and f2 corresponding to any desired bandwidth level can be
obtained in closed form. Let ΓB be the desired bandwidth level. Equivalently, ΓB can be
determined from a desired SWR level SB through ΓB = (SB−1)/(SB+1). The bandedge
frequencies can be derived from Eq. (13.4.24) by setting:

|Γ1(f)|2 = Γ2
B

Solving this equation, we obtain the left and right bandedge frequencies:

f1L = 2f0

π
asin

(√
1− a sinδ1

)
, f2R = 2f0 − f1L

f1R = 2f0

π
asin

(√
1+ a sinδ1

)
, f2L = 2f0 − f1R

(13.4.27)

where f0 = (f1 + f2)/2 and a is defined in terms of ΓB and ΓL by:

a =
[

Γ2
B

1− Γ2
B

1− Γ2
L

Γ2
L

]1/2

= SB − 1

SL − 1

√
SL
SB

(13.4.28)

where ΓL = (ZL−Z0)/(ZL+Z0) and SL = (1+|ΓL|)/(1−|ΓL|). We note the symmetry
relations: f1L + f2R = f1R + f2L = 2f0. These imply that the bandwidths about f1 and f2

are the same:
ΔfB = f1R − f1L = f2R − f2L (13.4.29)

The MATLAB function dualbw implements Eqs. (13.4.27):

[f1L,f1R,f2L,f2R] = dualbw(ZL,Z0,r,GB); % bandwidths of dual-band transformer

The bandwidth ΔfB is shown in Fig. 13.4.3. For illustration purposes, it was com-
puted at a level such that Γ2

B/Γ
2
L = 0.2.

13.5 Quarter-Wavelength Transformer With Series Section

One limitation of the Chebyshev quarter-wavelength transformer is that it requires the
load to be real-valued. The method can be modified to handle complex loads, but gen-
erally the wide bandwidth property is lost. The modification is to insert the quarter-
wavelength transformer not at the load, but at a distance from the load corresponding
to a voltage minimum or maximum.

For example, Fig. 13.5.1 shows the case of a single quarter-wavelength section in-
serted at a distance Lmin from the load. At that point, the wave impedance seen by the
quarter-wave transformer will be real-valued and given by Zmin = Z0/SL, where SL is the
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Fig. 13.5.1 Quarter-wavelength transformer for matching a complex load.

SWR of the unmatched load. Alternatively, one can choose a point of voltage maximum
Lmax at which the wave impedance will be Zmax = Z0SL.

As we saw in Sec. 11.13, the electrical lengths Lmin or Lmax are related to the phase
angle θL of the load reflection coefficient ΓL by Eqs. (11.13.2) and (11.13.3). The MAT-
LAB function lmin can be called to calculate these distances and corresponding wave
impedances.

The calculation of the segment length, Lmin or Lmax, depends on the desired match-
ing frequency f0. Because a complex impedance can vary rapidly with frequency, the
segment will have the wrong length at other frequencies.

Even if the segment is followed by a multisection transformer, the presence of the
segment will tend to restrict the overall operating bandwidth to essentially that of a
single quarter-wavelength section. In the case of a single section, its impedance can be
calculated simply as:

Z1 =
√
Z0Zmin = 1√

SL
Z0 and Z1 =

√
Z0Zmax =

√
SL Z0 (13.5.1)

Example 13.5.1: Quarter-wavelength matching of a complex load impedance. Design a quarter-
wavelength transformer of length M = 1,3,5 that will match the complex impedance
ZL = 200+ j100 ohm to a 50-ohm line at f0 = 100 MHz. Perform the design assuming the
maximum reflection coefficient level of |Γ1|max = 0.1.

Assuming that the inductive part ofZL arises from an inductance, replace the complex load
by ZL = 200+ j100f/f0 at other frequencies. Plot the corresponding reflection response
|Γ1(f)| versus frequency.

Solution: At f0, the load is ZL = 200+ j100 and its reflection coefficient and SWR are found to
be |ΓL| = 0.6695 and SL = 5.0521. It follows that the line segments corresponding to a
voltage minimum and maximum will have parameters:

Lmin = 0.2665, Zmin = 1

SL
Z0 = 9.897, Lmax = 0.0165, Zmax = SLZ0 = 252.603

For either of these cases, the effective load reflection coefficient seen by the transformer
will be |Γ| = (SL−1)/(SL+1)= 0.6695. It follows that the design attenuation specification
for the transformer will be:

A = 20 log10

( |Γ|
|Γ1|max

)
= 20 log10

(
0.6695

0.1

)
= 16.5155 dB

With the given number of sections M and this value of the attenuation A, the following
MATLAB code will design the transformer and calculate the reflection response of the
overall structure:
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Z0 = 50; ZL0 = 200 + 100j; % load impedance at f0

[Lmin, Zmin] = lmin(ZL0,Z0,’min’); % calculate Lmin

Gmin = abs(z2g(Zmin,Z0)); G1max = 0.1; % design based on Zmin

A = 20*log10(Gmin/G1max);

M = 3; % three-section transformer

Z = 1./chebtr3(1/Z0, 1/Zmin, M, A);
Ztot = [Z(1:M+1), Z0]; % concatenate all sections

Ltot = [ones(1,M)/4, Lmin]; % electrical lengths of all sections

f0 = 100; f = linspace(0,2*f0, 801);
ZL = 200 + j*100*f/f0; % assume inductive load

G1 = abs(multiline(Ztot, Ltot, ZL, f/f0)); % overall reflection response

where the designed impedances and quarter-wavelength segments are concatenated with
the last segment of impedance Z0 and length Lmin or Lmax. The corresponding frequency
reflection responses are shown in Fig. 13.5.2.
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Fig. 13.5.2 Matching a complex impedance.

The calculated vector outputs of the transformer impedances are in the Lmin case:

Z = [50, 50/S1/2
L , 50/SL]= [50, 22.2452, 9.897]

Z = [50, 36.5577, 22.2452, 13.5361, 9.897]

Z = [50, 40.5325, 31.0371, 22.2452, 15.9437, 12.2087, 9.897]

and in the Lmax case:

Z = [50, 50S1/2
L , 50SL]= [50, 112.3840, 252.603]

Z = [50, 68.3850, 112.3840, 184.6919, 252.603]

Z = [50, 61.6789, 80.5486, 112.3840, 156.8015, 204.7727, 252.603]

We note that there is essentially no difference in bandwidth over the desired design level
of |Γ1|max = 0.1 in the Lmin case, and very little difference in the Lmax case. ��
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The MATLAB function qwt1 implements this matching method. Its inputs are the
complex load and line impedances ZL, Z0 and its outputs are the quarter-wavelength
section impedance Z1 and the electrical length Lm of the Z0-section. It has usage:

[Z1,Lm] = qwt1(ZL,Z0,type); % λ/4-transformer with series section

where type is one of the strings ’min’ or ’max’, depending on whether the first section
gives a voltage minimum or maximum.

13.6 Quarter-Wavelength Transformer With Shunt Stub

Two other possible methods of matching a complex load are to use a shorted or opened
stub connected in parallel with the load and adjusting its length or its line impedance
so that its susceptance cancels the load susceptance, resulting in a real load that can
then be matched by the quarter-wave section.

In the first method, the stub length is chosen to be either λ/8 or 3λ/8 and its
impedance is determined in order to provide the required cancellation of susceptance.

In the second method, the stub’s characteristic impedance is chosen to have a conve-
nient value and its length is determined in order to provide the susceptance cancellation.

These methods are shown in Fig. 13.6.1. In practice, they are mostly used with
microstrip lines that have easily adjustable impedances. The methods are similar to the
stub matching methods discussed in Sec. 13.8 in which the stub is not connected at the
load but rather after the series segment.

Fig. 13.6.1 Matching with a quarter-wavelength section and a shunt stub.

Let YL = 1/ZL = GL+ jBL be the load admittance. The admittance of a shorted stub
of characteristic admittance Y2 = 1/Z2 and length d is Ystub = −jY2 cotβd and that of
an opened stub, Ystub = jY2 tanβd.

The total admittance at point a in Fig. 13.6.1 is required to be real-valued, resulting
in the susceptance cancellation condition:

Ya = YL +Ystub = GL + j(BL −Y2 cotβd)= GL ⇒ Y2 cotβd = BL (13.6.1)

For an opened stub the condition becomes Y2 tanβd = −BL. In the first method,
the stub length is d = λ/8 or 3λ/8 with phase thicknesses βd = π/4 or 3π/4. The
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corresponding values of the cotangents and tangents are cotβd = tanβd = 1 or
cotβd = tanβd = −1.

Then, the susceptance cancellation condition becomes Y2 = BL for a shorted λ/8-
stub or an opened 3λ/8-stub, and Y2 = −BL for a shorted 3λ/8-stub or an opened
λ/8-stub. The case Y2 = BL must be chosen when BL > 0 and Y2 = −BL, when BL < 0.

