
Modeling and Tissue Parameter Extraction Challenges for Free Space 
Broadband fNIR Brain Imaging Systems 

E. Sultana, K. Mansetaa, A. Khwajaa, L. Najafizadehc, A. Gandjbakhchec, K. Pourrezaeib,  
A.S. Daryoush*a 

aDepartment of ECE, Drexel University, Philadelphia, PA 19104 USA 
bSchool of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, 

Pennsylvania 19104, USA 
cNational Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892 USA 

* daryoush@coe.drexel.edu; 1215 895 2362
 

Abstract  
Fiber based functional near infra-red (fNIR) spectroscopy has been considered as a cost effective imaging modality.  To 
achieve a better spatial resolution and greater accuracy in extraction of the optical parameters (i.e., �a and �’s), broadband 
frequency modulated systems covering multi-octave frequencies of 10-1000MHz is considered. A helmet mounted 
broadband free space fNIR system is considered as significant improvement over bulky commercial fiber fNIR 
realizations that are inherently uncomfortable and dispersive for broadband operation. Accurate measurements of 
amplitude and phase of the frequency modulated NIR signals (670nm, 795nm, and 850nm) is reported here using free 
space optical transmitters and receivers realized in a small size and low cost modules. The tri-wavelength optical 
transmitter is based on vertical cavity semiconductor lasers (VCSEL), whereas the sensitive optical receiver is based on 
either PIN or APD photodiodes combined with transimpedance amplifiers. This paper also has considered brain 
phantoms to perform optical parameter extraction experiments using broadband modulated light for separations of up to 
5cm. Analytical models for predicting forward (transmittance) and backward (reflectance) scattering of modulated 
photons in diffused media has been modeled using Diffusion Equation (DE). The robustness of the DE modeling and 
parameter extraction algorithm was studied by experimental verification of multi-layer diffused media phantoms. In 
particular, comparison between analytical and experimental models for narrow band and broadband has been performed 
to analyze the advantages of our broadband fNIR system.  
 

1. Introduction 
Traumatic brain injury (TBI) is a neurological disorder that in most cases caused by head injuries caused by blast 
injuries1 or head on collisions 2. In particular, impact acoustic pressure waves or jerking of brain in skull results in mild 
or severe traumatic brain injuries. For earlier diagnosis of TBI, functional brain mappings need to be performed on 
patients shortly after the head injuries. In most situation access to sophisticated functional Magnetic resonance imaging 
(fMRI) scanners are not available in field; moreover, understanding of the TBI could be developed when real time brain 
functionality could be compared against calibrated baseline performance.  To accomplish this goal, a field transportable 
and low cost imaging instruments is envisioned using functional near IR (fNIR) imaging systems. Since better 
understanding of the brain functionality is tied to assessment of the electrical impulses (i.e., Action Potentials)3, as the  
main method for the nerve system to communicate and propagate with cells and organs. The action potentials are 
generated when certain level of energy is consumed in neurons by absorbing oxygen. Knowing the rate of oxygenated 
and deoxygenated blood circulation in to various regions of brain will lead to neurons and brain functionality. Imaging 
techniques based on absorption and scattering4 of light at near-infrared region emitted from lasers and collected by 
optical detectors give an accurate assessment about brain functionality. Different wavelengths in near IR region have 
different absorption and scattering properties for hemoglobin. Knowing the scattering and absorption coefficients will 
provide information about the level of oxygen absorption and hence the action potential activity associated with a 
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segment of brain. This information collected in various regions of brain will provide level of oxygen provided to neurons 
as a function of time.  