In the second method,Z2 is chosen and the lengthd is determined from the condition
(13.6.1), cotβd = BL/Y2 = Z2BL for a shorted stub, and tanβd = −Z2BL for an opened
one. The resulting d must be reduced modulo λ/2 to a positive value.

With the cancellation of the load susceptance, the impedance looking to the right
of point a will be real-valued, Za = 1/Ya = 1/GL. Therefore, the quarter-wavelength
section will have impedance:

Z1 =
√
Z0Za =

√
Z0

GL
(13.6.2)

The MATLAB functions qwt2 and qwt3 implement the two matching methods. Their
usage is as follows:

[Z1,Z2] = qwt2(ZL,Z0); % λ/4-transformer with λ/8 shunt stub

[Z1,d] = qwt3(ZL,Z0,Z2,type) % λ/4-transformer with shunt stub of given impedance

where type takes on the string values ’s’ or ’o’ for shorted or opened stubs.

Example 13.6.1: Design quarter-wavelength matching circuits to match the load impedance
ZL = 15 + 20j Ω to a 50-ohm generator at 5 GHz using series sections and shunt stubs.
Use microstrip circuits with a Duroid substrate (εr = 2.2) of height h = 1 mm. Determine
the lengths and widths of all required microstrip sections, choosing always the shortest
possible lengths.

Solution: For the quarter-wavelength transformer with a series section, it turns out that the
shortest length corresponds to a voltage maximum. The impedance Z1 and section length
Lmax are computed with the MATLAB function qwt1:

[Z1, Lmax]= qwt1(ZL,Z0,’max’) ⇒ Z1 = 98.8809 Ω, Lmax = 0.1849

The widths and lengths of the microstrip sections are designed with the help of the func-
tions mstripr and mstripa. For the quarter-wavelength section Z1, the corresponding
width-to-height ratio u1 = w1/h is calculated from mstripr and then used in mstripa to
get the effective permittivity, from which the wavelength and length of the segment can
be calculated:

u1 = mstripr(εr, Z1)= 0.9164, w1 = u1h = 0.9164 mm

εeff = mstripa(εr, u1)= 1.7659, λ1 = λ0√
εeff

= 4.5151 cm, l1 = λ1

4
= 1.1288 cm

where the free-space wavelength is λ0 = 6 cm. Similarly, we find for the series segment
with impedance Z2 = Z0 and length L2 = Lmax:

u2 = mstripr(εr, Z2)= 3.0829, w2 = u2h = 3.0829 mm

εeff = mstripa(εr, u2)= 1.8813, λ2 = λ0√
εeff

= 4.3745 cm, l2 = L2λ2 = 0.8090 cm

For the case of the λ/8 shunt stub, we find from qwt2:
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[Z1, Z2]= qwt2(ZL,Z0)= [45.6435,−31.2500] Ω

where the negative Z2 means that we should use either a shorted 3λ/8 stub or an opened
λ/8 one. Choosing the latter and setting Z2 = 31.25 Ω, we can go on to calculate the
microstrip widths and lengths:

u1 = mstripr(εr, Z1)= 3.5241, w1 = u1h = 3.5241 mm

εeff = mstripa(εr, u1)= 1.8965, λ1 = λ0√
εeff

= 4.3569 cm, l1 = λ1

4
= 1.0892 cm

u2 = mstripr(εr, Z2)= 5.9067, w2 = u2h = 5.9067 mm

εeff = mstripa(εr, u2)= 1.9567, λ2 = λ0√
εeff

= 4.2894 cm, l2 = λ2

8
= 0.5362 cm

For the third matching method, we use a shunt stub of impedance Z2 = 30 Ω. It turns out
that the short-circuited version has the shorter length. We find with the help of qwt3:

[Z1, d]= qwt3(ZL,Z0, Z2,’s’) ⇒ Z1 = 45.6435 Ω, d = 0.3718

The microstrip width and length of the quarter-wavelength section Z1 are the same as in
the previous case, because the two cases differ only in the way the load susceptance is
canceled. The microstrip parameters of the shunt stub are:

u2 = mstripr(εr, Z2)= 6.2258, w2 = u2h = 6.2258 mm

εeff = mstripa(εr, u2)= 1.9628, λ2 = λ0√
εeff

= 4.2826 cm, l2 = dλ2 = 1.5921 cm

Had we used a 50 Ω shunt segment, its width and length would be w2 = 3.0829 mm and
l2 = 1.7983 cm. Fig. 13.6.2 depicts the microstrip matching circuits. ��

Fig. 13.6.2 Microstrip matching circuits.

13.7 Two-Section Series Impedance Transformer

One disadvantage of the quarter-wavelength transformer is that the required impedan-
ces of the line segments are not always easily realized. In certain applications, such
as microwave integrated circuits, the segments are realized by microstrip lines whose
impedances can be adjusted easily by changing the strip widths. In other applications,
however, such as matching antennas to transmitters, we typically use standard 50- and
75-ohm coaxial cables and it is not possible to re-adjust their impedances.
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The two-section series impedance transformer, shown in Fig. 13.7.1, addresses this
problem [1121,1122]. It employs two line segments of known impedances Z1 and Z2

that have convenient values and adjusts their (electrical) lengths L1 and L2 to match
a complex load ZL to a main line of impedance Z0. Fig. 13.7.1 depicts this kind of
transformer.

The design method is identical to that of designing two-layer antireflection coatings
discussed in Sec. 6.2. Here, we modify that method slightly in order to handle complex
load impedances. We assume that Z0, Z1, and Z2 are real and the load complex, ZL =
RL + jXL.

Fig. 13.7.1 Two-section series impedance transformer.

Defining the phase thicknesses of the two segments by δ1 = 2πn1l1/λ0 = 2πL1

and δ2 = 2πn2l2/λ0 = 2πL2, the reflection responses Γ1 and Γ2 at interfaces 1 and 2
are:

Γ1 = ρ1 + Γ2e−2jδ1

1+ ρ1Γ2e−2jδ1
, Γ2 = ρ2 + ρ3e−2jδ2

1+ ρ2ρ3e−2jδ2

where the elementary reflection coefficients are:

ρ1 = Z1 − Z0

Z1 + Z0
, ρ2 = Z2 − Z1

Z2 + Z1
, ρ3 = ZL − Z2

ZL + Z2

The coefficients ρ1, ρ2 are real, but ρ3 is complex, and we may represent it in polar
form ρ3 = |ρ3|ejθ3 . The reflectionless matching condition is Γ1 = 0 (at the operating
free-space wavelength λ0). This requires that ρ1 + Γ2e−2jδ1 = 0, which implies:

e2jδ1 = −Γ2

ρ1
(13.7.1)

Because the left-hand side has unit magnitude, we must have the condition |Γ2| =
|ρ1|, or, |Γ2|2 = ρ2

1, which is written as:

∣∣∣∣∣ ρ2 + |ρ3|ejθ3e−2jδ2

1+ ρ2|ρ3|ejθ3e−2jδ2

∣∣∣∣∣
2

= ρ2
2 + |ρ3|2 + 2ρ2|ρ3| cos(2δ2 − θ3)

1+ ρ2
2|ρ3|2 + 2ρ2|ρ3| cos(2δ2 − θ3)

= ρ2
1

Using the identity cos(2δ2 − θ3)= 2 cos2(δ2 − θ3/2)−1, we find:

cos2(δ2 − θ3

2

) = ρ2
1(1− ρ2|ρ3|)2−(ρ2 − |ρ3|)2

4ρ2|ρ3|(1− ρ2
1)

sin2(δ2 − θ3

2

) = (ρ2 + |ρ3|)2−ρ2
1(1+ ρ2|ρ3|)2

4ρ2|ρ3|(1− ρ2
1)

(13.7.2)
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Not every combination of ρ1, ρ2, ρ3 will result into a solution for δ2 because the
left-hand sides must be positive and less than unity. If a solution for δ2 exists, then δ1

is determined from Eq. (13.7.1). Actually, there are two solutions for δ2 corresponding
to the ± signs of the square root of Eq. (13.7.2), that is, we have:

δ2 = 1

2
θ3 + acos

⎡
⎣±

(
ρ2

1(1− ρ2|ρ3|)2−(ρ2 − |ρ3|)2

4ρ2|ρ3|(1− ρ2
1)

)1/2
⎤
⎦ (13.7.3)

If the resulting value of δ2 is negative, it may be shifted by π or 2π to make it
positive, and then solve for the electrical length L2 = δ2/2π. An alternative way of
writing Eqs. (13.7.2) is in terms of the segment impedances (see also Problem 6.6):

cos2(δ2 − θ3

2

) = (Z2
2 − Z3Z0)(Z3Z2

1 − Z0Z2
2)

Z0(Z2
2 − Z2

3)(Z
2
1 − Z2

2)

sin2(δ2 − θ3

2

) = Z2
2(Z0 − Z3)(Z2

1 − Z0Z3)
Z0(Z2

2 − Z2
3)(Z

2
1 − Z2

2)

(13.7.4)

where Z3 is an equivalent “resistive” termination defined in terms of the load impedance
through the relationship:

Z3 − Z2

Z3 + Z2
= |ρ3| =

∣∣∣∣ZL − Z2

ZL + Z2

∣∣∣∣ (13.7.5)

Clearly, if ZL is real and greater than Z2, then Z3 = ZL, whereas if it is less that
Z2, then, Z3 = Z2

2/ZL. Eq. (13.7.4) shows more clearly the conditions for existence
of solutions. In the special case when section-2 is a section of the main line, so that
Z2 = Z0, then (13.7.4) simplifies to:

cos2(δ2 − θ3

2

) = Z3Z2
1 − Z3

0

(Z3 + Z0)(Z2
1 − Z2

0)

sin2(δ2 − θ3

2

) = Z0(Z2
1 − Z0Z3)

(Z3 + Z0)(Z2
1 − Z2

0)

(13.7.6)

It is easily verified from these expressions that the condition for the existence of
solutions is that the equivalent load impedance Z3 lie within the intervals:

Z3
0

Z2
1
≤ Z3 ≤ Z2

1

Z0
, if Z1 > Z0

Z2
1

Z0
≤ Z3 ≤ Z3

0

Z2
1
, if Z1 < Z0

(13.7.7)

They may be combined into the single condition:

Z0

S2
≤ Z3 ≤ Z0S2 , S = max(Z1, Z0)

min(Z1, Z0)
= swr(Z1, Z0) (13.7.8)
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Example 13.7.1: Matching range with 50- and 75-ohm lines. If Z0 = 50 and Z1 = 75 ohm, then
the following loads can be matched by this method:

503

752
≤ Z3 ≤ 752

50
⇒ 22.22 ≤ Z3 ≤ 112.50 Ω

And, if Z0 = 75 and Z1 = 50, the following loads can be matched:

502

75
≤ Z3 ≤ 753

502
⇒ 33.33 ≤ Z3 ≤ 168.75 Ω

In general, the farther Z1 is from Z0, the wider the range of loads that can be matched.
For example, with Z0 = 75 and Z1 = 300 ohm, all loads in the range from 4.5 to 1200 ohm
can be matched. ��

The MATLAB function twosect implements the above design procedure. Its inputs
are the impedancesZ0, Z1, Z2, and the complexZL, and its outputs are the two solutions
for L1 and L2, if they exist. Its usage is as follows, where L12 is a 2×2 matrix whose
rows are the two possible sets of values of L1, L2:

L12 = twosect(Z0,Z1,Z2,ZL); % two-section series impedance transformer

The essential code in this function is as follows:

r1 = (Z1-Z0)/(Z1+Z0);
r2 = (Z2-Z1)/(Z2+Z1);
r3 = abs((ZL-Z2)/(ZL+Z2));
th3 = angle((ZL-Z2)/(ZL+Z2));

s = ((r2+r3)^2 - r1^2*(1+r2*r3)^2) / (4*r2*r3*(1-r1^2));
if (s<0)|(s>1), fprintf(’no solution exists’); return; end

de2 = th3/2 + asin(sqrt(s)) * [1;-1]; % construct two solutions

G2 = (r2 + r3*exp(j*th3-2*j*de2)) ./ (1 + r2*r3*exp(j*th3-2*j*de2));

de1 = angle(-G2/r1)/2;

L1 = de1/2/pi; L2 = de2/2/pi;

L12 = mod([L1,L2], 0.5); % reduce modulo λ/2

Example 13.7.2: Matching an antenna with coaxial cables. A 29-MHz amateur radio antenna
with input impedance of 38 ohm is to be fed by a 50-ohm RG-58/U cable. Design a two-
section series impedance transformer consisting of a length of RG-59/U 75-ohm cable
inserted into the main line at an appropriate distance from the antenna [1122]. The velocity
factor of both cables is 0.79.

Solution: Here, we have Z0 = 50, Z1 = 75, Z2 = Z0, and ZL = 38 ohm. The call to the function
twosect results in the MATLAB output for the electrical lengths of the segments:

L12 =
[

0.0536 0.3462
0.4464 0.1538

]
⇒ L1 = 0.0536, L2 = 0.3462

L1 = 0.4464, L2 = 0.1538

638 13. Impedance Matching

Using the given velocity factor, the operating wavelength is λ = 0.79λ0 = 0.79c0/f0 =
8.1724 m, where f0 = 29 MHz. Therefore, the actual physical lengths for the segments are,
for the first possible solution:

l1 = 0.0536λ = 0.4379 m = 1.4367 ft , l2 = 0.3462λ = 2.8290 m = 9.2813 ft

and for the second solution:

l1 = 0.4464λ = 3.6483 m = 11.9695 ft , l2 = 0.1538λ = 1.2573 m = 4.1248 ft

Fig. 13.7.2 depicts the corresponding reflection responses at interface-1, |Γ1(f)|, as a func-
tion of frequency. The standing wave ratio on the main line is also shown, that is, the
quantity S1(f)=

(
1+ |Γ1(f)|

)
/
(
1− |Γ1(f)|

)
.
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Fig. 13.7.2 Reflection response of two-section series transformer.

The reflection response was computed with the help of multiline. The typical MATLAB
code for this example was:

Z0 = 50; Z1 = 75; ZL = 38;
c0 = 3e8; f0 = 29e6; vf = 0.79;
la0 = c0/f0; la = la0*vf;

L12 = twosect(Z0,Z1,Z0,ZL);

f = linspace(0,2,401); % in units of f0

G1 = abs(multiline([Z0,Z1,Z0],L12(1,:),ZL,f)); % reflection response 1

G2 = abs(multiline([Z0,Z1,Z0],L12(2,:),ZL,f)); % reflection response 2

S1=(1+G1)./(1-G1); S2=(1+G2)./(1-G2); % SWRs

We note that the two solutions have unequal bandwidths. ��

Example 13.7.3: Matching a complex load. Design a 75-ohm series section to be inserted into
a 300-ohm line that feeds the load 600+ 900j ohm [1122].

Solution: The MATLAB call
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L12 = twosect(300, 75, 300, 600+900j);

produces the solutions: L1 = [0.3983, 0.1017] and L2 = [0.2420, 0.3318]. ��

One-section series impedance transformer

We mention briefly also the case of the one-section series impedance transformer, shown
in Fig. 13.7.3. This is one of the earliest impedance transformers [1116–1120]. It has
limited use in that not all complex loads can be matched, although its applicability can
be extended somewhat [1120].

Fig. 13.7.3 One-section series impedance transformer.

Both the section impedance Z1 and length L1 are treated as unknowns to be fixed
by requiring the matching condition Γ1 = 0 at the operating frequency. It is left as an
exercise (see Problem 13.9) to show that the solution is given by:

Z1 =
√
Z0RL − Z0X2

L
Z0 −RL

, L1 = 1

2π
atan

[
Z1(Z0 −RL)

Z0XL

]
(13.7.9)

provided that either of the following conditions is satisfied:

Z0 < RL or Z0 > RL + X2
L

RL
(13.7.10)

In particular, there is always a solution if ZL is real. The MATLAB function onesect
implements this method. It has usage:

[Z1,L1] = onesect(ZL,Z0); % one-section series impedance transformer

where L1 is the normalized length L1 = l1/λ1, with l1 and λ1 the physical length and
wavelength of the Z1 section. The routine outputs the smallest positive L1.

13.8 Single Stub Matching

Stub tuners are widely used to match any complex load† to a main line. They consist of
shorted or opened segments of the line, connected in parallel or in series with the line
at a appropriate distances from the load.

†The resistive part of the load must be non-zero. Purely reactive loads cannot be matched to a real line
impedance by this method nor by any of the other methods discussed in this chapter. This is so because
the transformation of a reactive load through the matching circuits remains reactive.
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In coaxial cable or two-wire line applications, the stubs are obtained by cutting ap-
propriate lengths of the main line. Shorted stubs are usually preferred because opened
stubs may radiate from their opened ends. However, in microwave integrated circuits
employing microstrip lines, radiation is not as a major concern because of their smaller
size, and either opened or shorted stubs may be used.

The single stub tuner is perhaps the most widely used matching circuit and can
match any load. However, it is sometimes inconvenient to connect to the main line if
different loads are to be matched. In such cases, double stubs may be used, but they
cannot match all loads. Triple stubs can match any load. A single stub tuner is shown
in Figs. 13.8.1 and 13.8.2, connected in parallel and in series.

Fig. 13.8.1 Parallel connection of single stub tuner.

Fig. 13.8.2 Series connection of single stub tuner.