Spectroscopic studies of tissue have shown absorption and scattering sensitivity of water, oxygenated, and de-
oxygenated hemoglobin at different wavelengths 5. Therefore, any impact that will lead to disorder the functionally of 
the neurons of brain could then be registered by disorder in the absorption of oxygenated and de-oxygenated hemoglobin 
using diffused photon NIR (DPNIR). The location and percentage of oxygen absorbed in the brain can be related to 
different physiological activities6 and hence labeled as fNIR system. Knowing the level of oxygen in blood would help in 
early treatment of any biological disorder. Therefore localization hematoma could be made by measuring reduction in 
de-oxygenated hemoglobin and increase in oxygenated blood volume and having this localized information related to 
TBI. There are many challenges that concern early diagnose and early treatment as part of the external treatment of the 
human body. Since the demand for oxygenated hemoglobin increases with hematoma, while due to brain injury 
functionality of brain is impacted and a reduction in de-oxygenation of blood in certain areas of the brain is experienced 
after blast compared to the baseline behavior before. Moreover, efficacy of various proposed treatment could be 
compared by monitoring performance of brain regions over time.        

There are different types of spectroscopy that can provide information related to brain functionality. Even though fMRI 
can provide an accurate assessment for brain activity3 but it cannot determine if the activity is related to a benign or 
malignant tumors7. However, fNIR can give information related to amount of absorption of different wavelength in 
different matters, but because of photon limited path migration then it becomes difficult to provide information for deep 
brain activity. There have been studies depicting a relation between surface spectroscopy and deep brain activity8.
Functional spectroscopic measurements of brain tissue at NIR wavelengths of 670nm, 795nm, 850nm can be used to 
accurately detect levels of oxygenated and deoxygenated hemoglobin as depicted in Fig 19 from light absorption and 
scattering. These three wavelength will provide information related to absorption of photon in oxygenated and de-
oxygenated hemoglobin. 

Fig. 1. NIR Spectrum with absorption coeffieints. 

The fNIR imaging system is designed using multi-wavelength optical sources that are strategically located on a helmet 
mounted system as shown in Fig. 2.  A completely mobile and field deployable unit requires a broadband and low power 
consuming wireless system to communicate between the sensor and the remote monitoring device. This system will be 
based on free space which will eliminate the use of bulky optical fibers. VCSEL, vertical-cavity surface-emitting laser, is
semiconductor laser diode with laser beam emission perpendicular from the top surface which can be used as a photon 
source. Optical receivers using low noise PIN photodiodes or APD are employed for light collection.  A relatively low 
level of signal processing functions are to be performed at the helmet mounted electronics to reduce the extremely high 
raw information throughput. The received signals over 10-1000MHz from optical receivers are processed locally to 
reduce significantly data throughput from Tb/s to Mb/s 10. The block diagram for the wireless system is shown in Fig. 3. 
The wireless system consists of transmit and receive section. In the receive section, the wireless signal is received by an 
antenna, amplified using a Low Noise Amplifier and then down converted to IF signal using a Gilbert Cell Mixer. The IF 
signal is then amplified using Drive Amplifier and sent as the modulating signal to the optical transmitter. For the 

670nm

795nm
850nm
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Fig.3. Block Diagram of the wireless communication system. 

This paper focus on free space broadband frequency parameter extraction techniques and signal processing functions that 
is required. There are several advantages of broadband frequency over narrowband frequency measurements. Since most 
tissues have a multi layered structure and because photon penetration depth is less at higher frequency, by sweeping 
modulation frequency one can have information for all layers in a single measurement. This approach will give more 
accurate results in clinical measurements, where accuracy is essential for better diagnosis. The better assessments in 
parameter extraction will be used in the future to develop a helmet shape fNIR system Fig. 2. That will be controlled by 
remote monitoring unit.  

2. fNIR Background  

2.1. Tissue Parameter Extraction  
Analytical solution to the photon transport equation9 that predicts spatial and temporal evolution of photons through 
biological matter is of great interest to solve inverse problem of physiological extraction that is used for biomedical 
imaging. In many cases an exact solution of the transport equation is not possible and instead a variety of approximations 
have been used. Various methods are reported of describing the photon movements/migration in any turbid medium 11, 12, 

13 among them Monte Carlo (MC) simulation would give an approximation for the transport equation13, 14. The basic 
premise of MC simulation is that complex particle- biological matter interactions can be treated as stochastic process, 
with simulated random samples from probability density functions.  The computational tool required for inverse problem 
solution using MC technique is computationally prohibitive for complex structures such as brain. Therefore, alternative 
modeling technique using simplified diffusion equation (DE) to model photon migration through tissue by explaining 
absorption and scattering coefficients. It has been demonstrated that the DE could predict a behavior as accurate as MC 
technique for modulation frequencies up to 1 GHz 15.The extracted parameters describe the hemodynamic response of 
human physiological organs with reported clinical applications in breast cancer detection; wound healing; and many 
others. The diffusion equation has been used in our analysis for the broadband analytical extraction 16.   
 