In the parallel case, the admittance Ya = 1/Za at the stub location a is the sum of
the admittances of the length-d stub and the wave admittance at distance l from the
load, that is,

Ya = Yl +Ystub = Y0
1− Γl
1+ Γl

+Ystub

where Γl = ΓLe−2jβl. The admittance of a short-circuited stub is Ystub = −jY0 cotβd,
and of an open-circuited one, Ystub = jY0 tanβd. The matching condition is that Ya =
Y0. Assuming a short-circuited stub, we have:
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Y0
1− Γl
1+ Γl

− jY0 cotβd = Y0 ⇒ 1− Γl
1+ Γl

− j cotβd = 1

which can be rearranged into the form:

2j tanβd = 1+ 1

Γl
(13.8.1)

Inserting Γl = ΓLe−2jβl = |ΓL|ejθL−2jβl, where ΓL = |ΓL|ejθL is the polar form of the
load reflection coefficient, we may write (13.8.1) as:

2j tanβd = 1+ ej(2βl−θL)

|ΓL| (13.8.2)

Equating real and imaginary parts, we obtain the equivalent conditions:

cos(2βl− θL)= −|ΓL| , tanβd = sin(2βl− θL)
2|ΓL| = −1

2
tan(2βl− θL) (13.8.3)

The first of (13.8.3) may be solved resulting in two solutions for l; then, the second
equation may be solved for the corresponding values of d:

βl = 1

2
θL ± 1

2
acos

(−|ΓL|) , βd = atan
(−1

2
tan(2βl− θL)

)
(13.8.4)

The resulting values of l, d must be made positive by reducing them modulo λ/2.
In the case of an open-circuited shunt stub, the first equation in (13.8.3) remains the
same, and in the second we must replace tanβd by − cotβd. In the series connection
of a shorted stub, the impedances are additive at point a, resulting in the condition:

Za = Zl + Zstub = Z0
1+ Γl
1− Γl

+ jZ0 tanβd = Z0 ⇒ 1+ Γl
1− Γl

+ j tanβd = 1

This may be solved in a similar fashion as Eq. (13.8.1). We summarize below the
solutions in the four cases of parallel or series connections with shorted or opened
stubs:

βl = 1

2

[
θL ± acos

(−|ΓL|)], βd = atan
(−1

2
tan(2βl− θL)

)
, parallel/shorted

βl = 1

2

[
θL ± acos

(−|ΓL|)], βd = acot
(1

2
tan(2βl− θL)

)
, parallel/opened

βl = 1

2

[
θL ± acos

(|ΓL|)], βd = acot
(1

2
tan(2βl− θL)

)
, series/shorted

βl = 1

2

[
θL ± acos

(|ΓL|)], βd = atan
(−1

2
tan(2βl− θL)

)
, series/opened

The MATLAB function stub1 implements these equations. Its input is the normal-
ized load impedance, zL = ZL/Z0, and the desired type of stub. Its outputs are the dual
solutions for the lengths d, l, arranged in the rows of a 2x2 matrix dl. Its usage is as
follows:
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dl = stub1(zL,type); % single stub tuner

The parameter type takes on the string values ’ps’, ’po’, ’ss’, ’so’, for parallel/short,
parallel/open, series/short, series/open stubs.

Example 13.8.1: The load impedance ZL = 10−5j ohm is to be matched to a 50-ohm line. The
normalized load is zL = ZL/Z0 = 0.2− 0.1j. The MATLAB calls, dl=stub1(zL,type), re-
sult into the following solutions for the cases of parallel/short, parallel/open, series/short,
series/open stubs:

[
0.0806 0.4499
0.4194 0.0831

]
,
[

0.3306 0.4499
0.1694 0.0831

]
,
[

0.1694 0.3331
0.3306 0.1999

]
,
[

0.4194 0.3331
0.0806 0.1999

]

Each row represents a possible solution for the electrical lengths d/λ and l/λ. We illustrate
below the solution details for the parallel/short case.

Given the load impedance zL = 0.2 − 0.1j, we calculate the reflection coefficient and put
it in polar form:

ΓL = zL − 1

zL + 1
= −0.6552− 0.1379j ⇒ |ΓL| = 0.6695 , θL = −2.9341 rad

Then, the solution of Eq. (13.8.4) is:

βl = 1

2

[
θL ± acos

(−|ΓL|)] = 1

2

[−2.9341± acos(−0.6695)
] = 1

2

[−2.9341± 2.3044)
]

which gives the two solutions:

βl = 2πl
λ

=
[
−0.3149 rad
−2.6192 rad

]
⇒ l = λ

2π

[
−0.3149
−2.6192

]
=
[
−0.0501λ
−0.4169λ

]

These may be brought into the interval [0, λ/2] by adding enough multiples of λ/2. The
built-in MATLAB function mod does just that. In this case, a single multiple of λ/2 suffices,
resulting in:

l =
[
−0.0501λ+ 0.5λ
−0.4169λ+ 0.5λ

]
=
[

0.4499λ
0.0831λ

]
⇒ βl =

[
2.8267 rad
0.5224 rad

]

With these values of βl, we calculate the stub length d:

βd = atan
(−1

2
tan(2βl− θL)

) =
[

0.5064 rad
−0.5064 rad

]
⇒ d =

[
0.0806λ
−0.0806λ

]

Shifting the second d by λ/2, we finally find:

d =
[

0.0806λ
−0.0806λ+ 0.5λ

]
=
[

0.0806λ
0.4194λ

]
, βd =

[
0.5064 rad
2.6351 rad

]

Next, we verify the matching condition. The load admittance is yL = 1/zL = 4 + 2j.
Propagating it to the left of the load by a distance l, we find for the two values of l and for
the corresponding values of d:
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yl = yL + j tanβl
1+ jyL tanβl

=
[

1.0000+ 1.8028j
1.0000− 1.8028j

]
, ystub = −j cotβd =

[
−1.8028j

1.8028j

]

For both solutions, the susceptance of yl is canceled by the susceptance of the stub, re-
sulting in the matched total normalized admittance ya = yl + ystub = 1. ��

Example 13.8.2: Match the antenna and feed line of Example 13.7.2 using a single shorted or
opened stub. Plot the corresponding matched reflection responses.

Solution: The normalized load impedance is zL = 38/50 = 0.76. The MATLAB function stub1

yields the following solutions for the lengths d, l, in the cases of parallel/short, paral-
lel/open, series/short, series/open stubs:

[
0.2072 0.3859
0.2928 0.1141

]
,
[

0.4572 0.3859
0.0428 0.1141

]
,
[

0.0428 0.3641
0.4572 0.1359

]
,
[

0.2928 0.3641
0.2072 0.1359

]
,

These numbers must be multiplied by λ0, the free-space wavelength corresponding to
the operating frequency of f0 = 29 MHz. The resulting reflection responses |Γa(f)| at
the connection point a of the stub, corresponding to all the pairs of d, l are shown in
Fig. 13.8.3. For example, in the parallel/short case, Γa is calculated by

Γa = 1− ya
1+ ya

, ya = 1− ΓLe−2jβl

1+ ΓLe−2jβl − j cotβd , βl = 2π
f
f0

l
λ0

, βd = 2π
f
f0

d
λ0

We note that different solutions can have very different bandwidths. ��
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Fig. 13.8.3 Reflection response of single stub matching solutions.

13.9 Balanced Stubs

In microstrip realizations of single-stub tuners, balanced stubs are often used to reduce
the transitions between the series and shunt segments. Fig. 13.9.1 depicts two identical
balanced stubs connected at opposite sides of the main line.
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Fig. 13.9.1 Balanced stubs.

Because of the parallel connection, the total admittance of the stubs will be dou-
ble that of each leg, that is, Ybal = 2Ystub. A single unbalanced stub of length d can
be converted into an equivalent balanced stub of length db by requiring that the two
configurations provide the same admittance. Depending on whether shorted or opened
stubs are used, we obtain the relationships between db and d:

2 cotβdb = cotβd ⇒ db = λ
2π

acot(0.5 cotβd) (shorted)

2 tanβdb = tanβd ⇒ db = λ
2π

atan(0.5 tanβd) (opened)

(13.9.1)

The microstrip realization of such a balanced stub is shown in Fig. 13.9.2. The figure
also shows the use of balanced stubs for quarter-wavelength transformers with a shunt
stub as discussed in Sec. 13.6.

Fig. 13.9.2 Balanced microstrip single-stub and quarter-wavelength transformers.

If the shunt stub has length λ/8 or 3λ/8, then the impedance Z2 of each leg must
be double that of the single-stub case. On the other hand, if the impedance Z2 is fixed,
then the stub length db of each leg may be calculated by Eq. (13.9.1).
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13.10 Double and Triple Stub Matching

Because the stub distance l from the load depends on the load impedance to be matched,
the single-stub tuner is inconvenient if several different load impedances are to be
matched, each requiring a different value for l.

The double-stub tuner, shown in Fig. 13.10.1, provides an alternative matching method
in which two stubs are used, one at the load and another at a fixed distance l from the
load, where typically, l = λ/8. Only the stub lengths d1, d2 need to be adjusted to match
the load impedance.

Fig. 13.10.1 Double stub tuner.

The two stubs are connected in parallel to the main line and can be short- or open-
circuited. We discuss the matching conditions for the case of shorted stubs.