The diffusion equation states:  
 �

�
�����	
 ���

��  ������� �� � �������� �� � ���� �
� ��                          (1) 
and we are interested in the solution of ���� ��for reflectance or transmittance mode. For example solutions of DE for a 
homogenous medium as shown in Fig. 4 can be described as a function of separation between optical source and optical 
detector. Since we are interested in clinical application then only reflectance mode is what matter from our analysis.  The 
PDW is expressed for a sinusoidal point source modulated at angular frequency of �=2�f in a semi-infinite medium 
as9,17: 

                                     ���� �� � ����� 
!"#$�%&'�� � �(��� 

!"#$�%)&*(+��� , -./012345�6�  7��89                         (2) 
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where Adc and Aac are respectively the DC and RF components of the source, � is the DC penetration depth, and kreal and 
kimag are the real and imaginary components of PDW complex wave number. Therefore reflectance mode solution will be 
:  

:�;� 7� � <45�6�7��=  >?@A> B CD5�6EF�G H                                                         (3) 

I����;� 7� � �4�
�� J �K-LM� � NOLP��QR                                                              (4) 

where   
�= � S��	�%� � ��TQR                                                                                          (5) 

�=U � VW �XYZ �[E*\\�%E*\\ � �
YZ]

� � ��^                                                                         (6) 
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�]
QR � ac

QR
                                                              (7) 

<�F�G � _X� ���	� `Wa � C
b
�Y(H

�]
QR  ac

QR
                                                               (8) 

K-LM � FdeS%f&*(+,�gT�g  hi�0<45�6�7���=U  �=�9 FdeS%f&*(+�b�,�gjT�gj                (9) 

NOLP � �1k V0<45�6�7���=U  �=�9 FdeS%f&*(+�b�,�gjT�gj ^                                   (10) 

c is the speed of light in the medium, D is the scattering distribution )3(1 sD ����  and ; is the separation distance 
between transmitter and receiver.  
 
 

 
 
 
 
 
 
 
 
 

Fig.4 . Phantom Reflectance mode setup  

The DE can be used for both time and frequency domain analysis. The frequency domain depends on the frequency 
modulation of the photons. This method have been used to investigate the optical propertied of biological matter, and 
both single frequency and broadband modulation technique was implemented. bandwidths of 100MHz 18,19, 400MHz20, 
and 600MHz 21 showed a better accuracy of parameter extraction of   ��$and$�	l  . These studies used either the insertion 
loss or the insertion phase information to extract the optical parameter. Therefore the information associated with high 
frequency response is limited and would not contain full frequency response information. The extraction of accurate 
absorption and scattering coefficients for biological matter turbid media can be enhanced through the use of broadband 
frequency-domain measurements. It is proposed that broadband frequency modulation would give a better and more 
accurate assessment for optical parameter extraction. Studies show22,23 that broadband modulation (DC-1GHz) would 
give a high accuracy when both malignant and benign tumor is present. These studies were based on fiber optical system, 
and would increase the noise due to the patient movement. Therefore a practical solution would eliminate the bulky fiber 
to enhance the information and eliminate the noise artifact due to human discomfort induced movements.  
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Parameters accuracy is the major concern for any medical case because it gives better assessment of the 
tumor/disorder/traumatic behavior. The higher the oxygen absorption the more it become risky and indicates high level 
of activity that can be related to tumor/disorder/traumatic behavior. Therefore absorption coefficient need to be accurate 
for different NIR spectroscopy. It have been shown that broadband modulation up to 1GHz give a very accurate 
measurements for fiber optic based system 22. Even though single frequency modulation gives a relative result but 
significant parameter accuracy is not achieved, when there are potential deviation between predictions based on true 
values of ��$and$�	l and measurement results. In this paper we will investigate the accuracy of optical parameter 
extraction for free space frequency domain modulation.   Our focus is in broadband systems since it permits our 
extraction of multilayer diffused media as encountered in head with skin, skull, CSF, and brain matter layers present.  
 
2.2. Review of Reported fNIR Hardware  
There are a number of commercially available fNIR systems in the market. Some uses CW, such as OTIS-2 fNIR system 
developed by Archinoetics24, LLC, fNIR Imager from fNIR devices, and BIOPAC 25Systems, Inc. CW system depends 
on constant intensity of infrared light during the measurement period. A portable three wavelength time resolved 
spectroscopy system from Hamamatsu is also available in the market. Model TRS-1026 is controlled by a computer for 
pulsed light source at three wavelengths (761, 795, and 835nm) and photon counting head for single photon detection. 
Honda have announced in 2009 that they have developed the world’s first Brain Machine Interface (BMI) technology 
that uses electroencephalography (EEG) and near-infrared spectroscopy (NIR). All the commercially available products 
use tethered fiber optic based system. Custom designed systems have also been developed by various research teams 
depending on each field of interest and application. The developed systems are summarized in table 1. 
 

Table 1. List of custom designed fNIR systems developed by various groups based on time domain, frequency domain, and CW systems. 
System type Research Group 

Time Domain 1. University of Munchen,  Prof. H Heusmann lab27 
2. University of Muenster , Prof. E Haller28 
3. University of Pennsylvania , Prof. Britton Chance9,29 

Frequency Domain 1. University of California, Prof. B. Tomberg and Prof. 
E Gratton30,31 

2. City University of New York, Prof. R. Alfano29 
3. TUFTS University, Prof. S Fantini31,32 

 
CW 

1. Rensselaer Polytechnic Institute, Prof. M Schoelles33 
2. Drexel University, Prof. Pourrezaei 34 

 
Narrow band frequency modulation, CW, and time domain technique has limited accuracy when it come to optical 
parameter extraction. Broadband frequency modulation technique would give information related to deferent penetration 
depth and present high accuracy for optical parameter extraction. A relative measurement have been developed in most 
of the research laboratory to extract optical parameters using different analytical techniques, but free space (un-tethered) 
system have not been achieved. Limitation due to fiber system can be avoided by free space wireless system but more 
challenges come along. Challenges due to noisy environment and light collection have been investigated in this paper. 
Approaches such as two separation subtraction31 and GRIN lens can eliminate the artifact due to the transmitter and 
receiver and low light collection respectively.  
  

3. Module development and measurements 
3.1. Approach    
There are two components that need to be considered when the optical path length modeling is being developed. The first 
is the optical transmitter and second is the optical receiver. The optical transmitter would provide modulating photons to 
penetrate into the brain matter while the optical receiver has to detect diffused and scattered  photons that carry localized 
action potential information from brain matter. Various options for optical transmitter sources would be GaAs based 
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Fig. 9. Comparison of SNR for different optical receivers using PIN photodiode and APD. 

3.3. Phantom Model for Brain 
Solid and liquid Phantoms have been used as a representative of Scalp, Skull, CSF, and Cortex. Initial values for Scalp, 
Skull, CSF, and Cortex have been provided using MC simulation provided from study by Hoshi6. Multilayer solid 
phantoms need to be designed based on the optical parameter provided in Table 3 in order to experimentally validate the 
current predictions and demonstrate advantages of broadband frequency modulation results for more accurate parameter 
extraction. A homogenous phantom depicted in Fig.10 is being used in this study with ��$= 0.045 cm-1and �	l=10 cm-1 at 
850nm to resemble brain tissue. 

Table.3. Initial values of optical parameter  
 �� (cm-1) �	l (cm-1)  

Scalp 0.001 0.15 
Skull 0.0008 0.07 
CSF 0.00033 0.01 

Cortex 0.002 0.1 

Fig.10. Brain Tissue Phantom  

Using DE described in section 2.1, both the insertion loss (IL) and insertion phase (IP) have been plotted for 1cm 
separation between the optical transmitter and the receiver for brain solid phantom shown in Fig. 10. The predicted IL 
and IP for different parameters associated with head are calculated and results are depicted in Fig 11a for IL and Fig. 11b 
for IP. that CSF have the highest insertion loss and insertion phase with respect to frequency.   