Let YL = 1/ZL = GL + jBL be the load admittance, and define its normalized ver-
sion yL = YL/Y0 = gL + jbL, where gL, bL are the normalized load conductance and
susceptance. At the connection points a,b, the total admittance is the sum of the wave
admittance of the line and the stub admittance:

ya = yl + ystub,1 = yb + j tanβl
1+ jyb tanβl

− j cotβd1

yb = yL + ystub,2 = gL + j(bL − cotβd2)

The matching condition is ya = 1, which gives rise to two equations that can be
solved for the unknown lengths d1, d2. It is left as an exercise (see Problem 13.10) to
show that the solutions are given by:

cotβd2 = bL − b , cotβd1 = 1− b tanβl− gL
gL tanβl

(13.10.1)

where

b = cotβl±
√
gL(gmax − gL) , gmax = 1+ cot2 βl = 1

sin2 βl
(13.10.2)

Evidently, the condition for the existence of a real-valued b is that the load conduc-
tance gL be less than gmax, that is, gL ≤ gmax. If this condition is not satisfied, the
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load cannot be matched with any stub lengths d1, d2. Stub separations near λ/2, or
near zero, result in gmax = ∞, but are not recommended because they have very narrow
bandwidths [887].

Assuming l ≤ λ/4, the condition gL ≤ gmax can be turned around into a condition
for the maximum length l that will admit a matching solution for the given load:

l ≤ lmax = λ
2π

asin
( 1√gL

)
(maximum stub separation) (13.10.3)

If the existence condition is satisfied, then Eq. (13.10.2) results in two solutions for
b and, hence for, d1, d2. The lengths d1, d2 must be reduced modulo λ/2 to bring them
within the minimum interval [0, λ/2].

If any of the stubs are open-circuited, the corresponding quantity cotβdi must be
replaced by − tanβdi = cot(βdi −π/2).

The MATLAB function stub2 implements the above design procedure. Its inputs are
the normalized load impedance zL = ZL/Z0, the stub separation l, and the stub types,
and its outputs are the two possible solutions for the d1, d2. Its usage is as follows:

d12 = stub2(zL,l,type); % double stub tuner

d12 = stub2(zL,l); % equivalent to type=’ss’

d12 = stub2(zL); % equivalent to l = 1/8 and type=’ss’

The parameter type takes on the strings values: ’ss’, ’so’, ’os’, ’oo’, for short/short,
short/open, open/short, open/open stubs. If the existence condition fails, the function
outputs the maximum separation lmax that will admit a solution.

A triple stub tuner, shown in Fig. 13.10.2, can match any load. The distances l1, l2
between the stubs are fixed and only the stub lengths d1, d2, d3 are adjustable.

The first two stubs (from the left) can be thought of as a double-stub tuner. The
purpose of the third stub at the load is to ensure that the wave impedance seen by the
double-stub tuner satisfies the existence condition gL ≤ gmax.

Fig. 13.10.2 Triple stub tuner.

The total admittance at the load point c, and its propagated version by distance l2
to point b are given by:

yl = yc + j tanβl2
1+ jyc tanβl2

, yc = yL + ystub,3 = gL + jbL − j cotβd3 = gL + jb (13.10.4)
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where b = bL − cotβd3. The corresponding conductance is:

gl = Re(yl)= gL(1+ tan2 βl2)
(b tanβl2 − 1)2+g2

L tan2 βl2
(13.10.5)

The first two stubs see the effective load yl. The double-stub problem will have a
solution provided gl ≤ gmax,1 = 1/ sin2 βl1. The lengthd3 of the third stub is adjusted to
ensure this condition. To parametrize the possible solutions, we introduce a “smallness”
parameter e < 1 such that gl = egmax,1. This gives the existence condition:

gl = gL(1+ tan2 βl2)
(b tanβl2 − 1)2+g2

L tan2 βl2
= egmax,1

which can be rewritten in the form:

(b− cotβl2)2= gL(gmax,2 − egmax,1gL)= g2
Lgmax,1(emax − e)

where we defined gmax,2 = 1 + cot2 βl2 = 1/ sin2 βl2 and emax = gmax,2/(gLgmax,1). If
emax < 1, we may replace e by the minimum of the chosen e and emax. But if emax > 1,
we just use the chosen e. In other words, we replace the above condition with:

(b− cotβl2)2= g2
Lgmax,1(emax − emin) , emin = min(e, emax) (13.10.6)

It corresponds to setting gl = emingmax,1. Solving Eq. (13.10.6) for cotβd3 gives the
two solutions:

cotβd3 = bL − b , b = cotβl2 ± gL
√
gmax,1(emax − emin) (13.10.7)

For each of the two values of d3, there will be a feasible solution to the double-stub
problem, which will generate two possible solutions for d1, d2. Thus, there will be a
total of four triples d1, d2, d3 that will satisfy the matching conditions. Each stub can
be shorted or opened, resulting into eight possible choices for the stub triples.

The MATLAB function stub3 implements the above design procedure. It generates
a 4×3 matrix of solutions and its usage is:

d123 = stub3(zL,l1,l2,type,e); % triple stub tuner

d123 = stub3(zL,l1,l2,type); % equivalent to e = 0.9

d123 = stub3(zL,l1,l2); % equivalent to e = 0.9, type=’sss’

d123 = stub3(zL); % equivalent to e = 0.9, type=’sss’, l1 = l2 = 1/8

where type takes on one of the eight possible string values, defining whether the first,
second, or third stubs are short- or open-circuited: ’sss’, ’sso’, ’sos’, ’soo’, ’oss’, ’oso’,
’oos’, ’ooo’.

13.11 L-Section Lumped Reactive Matching Networks

Impedance matching by stubs or series transmission line segments is appropriate at
higher frequencies, such as microwave frequencies. At lower RF frequencies, lumped-
parameter circuit elements may be used to construct a matching network. Here, we
discuss L-section, Π-section, and T-section matching networks.
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The L-section matching network shown in Fig. 13.11.1 uses only reactive elements
(inductors or capacitors) to conjugately match any load impedance ZL to any generator
impedance ZG. The use of reactive elements minimizes power losses in the matching
network.

Fig. 13.11.1 L-section reactive conjugate matching network.

L-section networks are used to match the input and output impedances of amplifier
circuits [1161–1169] and also to match transmitters to feed lines [44,45,1123–1130].

An arbitrary load impedance may be matched by a normal L-section, or if that is
not possible, by a reversed L-section. Sometimes both normal and reversed types are
possible. We derive below the conditions for the existence of a matching solution of a
particular type.

The inputs to the design procedure are the complex load and generator impedances
ZL = RL + jXL and ZG = RG + jXG. The outputs are the reactances X1, X2. For
either type, the matching network transforms the load impedance ZL into the complex
conjugate of the generator impedance, that is,

Zin = Z∗G (conjugate match) (13.11.1)

where Zin is the input impedance looking into the L-section:

Zin = Z1(Z2 + ZL)
Z1 + Z2 + ZL

(normal)

Zin = Z2 + Z1ZL
Z1 + ZL

(reversed)

(13.11.2)

with Z1 = jX1 and Z2 = jX2. Inserting Eqs. (13.11.2) into the condition (13.11.1) and
equating the real and imaginary parts of the two sides, we obtain a system of equations
for X1, X2 with solutions for the two types:

X1 = XG ±RGQ
RG

RL
− 1

X2 = −(XL ±RLQ)

Q =
√√√√RG

RL
− 1+ X2

G
RGRL

(normal) ,

X1 = XL ±RLQ
RL

RG
− 1

X2 = −(XG ±RGQ)

Q =
√√√RL

RG
− 1+ X2

L
RGRL

(reversed)

(13.11.3)
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If the load and generator impedances are both resistive, so that XL = 0 and XG = 0,
the above solutions take the particularly simple forms:

X1 = ±RG

Q

X2 = ∓RLQ

Q =
√
RG

RL
− 1

(normal) ,

X1 = ±RL

Q

X2 = ∓RGQ

Q =
√
RL

RG
− 1

(reversed) (13.11.4)

We note that the reversed solution is obtained from the normal one by exchanging
ZL with ZG. Both solution types assume that RG �= RL. If RG = RL, then for either type,
we have the solution:

X1 = ∞, X2 = −(XL +XG) (13.11.5)

Thus, X1 is open-circuited and X2 is such that X2 + XL = −XG. The Q quantities
play the role of series impedance Q-factors. Indeed, the X2 equations in all cases imply
that Q is equal to the ratio of the total series reactance by the corresponding series
resistance, that is, (X2 +XL)/RL or (X2 +XG)/RG.

The conditions for real-valued solutions forX1, X2 are that theQ factors in (13.11.3)
and (13.11.4) be real-valued or that the quantities under their square roots be non-
negative. WhenRL �= RG, it is straightforward to verify that this happens in the following
four mutually exclusive cases:

existence conditions L-section types

RG > RL , |XL| ≥
√
RL(RG −RL) normal and reversed

RG > RL , |XL| <
√
RL(RG −RL) normal only

RG < RL , |XG| ≥
√
RG(RL −RG) normal and reversed

RG < RL , |XG| <
√
RG(RL −RG) reversed only

(13.11.6)

It is evident that a solution of one or the other type always exists. When RG > RL
a normal section always exists, and when RG < RL a reversed one exists. The MATLAB
function lmatch implements Eqs. (13.11.3). Its usage is as follows:

X12 = lmatch(ZG,ZL,type); % L-section matching

where type takes on the string values ’n’ or ’r’ for a normal or reversed L-section.
The two possible solutions for X1, X2 are returned in the rows of the 2×2 matrix X12.

Example 13.11.1: Design an L-section matching network for the conjugate match of the load
impedanceZL = 100+50j ohm to the generatorZG = 50+10j ohm at 500 MHz. Determine
the capacitance or inductance values for the matching network.

Solution: The given impedances satisfy the last of the four conditions of Eq. (13.11.6). Therefore,
only a reversed L-section will exist. Its two solutions are:

X12 = lmatch(50+ 10j,100+ 50j,’r’)=
[

172.4745 −71.2372
−72.4745 51.2372

]
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The first solution has a capacitiveX2 = −71.2372 and an inductiveX1 = 172.4745. Setting
X2 = 1/jωC and X1 = jωL, where ω = 2πf = 2π500 · 106 rad/sec, we determine the
corresponding values of C and L to be C = 4.47 pF and L = 54.90 nH.

The second solution has an inductive X2 = 51.2372 and a capacitive X1 = −72.4745.
Setting X2 = jωL and X1 = 1/jωC, we find in this case, L = 16.3 nH and C = 4.39 pF. Of
the two solutions, the one with the smaller values is generally preferred. ��

13.12 Pi-Section Lumped Reactive Matching Networks

Although the L-section network can match an arbitrary load to an arbitrary source,
its bandwidth and Q-factor are fixed uniquely by the values of the load and source
impedances through Eqs. (13.11.3).

The Π-section network, shown together with its T-section equivalent in Fig. 13.12.1,
has an extra degree of freedom that allows one to control the bandwidth of the match.
In particular, the bandwidth can be made as narrow as desired.

Fig. 13.12.1 Π- and T-section matching networks.

The Π, T networks (also called Δ, Y networks) can be transformed into each other
by the following standard impedance transformations, which are cyclic permutations of
each other:

Za = Z2Z3

U
, Zb = Z3Z1

U
, Zc = Z1Z2

U
, U = Z1 + Z2 + Z3

Z1 = V
Za

, Z2 = V
Zb

, Z3 = V
Zc

, V = ZaZb + ZbZc + ZcZa
(13.12.1)

Because Z1, Z2, Z3 are purely reactive, Z1 = jX1, Z2 = jX2, Z3 = jX3, so will be
Za,Zb,Zc, with Za = jXa, Zb = jXb, Zc = jXc.

The MATLAB functions pi2t and t2pi transform between the two parameter sets.
The function pi2t takes in the array of three values Z123 = [Z1, Z2, Z3] and outputs
Zabc = [Za,Zb,Zc], and t2pi does the reverse. Their usage is:
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Zabc = pi2t(Z123); % Π to T transformation

Z123 = t2pi(Zabc); % T to Π transformation

One of the advantages ofT networks is that often they result in more practical values
for the circuit elements; however, they tend to be more lossy [44,45].

Here we discuss only the design of the Π matching network. It can be transformed
into a T network if so desired. Fig. 13.12.2 shows the design procedure, in which the
Π network can be thought of as two L-sections arranged back to back, by splitting the
series reactance X2 into two parts, X2 = X4 +X5.

Fig. 13.12.2 Equivalent L-section networks.

An additional degree of freedom is introduced into the design by an intermediate
reference impedance, say Z = R + jX, such that looking into the right L-section the
input impedance is Z, and looking into the left L-section, it is Z∗.

Denoting the L-section impedances by Z1 = jX1, Z4 = jX4 and Z3 = jX3, Z5 = jX5,
we have the conditions:

Zleft = Z4 + Z1ZG
Z1 + ZG

= Z∗ , Zright = Z5 + Z3ZL
Z3 + ZL

= Z (13.12.2)

As shown in Fig. 13.12.2, the right L-section and the load can be replaced by the
effective load impedance Zright = Z. Because Z1 and Z4 are purely reactive, their con-
jugates will be Z∗1 = −Z1 and Z∗4 = −Z4. It then follows that the first of Eqs. (13.12.2)
can be rewritten as the equivalent condition:

Zin = Z1(Z4 + Z)
Z1 + Z4 + Z

= Z∗G (13.12.3)

This is precisely the desired conjugate matching condition that must be satisfied by
the network (as terminated by the effective load Z.)

Eq. (13.12.3) can be interpreted as the result of matching the source ZG to the load
Z with a normal L-section. An equivalent point of view is to interpreted the first of
Eqs. (13.12.2) as the result of matching the source Z to the load ZG using a reversed
L-section.
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Similarly, the second of Eqs. (13.12.2) is the result of matching the source Z∗ to the
load ZL (because the input impedance looking into the right section is then (Z∗)∗= Z.)
Thus, the reactances of the two L-sections can be obtained by the two successive calls
to lmatch:

X14 = [X1, X4]= lmatch(ZG,Z, ’n’)= lmatch(Z,ZG, ’r’)

X35 = [X3, X5]= lmatch(Z∗, ZL, ’r’)
(13.12.4)

In order for Eqs. (13.12.4) to always have a solution, the resistive part of Z must
satisfy the conditions (13.11.6). Thus, we must choose R < RG and R < RL, or equiva-
lently:

R < Rmin , Rmin = min(RG,RL) (13.12.5)

Otherwise, Z is arbitrary. For design purposes, the nominal Q factors of the left and
right sections can be taken to be the quantities:

QG =
√
RG

R
− 1 , QL =

√
RL

R
− 1 (13.12.6)

The maximum of the two is the one with the maximum value of RG or RL, that is,

Q =
√
Rmax

R
− 1 , Rmax = max(RG,RL) (13.12.7)

This Q-factor can be thought of as a parameter that controls the bandwidth. Given
a value of Q, the corresponding R is obtained by:

R = Rmax

Q2 + 1
(13.12.8)

For later reference, we may express QG,QL in terms of Q as follows:

QG =
√

RG

Rmax
(Q2 + 1)−1 , QL =

√
RL

Rmax
(Q2 + 1)−1 (13.12.9)

Clearly, one or the other of QL,QG is equal to Q. We note also that Q may not be
less than the value Qmin achievable by a single L-section match. This follows from the
equivalent conditions:

Q > Qmin � R < Rmin , Qmin =
√
Rmax

Rmin
− 1 (13.12.10)

The MATLAB function pmatch implements the design equations (13.12.4) and then
constructs X2 = X4+X5. Because there are two solutions for X4 and two for X5, we can
add them in four different ways, leading to four possible solutions for the reactances of
the Π network.

The inputs to pmatch are the impedances ZG,ZL and the reference impedance Z,
which must satisfy the condition (13.12.10). The output is a 4×3 matrix X123 whose
rows are the different solutions for X1, X2, X3:
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X123 = pmatch(ZG,ZL,Z); % Π matching network design

The analytical form of the solutions can be obtained easily by applying Eqs. (13.11.3)
to the two cases of Eq. (13.12.4). In particular, if the load and generator impedances are
real-valued, we obtain from (13.11.4) the following simple analytical expressions:

X1 = −εG RG

QG
, X2 = Rmax(εGQG + εLQL)

Q2 + 1
, X3 = −εL RL

QL
(13.12.11)

where εG, εL are ±1, QG,QL are given in terms of Q by Eq. (13.12.9), and either Q is
given or it can be computed from Eq. (13.12.7). The choice εG = εL = 1 is made often,
corresponding to capacitive X1, X3 and inductive X2 [44,1128].

As emphasized by Wingfield [44,1128], the definition of Q as the maximum of QL
andQG underestimates the totalQ-factor of the network. A more appropriate definition
is the sum Qo = QL +QG.

An alternative set of design equations, whose input is Qo, is obtained as follows.
Given Qo, we solve for the reference resistance R by requiring:

Qo = QG +QL =
√
RG

R
− 1+

√
RL

R
− 1

This gives the solution for R, and hence for QG,QL:

R = (RG −RL)2

(RG +RL)Q2
o − 2Qo

√
RGRLQ2

o − (RG −RL)2

QG =
RGQo −

√
RGRLQ2

o − (RG −RL)2

RG −RL

QL =
RLQo −

√
RGRLQ2

o − (RG −RL)2

RL −RG

(13.12.12)

Then, construct the Π reactances from:

X1 = −εG RG

QG
, X2 = R(εGQG + εLQL) , X3 = −εL RL

QL
(13.12.13)

The only requirement is that Qo be greater than Qmin. Then, it can be verified that
Eqs. (13.12.12) will always result in positive values for R, QG, and QL. More simply, the
value of R may be used as an input to the function pmatch.