     

Fig.11. Predicted IL and IP for diffused density wave through Scalp, Skull, CSF, and Cortex as a function of frequency; a) IL, b) IP. 

(a) (b) 
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Fig.14. Absolute tri-wavelength IL and IP raw data for two separations of 1cm and 1.5 cm through brain phantom; a) IL, b) IP. 
 
The measurement artifact are to be subtracted using the two separation measurement techniques to get both mNn and mNo 
as shown in Fig.15. 

Fig.15. Relative tri-wavelength IL and IP raw data for two separations of 1cm and 1.5 cm through brain phantom; a) 	IL, b) 	IP. 
 
4.2. Broadband Measurement and Extraction Algorithm 
Another type of signal processing would be curve fitting the data to the diffusion equation. In this step we use the 
diffusion equation analytical result for certain separation and then curve fit the raw data collected. Eventually, the raw 
data was given a similar behavior to the analytical results, but reflecting amplitude and phase fluctuation due to non-ideal 
behavior of the optical transmitter, inhomogeneous diffused medium, and non-ideal interface to the optical receiver. 
Comparison of Fig. 11a and Fig. 14a for IL and Fig. 11b and Fig. 14b for IP clearly indicates this realistic deviation from 
the ideal behavior. Curve fitting method of constructing mathematical function that has the best fit to a series of data 
points (DE).  
 
The algorithm used for curve fitted is shown in the block diagram in Fig.16. Both insertion loss and insertion phase for 
two separation is curve fitted to  Lpq�-r � s, subtracted, use the least square error method in Matlab, and then extract 
the optical parameters. The least square curve(lsqcurvefit) fitting method is based on Levenberg-Macquart, which is used 
to minimize the merit function. Three wavelengths have been curve fitted using the algorithm explained in previous 
section. The following figures shows an advantage of using curve fitting over the raw data that can be shown by 
comparing these plots to the predicted IL and IP plots from section 3.3.  The process starts with collecting raw data from 
the network analyzer which provides information about the insertion loss and phase loss. These raw data is collected 
from two different distances to eliminate the artifact as mentioned in previous section. After collecting the raw data a 
curve fitting program in matlab was created to extract the both parameter a and b to best fit the mathematical function of 
Lpq�-r � s. Note that for each data of the three wavelengths of 670, 795, and 850nm, different fitting parameters are 
extracted to give a unique solution for each raw data as shown in Fig. 17 through Fig 19. The second step is based on 
subtracting the two curve fitted mathematical data to result in  mNn$�tu� and  mNo$��-P�. The Insertion phase result from 
the curve fitted resemble the electrical loss given from the network analyzer where the diffusion equation uses the optical 
loss. Known that the electrical loss is double the optical loss therefore a conversion factor of 2 in dB values has been 
made.  
 

(a) (b) 

(a) (b) 
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Fig. 16. Flow chart used for extraction algorithm of biological parameters. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 17. Measured data, fitted, and relative IL and IP data for two separations at wavelength of 670nm as a function of frequency.        

  
 
 
 
 
 
 
 
 
 
 

Fig. 18. Measured data, fitted, and relative IL and IP data for two separations at wavelength of 795nm as a function of frequency.

Fig. 19. Measured data, fitted, and relative IL and IP data for two separations at wavelength of 850nm as a function of frequency. 

(a) (b) 

(a) (b) 

(a) (b) 

Measure IL and IP for two different separations 

Nnv�$$$$$Nov� Nnv� Nov�

Nn�v�$$$$$No�v� 
Curve fit both $ Nn�v� No�v�

Curve fit both 

Nn�v�  Nn�v� Lkw No�v�  No�v� 
Subtract curve fitted 

Extract both �x	 Lkw ��  

Curve fit      Lpq�-r � s 

Minimize the merit function 
DE y P�z� 
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The final step is to extract the optical parameter using least square error provided from Matlab.  Table 4 tabulates 
extracted �	l  and �� for three different wavelengths 670nm, 795nm, and 850nm. The performance results are extracted 
and compared for various bandwidths and single frequencies that the fitted curve and the DE results compare very well. 
Note these frequencies are in the proximity of frequencies commonly reported by other groups for frequency modulated 
I/Q receivers.  
 