Example 13.12.1: We repeat Example 13.11.1 using a Π network. Because ZG = 50+ 10j and
ZL = 100+50j, we arbitrarily choose Z = 20+40j, which satisfies R < min(RG,RL). The
MATLAB function pmatch produces the solutions:

X123 = [X1, X2, X3]= pmatch(ZG,ZL,Z)=

⎡
⎢⎢⎢⎣

48.8304 −71.1240 69.7822
−35.4970 71.1240 −44.7822

48.8304 20.5275 −44.7822
−35.4970 −20.5275 69.7822

⎤
⎥⎥⎥⎦
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All values are in ohms and the positive ones are inductive while the negatives ones, capac-
itive. To see how these numbers arise, we consider the solutions of the two L-sections of
Fig. 13.12.2:

X14 = lmatch(ZG,Z, ’n’)=
[

48.8304 −65.2982
−35.4970 −14.7018

]

X35 = lmatch(Z∗, ZL, ’r’)=
[

69.7822 −5.8258
−44.7822 85.825

]

where X4 and X5 are the second columns. The four possible ways of adding the entries
of X4 and X5 give rise to the four values of X2. It is easily verified that each of the four
solutions satisfy Eqs. (13.12.2) and (13.12.3). ��

Example 13.12.2: It is desired to match a 200 ohm load to a 50 ohm source at 500 MHz. Design
L-section and Π-section matching networks and compare their bandwidths.

Solution: Because RG < RL and XG = 0, only a reversed L-section will exist. Its reactances are
computed from:

X12 = [X1, X2]= lmatch(50,200, ’r’)=
[

115.4701 −86.6025
−115.4701 86.6025

]

The corresponding minimum Q factor is Qmin =
√

200/50− 1 = 1.73. Next, we design a
Π section with a Q factor of 5. The required reference resistance R can be calculated from
Eq. (13.12.8):

R = 200

52 + 1
= 7.6923 ohm

The reactances of the Π matching section are then:

X123 = [X1, X2, X3]= pmatch(50,200,7.6923)=

⎡
⎢⎢⎢⎣

21.3201 −56.5016 40
−21.3201 56.5016 −40

21.3201 20.4215 −40
−21.3201 −20.4215 40

⎤
⎥⎥⎥⎦

The Π to T transformation gives the reactances of the T-network:

Xabc = [Xa,Xb,Xc]= pi2t(X123)=

⎡
⎢⎢⎢⎣
−469.0416 176.9861 −250

469.0416 −176.9861 250
−469.0416 −489.6805 250

469.0416 489.6805 −250

⎤
⎥⎥⎥⎦

If we increase, the Q to 15, the resulting reference resistance becomes R = 0.885 ohm,
resulting in the reactances:

X123 = [X1, X2, X3]= pmatch(50,200,0.885)=

⎡
⎢⎢⎢⎣

6.7116 −19.8671 13.3333
−6.7116 19.8671 −13.3333

6.7116 6.6816 −13.3333
−6.7116 −6.6816 13.3333

⎤
⎥⎥⎥⎦
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Fig. 13.12.3 Comparison of L-section and Π-section matching.

Fig. 13.12.3 shows the plot of the input reflection coefficient, that is, the quantity Γin =
(Zin − Z∗G)/(Zin + ZG) versus frequency.

If a reactance Xi is positive, it represents an inductance with a frequency dependence of
Zi = jXif/f0, where f0 = 500 MHz is the frequency of the match. If Xi is negative, it
represents a capacitance with a frequency dependence of Zi = jXif0/f .

The graphs display the two solutions of the L-match, but only the first two solutions of
the Π match. The narrowing of the bandwidth with increasing Q is evident. ��

The Π network achieves a narrower bandwidth over a single L-section network. In
order to achieve a wider bandwidth, one may use a double L-section network [1161], as
shown in Fig. 13.12.4.

Fig. 13.12.4 Double L-section networks.

The two L-sections are either both reversed or both normal. The design is similar to
Eq. (13.12.4). In particular, if RG < R < RL, we have:

X14 = [X1, X4]= lmatch(ZG,Z, ’r’)

X35 = [X3, X5]= lmatch(Z∗, ZL, ’r’)
(13.12.14)
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and if RG > R > RL:

X14 = [X1, X4]= lmatch(ZG,Z, ’n’)

X35 = [X3, X5]= lmatch(Z∗, ZL, ’n’)
(13.12.15)

The widest bandwidth (corresponding to the smallest Q) is obtained by selecting
R = √

RGRL. For example, consider the case RG < R < RL. Then, the corresponding
left and right Q factors will be:

QG =
√

R
RG

− 1 , QL =
√
RL

R
− 1

Both satisfy QG < Qmin and QL < Qmin. Because we always choose Q to be the
maximum of QG,QL, the optimum Q will correspond to that R that results in Qopt =
min

(
max(QG,QL)

)
. It can be verified easily that Ropt =

√
RGRL and

Qopt = QL,opt = QG,opt =
√
Ropt

RG
− 1 =

√
RL

Ropt
− 1

These results follow from the inequalities:

QG ≤ Qopt ≤ QL , if RG < R ≤ Ropt

QL ≤ Qopt ≤ QG , if Ropt ≤ R < RL

Example 13.12.3: Use a double L-section to widen the bandwidth of the single L-section of
Example 13.12.2.

Solution: The Q-factor of the single section is Qmin =
√

200/500− 1 = 1.73. The optimum ref-
erence resistor is Ropt =

√
50·200 = 100 ohm and the corresponding minimized optimum

Qopt = 1.
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Fig. 13.12.5 Comparison of single and double L-section networks.

The reactances of the single L-section were given in Example 13.12.2. The reactances of
the two sections of the double L-sections are calculated by the two calls to lmatch:
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X14 = [X1, X4]= lmatch(50,100,’r’)=
[

100 −50
−100 50

]

X35 = [X3, X5]= lmatch(100,200,’r’)=
[

200 −100
−200 100

]

The corresponding input reflection coefficients are plotted in Fig. 13.12.5. As in the design
of the Π network, the dual solutions of each L-section can be paired in four different ways.
But, for the above optimum value ofR, the four solutions have virtually identical responses.
There is some widening of the bandwidth, but not by much. ��

13.13 Reversed Matching Networks

The types of lossless matching networks that we considered in this chapter satisfy the
property that if a network is designed to transform a load impedance Zb into an input
impedance Za, then the reversed (i.e., flipped left-right) network will transform the load
Z∗a into the input Z∗b . This is illustrated in Fig. 13.13.1.

Fig. 13.13.1 Forward and reversed matching networks.

The losslessness assumption is essential. This property is satisfied only by matching
networks built from segments of lossless transmission lines, such as stub matching or
quarter-wave transformers, and by the L-, Π-, and T-section reactive networks. Some
examples are shown in Fig. 13.13.2.

Fig. 13.13.2 Examples of reversed matching networks.
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Working with admittances, we find for the stub example that the input and load
admittances must be related as follows for the forward and reverse networks:

Ya = Ystub +Y1
Yb + jY1 tanβl
Y1 + jYb tanβl

� Y∗b = Y1
(Y∗a +Ystub)+jY1 tanβl
Y1 + j(Y∗a +Ystub)tanβl

(13.13.1)

where Ystub = −jY2 cotβd for a shorted parallel stub, and Ystub = jY2 tanβd for an
opened one. The equivalence of the two equations in (13.13.1) is a direct consequence
of the fact that Ystub is purely reactive and therefore satisfies Y∗stub = −Ystub. Indeed,
solving the left equation for Yb and conjugating the answer gives:

Yb = Y1
(Ya −Ystub)−jY1 tanβl
Y1 − j(Ya −Ystub)tanβl

⇒ Y∗b = Y1
(Y∗a −Y∗stub)+jY1 tanβl
Y1 + j(Y∗a −Y∗stub)tanβl

which is equivalent to the right equation (13.13.1) because Y∗stub = −Ystub. Similarly, for
the L-section example we find the conditions for the forward and reversed networks:

Za = Z1(Z2 + Zb)
Z1 + Z2 + Zb

� Z∗b = Z2 + Z1Z∗a
Z1 + Z∗a

(13.13.2)

where Z1 = jX1 and Z2 = jX2. The equivalence of Eqs. (13.13.2) follows again from the
reactive conditions Z∗1 = −Z1 and Z∗2 = −Z2.

As we will see in Chap. 14, the reversing property is useful in designing the input
and output matching networks of two-port networks, such as microwave amplifiers,
connected to a generator and load with standardized impedance values such as Z0 = 50
ohm. This is shown in Fig. 13.13.3.

Fig. 13.13.3 Designing input and output matching networks for a two-port.

To maximize the two-port’s gain or to minimize its noise figure, the two-port is re-
quired to be connected to certain optimum values of the generator and load impedances
ZG,ZL. The output matching network must transform the actual load Z0 into the de-
sired value ZL. Similarly, the input matching network must transform Z0 into ZG so
that the two-port sees ZG as the effective generator impedance.

In order to use the matching methods of the present chapter, it is more convenient
first to design the reversed matching networks transforming a load Z∗L (or Z∗G) into
the standardized impedance Z0, as shown in Fig. 13.13.3. Then the designed reversed
networks may be reversed to obtain the actual matching networks. Several such design
examples will be presented in Chap. 14.
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13.14 Problems

13.1 A one-section quarter-wavelength transformer matching a resistive load ZL to a line Z0 must
have characteristic impedance Z1 =

√
Z0ZL. Show that the reflection response Γ1 into the

main line (see Fig. 13.3.1) is given as a function of frequency by:

Γ1 = ρ(1+ e−2jδ)
1+ ρ2e−2jδ , ρ =

√
ZL −

√
Z0√

ZL +
√
Z0

, δ = π
2

f
f0

where f0 is the frequency at which the transformer length is a quarter wavelength. Show
that the magnitude-squared of Γ1 is given by:

|Γ1|2 = e2 cos2 δ
1+ e2 cos2 δ

, e = 2|ρ|
1− ρ2

Show that the bandwidth (about f0) over which the voltage standing-wave ratio on the line
remains less than S is given by:

sin

(
π
4

Δf
f0

)
= (S− 1)(1− ρ2)

4|ρ|√S
13.2 Design a one-section quarter-wavelength transformer that will match a 200-ohm load to a

50-ohm line at 100 MHz. Determine the impedance Z1 and the bandwidth Δf over which
the SWR on the line remains less than S = 1.2.

13.3 A transmission line with characteristic impedance Z0 = 100 Ω is terminated at a load
impedance ZL = 150 + j50 Ω. What percentage of the incident power is reflected back
into the line?

In order to make the load reflectionless, a short-circuited stub of length l1 and impedance
also equal to Z0 is inserted in parallel at a distance l2 from the load. What are the smallest
values of the lengths l1 and l2 in units of the wavelength λ that make the load reflectionless?

13.4 A loss-free line of impedance Z0 is terminated at a load ZL = Z0+ jX, whose resistive part is
matched to the line. To properly match the line, a short-circuited stub is connected across
the main line at a distance of λ/4 from the load, as shown below. The stub has characteristic
impedance Z0.

Find an equation that determines the length l of the stub in order that there be no reflected
waves into the main line. What is the length l (in wavelengths λ) when X = Z0? When
X = Z0/

√
3?

13.5 A transmission line with characteristic impedance Z0 must be matched to a purely resistive
load ZL. A segment of length l1 of another line of characteristic impedance Z1 is inserted at
a distance l0 from the load, as shown in Fig. 13.7.1 (with Z2 = Z0 and l2 = l0.)

Take Z0 = 50, Z1 = 100, ZL = 80 Ω and let β0 and β1 be the wavenumbers within the
segments l0 and l1. Determine the values of the quantities cot(β1l1) and cot(β0l0) that
would guarantee matching. Show that the widest range of resistive loads ZL that can be
matched using the given values of Z0 and Z1 is: 12.5 Ω < ZL < 200 Ω.
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13.6 A transmission line with resistive impedance Z0 is terminated at a load impedance ZL =
R+ jX. Derive an expression, in terms of Z0, R, X, for the proportion of the incident power
that is reflected back into the line.

In order to make the load reflectionless, a short-circuited stub of length l1 and impedance Z0

is inserted at a distance l2 from the load. Derive expressions for the smallest values of the
lengths l1 and l2 in terms of the wavelength λ and Z0, R, X, that make the load reflectionless.

13.7 It is required to match a lossless transmission line Z0 to a load ZL. To this end, a quarter-
wavelength transformer is connected at a distance l0 from the load, as shown below. Let λ0

and λ be the operating wavelengths of the line and the transformer segment.

Assume Z0 = 50 Ω. Verify that the required length l0 that will match the complex load
ZL = 40+ 30j Ω is l0 = λ/8. What is the value of Z1 in this case?

13.8 It is required to match a lossless transmission line of impedance Z0 = 75 Ω to the complex
load ZL = 60 + 45j Ω. To this end, a quarter-wavelength transformer is connected at a
distance l0 from the load, as shown in the previous problem. Let λ0 and λ be the operating
wavelengths of the line and the transformer segment.

What is the required length l0 in units of λ0? What is the characteristic impedance Z1 of the
transformer segment?

13.9 Show that the solution of the one-section series impedance transformer shown in Fig. 13.7.3
is given by Eq. (13.7.9), provided that either of the inequalities (13.7.10) is satisfied.

13.10 Show that the solution to the double-stub tuner is given by Eq. (13.10.1) and (13.10.2).

13.11 Match load impedance ZL = 10−5j ohm of Example 13.8.1 to a 50-ohm line using a double-
stub tuner with stub separation of l = λ/16. Show that a double-stub tuner with separation
of l = λ/8 cannot match this load.

13.12 Match the antenna and feed line of Example 13.7.2 using a double stub tuner with stub
separation of l = λ/8. Plot the corresponding matched reflection responses. Repeat when l
is near λ/2, say, l = 0.495λ, and compare the resulting notch bandwidths.

13.13 Show that the load impedance of Problem 13.11 can be matched with a triple-stub tuner
using shorted stubs with separations of l1 = l2 = λ/8, shorted stubs. Use the smallness
parameter values of e = 0.9 and e = 0.1.

13.14 Match the antenna and feed line of Example 13.7.2 using a stub tuner and plot the corre-
sponding matched reflection responses. Use shorted stubs with separations l1 = l2 = λ/8,
and the two smallness parameters e = 0.9 and e = 0.7.

13.15 Design an L-section matching network that matches the complex load impedance ZL =
30 + 40j ohm to a 50-ohm transmission line. Verify that both a normal and a reversed
L-section can be used.

13.16 It is desired to match a line with characteristic impedance Z0 to a complex load ZL = RL +
jXL. In order to make the load reflectionless, a quarter-wavelength section of impedance Z1

is inserted between the main line and the load, and a λ/8 or 3λ/8 short-circuited stub of
impedance Z2 is inserted in parallel at the end of the line, as shown below.
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a. Show that the section characteristic impedances must be chosen as:

Z1 =
√
Z0RL , Z2 = Z0

RL

|XL|
Such segments are easily implemented with microstrip lines.

b. Depending on the sign of XL, decide when one should use a λ/8 or a 3λ/8 stub.

c. The above scheme works if both RL and XL are non-zero. What should we do if RL �= 0
and XL = 0? What should we do if RL = 0 and XL �= 0?

d. Repeat the above questions if an open-circuited stub is used.

13.17 A 50-ohm transmission line is terminated at the load impedance:

ZL = 40+ 80j Ω

a. In order to make the load reflectionless, a quarter-wavelength transformer section of
impedance Z1 is inserted between the line and the load, as show below, and a λ/8 or
3λ/8 short-circuited stub of impedance Z2 is inserted in parallel with the load.

Determine the characteristic impedances Z1 and Z2 and whether the parallel stub
should have length λ/8 or 3λ/8.

b. In the general case of a shorted stub, show that the matching conditions are equivalent
to the following relationship among the quantities Z0, ZL, Z1, Z2:

ZL = Z0Z2
1Z2

2 ± jZ2Z4
1

Z2
0Z2

2 + Z4
1

where Z0, Z1, Z2 are assumed to be lossless. Determine which ± sign corresponds to
λ/8 or 3λ/8 stub length.
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13.18 An FM antenna operating at a carrier frequency of f0 = 100 MHz has input impedance of
ZL = 112.5 ohm. The antenna is to be matched to a Z0 = 50 ohm feed line with a quarter-
wavelength transformer inserted as shown below.

a. Determine the quarter-wavelength segment’s impedance Z1.

b. Show that the reflection response back into the feed line at the left end of the quarter-
wavelength transformer is given as a function of frequency by:

Γ1(f)= ρ(1+ e−2jδ)
1+ ρ2e−2jδ , δ = πf

2f0
, ρ = Z1 − Z0

Z1 + Z0

c. Plot |Γ1(f)| versus f in the range 0 ≤ f ≤ 200 MHz.

d. Using part (b), show that the bandwidth Δfa about the carrier frequency f0 that corre-
sponds to a prescribed value |Γa|2 of the reflection response is given by:

Δfa = 2f0

π
acos

(
2ρ2 − |Γa|2(1+ ρ4)

2ρ2(1− |Γa|2)

)

e. Calculate this bandwidth for the value |Γa| = 0.1 and determine the left and right
bandedge frequencies in MHz, and place them on the above graph of |Γ1(f)|.

f. The FCC stipulates that FM radio stations operate within a 200 kHz bandwidth about
their carrier frequency. What is the maximum value of the reflection response |Γa| for
such a bandwidth?

13.19 The same FM antenna is to be matched using a single-stub tuner as shown below, using an
open-ended stub.

a. Determine the segment lengths d, l (in cm) assuming the segments have chacteristic
impedance of Z0 = 50 ohm and that the velocity factor on all the lines is 0.8.

b. Calculate and plot versus frequency the reflection response |Γa(f)| into the feed line,
at the terminals a shown in the figure.