 Table 4. Comparison between various broadband and single frequency optical parameter extraction.  
 670nm 795nm 850nm 

 

g 

 

0.712 

 

0.639 

 

0.607 

Error%  from Manufacture values at 
850nm� ��(hO%��= 0.045cm-1 

and   �	� =10 cm-1 

 

100- 600MHz 

�	� (hO%�� 13.79 11.57 10.12 0.6% 

��(hO%�� 0.025 0.036 0.0438 1.4% 

 

100 – 1000MHz 

�	� (hO%�� 0.042 0.047 0.158 55% 

��(hO%�� 11.93 8.91 7.2 16.3% 

 

10-100MHz 

�	� (hO%�� 0.065 0.01 0.005 80% 

��(hO%�� 14.3 30.84 24.12 41.4% 

10-600MHz 

�	� (hO%�� >100 >100 >100 >100% 

��(hO%�� 0.17 0.161 0.17 58% 

 

10-1000MHz 

�	� (hO%�� 13.80 7.15 7.15 16.6% 

��(hO%�� 0.030 0.15 0.15 54% 

 

50MHz 

�	� (hO%�� 19.78 40 11.56 7.4% 

��(hO%�� 0.019 0.0045 0.021 36.4% 

 

141MHz 

�	� (hO%�� 16.86 18.14 9.5 2.6% 

��(hO%�� 0.026 0.018 0.049 4.3% 

 

450MHz 

�	� (hO%�� 14.1 8.6 7.63 13.5% 

��(hO%�� 0.031 0.098 0.124 47% 

Extracting the parameter was based on curve fitting different portion of the data each time. From the raw data versus 
curve fitted data, it was expected that the best extraction is going to be between 100MHz and 600MHz, as it is 
highlighted with the least amount of error indicated in red in Table 4. The worst extraction in terms of percentage error is 
over 10-600MHz followed with 10-100MHz, which is due to insertion loss and insertion Phase below 100MHz and 
above 600MHz are not monotonic and experience significant fluctuation. The observed fluctuations result in extraction 
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error experienced in this frequency range. This is one of the main challenges of the free space and a reason for using 
curve fitting to minimize error. In particular our measurement from 600-1000MHz suffers from significant repeatable 
fluctuation, which its source is somewhat independent of low SNR values at those frequencies. The source of this 
deviation between the DE predictions and measured results is still under investigations since it is not due to experimental 
errors.  
 

5. Conclusion 
The optical link data at 670nm, 795nm, and 850nm has been used for this study as a representative of this signal 
processing based parameter extraction technique.  Insertion loss increases linearly with respect to square root of 
frequency as shown in Fig. 17a, 18a, and 19a, whereas insertion phase is showing a linear increase with respect to 
frequency as depicted in Fig. 17b, 18b, and 19b. This performance is predicted since migrating photons at a higher 
frequency experiences a higher attenuation and phase change over a lower frequencies.  The broadband and single 
frequency extraction of absorption and scattering parameters as a function of frequency is compared in Table 4. Only the 
phantom optical parameter at 850 nm is known from the manufacture, which indicate that the result from Table 4 at 
850nm is giving an error of 1.4% for �a and 0.6% for �s’. From the results, we can see that the accuracy of broadband 
from 100-600MHz with curve fitting extraction is much better than 10-1000MHz, which excludes deviations from 
predicted performance using DE over 10-100MHz and 600-1000MHz.  Even the extraction of �a and �s’ at the single 
frequencies that we observe the best match between the curve fitted data and raw data does not lead to the same accuracy 
as the broadband results.  The source of deviation between the DE predictions and measured results for frequencies of 
10-50MHz and 600-1000 MHz is under investigations since it is not due to experimental errors. 
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